efi-stub-helper.c 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 *
 * This file is part of the Linux kernel, and is made available
 * under the terms of the GNU General Public License version 2.
 *
 */
#define EFI_READ_CHUNK_SIZE	(1024 * 1024)

struct initrd {
	efi_file_handle_t *handle;
	u64 size;
};




22 23
static void efi_char16_printk(efi_system_table_t *sys_table_arg,
			      efi_char16_t *str)
24 25 26
{
	struct efi_simple_text_output_protocol *out;

27
	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
28 29 30
	efi_call_phys2(out->output_string, out, str);
}

31
static void efi_printk(efi_system_table_t *sys_table_arg, char *str)
32 33 34 35 36 37 38 39 40
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
41
			efi_char16_printk(sys_table_arg, nl);
42 43
		}

44
		efi_char16_printk(sys_table_arg, ch);
45 46 47 48
	}
}


49 50 51
static efi_status_t __get_map(efi_system_table_t *sys_table_arg,
			      efi_memory_desc_t **map,
			      unsigned long *map_size,
52 53 54 55 56 57 58 59 60 61 62 63 64 65
			      unsigned long *desc_size)
{
	efi_memory_desc_t *m = NULL;
	efi_status_t status;
	unsigned long key;
	u32 desc_version;

	*map_size = sizeof(*m) * 32;
again:
	/*
	 * Add an additional efi_memory_desc_t because we're doing an
	 * allocation which may be in a new descriptor region.
	 */
	*map_size += sizeof(*m);
66
	status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
67 68 69 70
				EFI_LOADER_DATA, *map_size, (void **)&m);
	if (status != EFI_SUCCESS)
		goto fail;

71 72
	status = efi_call_phys5(sys_table_arg->boottime->get_memory_map,
				map_size, m, &key, desc_size, &desc_version);
73
	if (status == EFI_BUFFER_TOO_SMALL) {
74
		efi_call_phys1(sys_table_arg->boottime->free_pool, m);
75 76 77 78
		goto again;
	}

	if (status != EFI_SUCCESS)
79
		efi_call_phys1(sys_table_arg->boottime->free_pool, m);
80 81 82 83 84 85 86 87 88

fail:
	*map = m;
	return status;
}

/*
 * Allocate at the highest possible address that is not above 'max'.
 */
89
static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
90 91
			       unsigned long size, unsigned long align,
			       unsigned long *addr, unsigned long max)
92 93 94 95 96 97 98 99
{
	unsigned long map_size, desc_size;
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	u64 max_addr = 0;
	int i;

100
	status = __get_map(sys_table_arg, &map, &map_size, &desc_size);
101 102 103
	if (status != EFI_SUCCESS)
		goto fail;

104 105 106 107 108 109 110 111
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
	if (align < EFI_PAGE_SIZE)
		align = EFI_PAGE_SIZE;

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
again:
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

		if ((start + size) > end || (start + size) > max)
			continue;

		if (end - size > max)
			end = max;

		if (round_down(end - size, align) < start)
			continue;

		start = round_down(end - size, align);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL.
		 */
		if (start == 0x0)
			continue;

		if (start > max_addr)
			max_addr = start;
	}

	if (!max_addr)
		status = EFI_NOT_FOUND;
	else {
154
		status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
155 156 157 158 159 160 161 162 163 164 165 166
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &max_addr);
		if (status != EFI_SUCCESS) {
			max = max_addr;
			max_addr = 0;
			goto again;
		}

		*addr = max_addr;
	}

free_pool:
167
	efi_call_phys1(sys_table_arg->boottime->free_pool, map);
168 169 170 171 172 173 174 175

fail:
	return status;
}

/*
 * Allocate at the lowest possible address.
 */
176 177
static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
			      unsigned long size, unsigned long align,
178 179 180 181 182 183 184 185
			      unsigned long *addr)
{
	unsigned long map_size, desc_size;
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	int i;

186
	status = __get_map(sys_table_arg, &map, &map_size, &desc_size);
187 188 189
	if (status != EFI_SUCCESS)
		goto fail;

190 191 192 193 194 195 196 197
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
	if (align < EFI_PAGE_SIZE)
		align = EFI_PAGE_SIZE;

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));

		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL. Skip the first 8
		 * bytes so we start at a nice even number.
		 */
		if (start == 0x0)
			start += 8;

		start = round_up(start, align);
		if ((start + size) > end)
			continue;

227
		status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
228 229 230 231 232 233 234 235 236 237 238 239
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &start);
		if (status == EFI_SUCCESS) {
			*addr = start;
			break;
		}
	}

	if (i == map_size / desc_size)
		status = EFI_NOT_FOUND;

free_pool:
240
	efi_call_phys1(sys_table_arg->boottime->free_pool, map);
241 242 243 244
fail:
	return status;
}

