dmaengine.c 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The full GNU General Public License is included in this distribution in the
 * file called COPYING.
 */

/*
 * This code implements the DMA subsystem. It provides a HW-neutral interface
 * for other kernel code to use asynchronous memory copy capabilities,
 * if present, and allows different HW DMA drivers to register as providing
 * this capability.
 *
 * Due to the fact we are accelerating what is already a relatively fast
 * operation, the code goes to great lengths to avoid additional overhead,
 * such as locking.
 *
 * LOCKING:
 *
 * The subsystem keeps two global lists, dma_device_list and dma_client_list.
 * Both of these are protected by a mutex, dma_list_mutex.
 *
 * Each device has a channels list, which runs unlocked but is never modified
 * once the device is registered, it's just setup by the driver.
 *
40 41
 * Each client is responsible for keeping track of the channels it uses.  See
 * the definition of dma_event_callback in dmaengine.h.
42 43
 *
 * Each device has a kref, which is initialized to 1 when the device is
44
 * registered. A kref_get is done for each device registered.  When the
45
 * device is released, the corresponding kref_put is done in the release
46
 * method. Every time one of the device's channels is allocated to a client,
47
 * a kref_get occurs.  When the channel is freed, the corresponding kref_put
48
 * happens. The device's release function does a completion, so
49
 * unregister_device does a remove event, device_unregister, a kref_put
50 51 52 53
 * for the first reference, then waits on the completion for all other
 * references to finish.
 *
 * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54 55
 * with a kref and a per_cpu local_t.  A dma_chan_get is called when a client
 * signals that it wants to use a channel, and dma_chan_put is called when
56
 * a channel is removed or a client using it is unregistered.  A client can
57 58 59
 * take extra references per outstanding transaction, as is the case with
 * the NET DMA client.  The release function does a kref_put on the device.
 *	-ChrisL, DanW
60 61 62 63
 */

#include <linux/init.h>
#include <linux/module.h>
64
#include <linux/mm.h>
65 66 67 68 69 70 71
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/hardirq.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
72
#include <linux/jiffies.h>
73 74 75 76 77 78 79

static DEFINE_MUTEX(dma_list_mutex);
static LIST_HEAD(dma_device_list);
static LIST_HEAD(dma_client_list);

/* --- sysfs implementation --- */

80
static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
81
{
82
	struct dma_chan *chan = to_dma_chan(dev);
83 84 85
	unsigned long count = 0;
	int i;

86
	for_each_possible_cpu(i)
87 88 89 90 91
		count += per_cpu_ptr(chan->local, i)->memcpy_count;

	return sprintf(buf, "%lu\n", count);
}

92 93
static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
				      char *buf)
94
{
95
	struct dma_chan *chan = to_dma_chan(dev);
96 97 98
	unsigned long count = 0;
	int i;

99
	for_each_possible_cpu(i)
100 101 102 103 104
		count += per_cpu_ptr(chan->local, i)->bytes_transferred;

	return sprintf(buf, "%lu\n", count);
}

105
static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
106
{
107
	struct dma_chan *chan = to_dma_chan(dev);
108 109 110 111 112 113 114 115 116 117 118
	int in_use = 0;

	if (unlikely(chan->slow_ref) &&
		atomic_read(&chan->refcount.refcount) > 1)
		in_use = 1;
	else {
		if (local_read(&(per_cpu_ptr(chan->local,
			get_cpu())->refcount)) > 0)
			in_use = 1;
		put_cpu();
	}
119

120
	return sprintf(buf, "%d\n", in_use);
121 122
}

123
static struct device_attribute dma_attrs[] = {
124 125 126 127 128 129 130 131
	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
	__ATTR_NULL
};

static void dma_async_device_cleanup(struct kref *kref);

132
static void dma_dev_release(struct device *dev)
133
{
134
	struct dma_chan *chan = to_dma_chan(dev);
135 136 137 138
	kref_put(&chan->device->refcount, dma_async_device_cleanup);
}

static struct class dma_devclass = {
139 140 141
	.name		= "dma",
	.dev_attrs	= dma_attrs,
	.dev_release	= dma_dev_release,
142 143 144 145
};

/* --- client and device registration --- */

146 147 148 149 150 151 152 153 154 155 156 157
#define dma_chan_satisfies_mask(chan, mask) \
	__dma_chan_satisfies_mask((chan), &(mask))
static int
__dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
{
	dma_cap_mask_t has;

	bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
		DMA_TX_TYPE_END);
	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
}

158
/**
159
 * dma_client_chan_alloc - try to allocate channels to a client
160 161 162 163
 * @client: &dma_client
 *
 * Called with dma_list_mutex held.
 */
164
static void dma_client_chan_alloc(struct dma_client *client)
165 166 167 168
{
	struct dma_device *device;
	struct dma_chan *chan;
	int desc;	/* allocated descriptor count */
169
	enum dma_state_client ack;
170

171 172
	/* Find a channel */
	list_for_each_entry(device, &dma_device_list, global_node)
173
		list_for_each_entry(chan, &device->channels, device_node) {
174
			if (!dma_chan_satisfies_mask(chan, client->cap_mask))
175 176 177 178
				continue;

			desc = chan->device->device_alloc_chan_resources(chan);
			if (desc >= 0) {
179 180 181 182 183 184 185
				ack = client->event_callback(client,
						chan,
						DMA_RESOURCE_AVAILABLE);

				/* we are done once this client rejects
				 * an available resource
				 */
186
				if (ack == DMA_ACK) {
187
					dma_chan_get(chan);
188 189
					chan->client_count++;
				} else if (ack == DMA_NAK)
190
					return;
191 192 193 194
			}
		}
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
{
	enum dma_status status;
	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);

	dma_async_issue_pending(chan);
	do {
		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
			printk(KERN_ERR "dma_sync_wait_timeout!\n");
			return DMA_ERROR;
		}
	} while (status == DMA_IN_PROGRESS);

	return status;
}
EXPORT_SYMBOL(dma_sync_wait);

213
/**
214 215
 * dma_chan_cleanup - release a DMA channel's resources
 * @kref: kernel reference structure that contains the DMA channel device
216 217 218 219 220 221 222
 */
void dma_chan_cleanup(struct kref *kref)
{
	struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
	chan->device->device_free_chan_resources(chan);
	kref_put(&chan->device->refcount, dma_async_device_cleanup);
}
223
EXPORT_SYMBOL(dma_chan_cleanup);
224 225 226 227 228 229

static void dma_chan_free_rcu(struct rcu_head *rcu)
{
	struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
	int bias = 0x7FFFFFFF;
	int i;
230
	for_each_possible_cpu(i)
231 232 233 234 235
		bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
	atomic_sub(bias, &chan->refcount.refcount);
	kref_put(&chan->refcount, dma_chan_cleanup);
}

236
static void dma_chan_release(struct dma_chan *chan)
237 238 239 240 241 242 243
{
	atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
	chan->slow_ref = 1;
	call_rcu(&chan->rcu, dma_chan_free_rcu);
}

/**
244
 * dma_chans_notify_available - broadcast available channels to the clients
245
 */
246
static void dma_clients_notify_available(void)
247 248 249 250 251
{
	struct dma_client *client;

	mutex_lock(&dma_list_mutex);

252 253
	list_for_each_entry(client, &dma_client_list, global_node)
		dma_client_chan_alloc(client);
254 255 256 257 258

	mutex_unlock(&dma_