245
static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
246
		     unsigned long addr)
247 248 249 250
{
	unsigned long nr_pages;

	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
251
	efi_call_phys2(sys_table_arg->boottime->free_pages, addr, nr_pages);
252 253 254 255 256 257 258 259 260
}


/*
 * Check the cmdline for a LILO-style initrd= arguments.
 *
 * We only support loading an initrd from the same filesystem as the
 * kernel image.
 */
261 262
static efi_status_t handle_ramdisks(efi_system_table_t *sys_table_arg,
				    efi_loaded_image_t *image,
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
				    struct setup_header *hdr)
{
	struct initrd *initrds;
	unsigned long initrd_addr;
	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
	u64 initrd_total;
	efi_file_io_interface_t *io;
	efi_file_handle_t *fh;
	efi_status_t status;
	int nr_initrds;
	char *str;
	int i, j, k;

	initrd_addr = 0;
	initrd_total = 0;

	str = (char *)(unsigned long)hdr->cmd_line_ptr;

	j = 0;			/* See close_handles */

	if (!str || !*str)
		return EFI_SUCCESS;

	for (nr_initrds = 0; *str; nr_initrds++) {
		str = strstr(str, "initrd=");
		if (!str)
			break;

		str += 7;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n')
			str++;
	}

	if (!nr_initrds)
		return EFI_SUCCESS;

304
	status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
305 306 307 308
				EFI_LOADER_DATA,
				nr_initrds * sizeof(*initrds),
				&initrds);
	if (status != EFI_SUCCESS) {
309
		efi_printk(sys_table_arg, "Failed to alloc mem for initrds\n");
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		goto fail;
	}

	str = (char *)(unsigned long)hdr->cmd_line_ptr;
	for (i = 0; i < nr_initrds; i++) {
		struct initrd *initrd;
		efi_file_handle_t *h;
		efi_file_info_t *info;
		efi_char16_t filename_16[256];
		unsigned long info_sz;
		efi_guid_t info_guid = EFI_FILE_INFO_ID;
		efi_char16_t *p;
		u64 file_sz;

		str = strstr(str, "initrd=");
		if (!str)
			break;

		str += 7;

		initrd = &initrds[i];
		p = filename_16;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n') {
			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
				break;

			if (*str == '/') {
				*p++ = '\\';
				*str++;
			} else {
				*p++ = *str++;
			}
		}

		*p = '\0';

		/* Only open the volume once. */
		if (!i) {
			efi_boot_services_t *boottime;

355
			boottime = sys_table_arg->boottime;
356 357 358 359

			status = efi_call_phys3(boottime->handle_protocol,
					image->device_handle, &fs_proto, &io);
			if (status != EFI_SUCCESS) {
360
				efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
361 362 363 364 365
				goto free_initrds;
			}

			status = efi_call_phys2(io->open_volume, io, &fh);
			if (status != EFI_SUCCESS) {
366
				efi_printk(sys_table_arg, "Failed to open volume\n");
367 368 369 370 371 372 373
				goto free_initrds;
			}
		}

		status = efi_call_phys5(fh->open, fh, &h, filename_16,
					EFI_FILE_MODE_READ, (u64)0);
		if (status != EFI_SUCCESS) {
374 375 376
			efi_printk(sys_table_arg, "Failed to open initrd file: ");
			efi_char16_printk(sys_table_arg, filename_16);
			efi_printk(sys_table_arg, "\n");
377 378 379 380 381 382 383 384 385
			goto close_handles;
		}

		initrd->handle = h;

		info_sz = 0;
		status = efi_call_phys4(h->get_info, h, &info_guid,
					&info_sz, NULL);
		if (status != EFI_BUFFER_TOO_SMALL) {
386
			efi_printk(sys_table_arg, "Failed to get initrd info size\n");
387 388 389 390
			goto close_handles;
		}

grow:
391
		status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
392 393
					EFI_LOADER_DATA, info_sz, &info);
		if (status != EFI_SUCCESS) {
394
			efi_printk(sys_table_arg, "Failed to alloc mem for initrd info\n");
395 396 397 398 399 400
			goto close_handles;
		}

		status = efi_call_phys4(h->get_info, h, &info_guid,
					&info_sz, info);
		if (status == EFI_BUFFER_TOO_SMALL) {
401 402
			efi_call_phys1(sys_table_arg->boottime->free_pool,
				       info);
403 404 405 406
			goto grow;
		}

		file_sz = info->file_size;
407
		efi_call_phys1(sys_table_arg->boottime->free_pool, info);
408 409

		if (status != EFI_SUCCESS) {
410
			efi_printk(sys_table_arg, "Failed to get initrd info\n");
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
			goto close_handles;
		}

		initrd->size = file_sz;
		initrd_total += file_sz;
	}

	if (initrd_total) {
		unsigned long addr;

		/*
		 * Multiple initrd's need to be at consecutive
		 * addresses in memory, so allocate enough memory for
		 * all the initrd's.
		 */
426 427
		status = efi_high_alloc(sys_table_arg, initrd_total, 0x1000,
				    &initrd_addr, hdr->initrd_addr_max);
428
		if (status != EFI_SUCCESS) {
429
			efi_printk(sys_table_arg, "Failed to alloc highmem for initrds\n");
430 431 432 433 434
			goto close_handles;
		}

		/* We've run out of free low memory. */
		if (initrd_addr > hdr->initrd_addr_max) {
435
			efi_printk(sys_table_arg, "We've run out of free low memory\n");
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
			status = EFI_INVALID_PARAMETER;
			goto free_initrd_total;
		}

		addr = initrd_addr;
		for (j = 0; j < nr_initrds; j++) {
			u64 size;

			size = initrds[j].size;
			while (size) {
				u64 chunksize;
				if (size > EFI_READ_CHUNK_SIZE)
					chunksize = EFI_READ_CHUNK_SIZE;
				else
					chunksize = size;
				status = efi_call_phys3(fh->read,
							initrds[j].handle,
							&chunksize, addr);
				if (status != EFI_SUCCESS) {
455
					efi_printk(sys_table_arg, "Failed to read initrd\n");
456 457 458 459 460 461 462 463 464 465 466
					goto free_initrd_total;
				}
				addr += chunksize;
				size -= chunksize;
			}

			efi_call_phys1(fh->close, initrds[j].handle);
		}

	}

467
	efi_call_phys1(sys_table_arg->boottime->free_pool, initrds);
468 469 470 471 472 473 474

	hdr->ramdisk_image = initrd_addr;
	hdr->ramdisk_size = initrd_total;

	return status;

free_initrd_total:
475
	efi_free(sys_table_arg, initrd_total, initrd_addr);
476 477 478 479 480

close_handles:
	for (k = j; k < i; k++)
		efi_call_phys1(fh->close, initrds[k].handle);
free_initrds:
481
	efi_call_phys1(sys_table_arg->boottime->free_pool, initrds);
482 483 484 485 486 487
fail:
	hdr->ramdisk_image = 0;
	hdr->ramdisk_size = 0;

	return status;
}
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * Relocate a kernel image, either compressed or uncompressed.
 * In the ARM64 case, all kernel images are currently
 * uncompressed, and as such when we relocate it we need to
 * allocate additional space for the BSS segment. Any low
 * memory that this function should avoid needs to be
 * unavailable in the EFI memory map, as if the preferred
 * address is not available the lowest available address will
 * be used.
 */
static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
					unsigned long *image_addr,
					unsigned long image_size,
					unsigned long alloc_size,
					unsigned long preferred_addr,
					unsigned long alignment)
504
{
505 506
	unsigned long cur_image_addr;
	unsigned long new_addr = 0;
507
	efi_status_t status;
508 509 510 511 512 513 514 515 516
	unsigned long nr_pages;
	efi_physical_addr_t efi_addr = preferred_addr;

	if (!image_addr || !image_size || !alloc_size)
		return EFI_INVALID_PARAMETER;
	if (alloc_size < image_size)
		return EFI_INVALID_PARAMETER;

	cur_image_addr = *image_addr;
517 518 519

	/*
	 * The EFI firmware loader could have placed the kernel image
520 521 522 523 524
	 * anywhere in memory, but the kernel has restrictions on the
	 * max physical address it can run at.  Some architectures
	 * also have a prefered address, so first try to relocate
	 * to the preferred address.  If that fails, allocate as low
	 * as possible while respecting the required alignment.
525
	 */
526 527
	nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
	status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
528
				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
529 530 531 532 533 534
				nr_pages, &efi_addr);
	new_addr = efi_addr;
	/*
	 * If preferred address allocation failed allocate as low as
	 * possible.
	 */
535
	if (status != EFI_SUCCESS) {
536 537 538 539 540 541
		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
				       &new_addr);
	}
	if (status != EFI_SUCCESS) {
		efi_printk(sys_table_arg, "ERROR: Failed to allocate usable memory for kernel.\n");
		return status;
542 543
	}

544 545 546 547 548 549 550
	/*
	 * We know source/dest won't overlap since both memory ranges
	 * have been allocated by UEFI, so we can safely use memcpy.
	 */
	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
	/* Zero any extra space we may have allocated for BSS. */
	memset((void *)(new_addr + image_size), alloc_size - image_size, 0);
551

552 553
	/* Return the new address of the relocated image. */
	*image_addr = new_addr;
554 555 556

	return status;
}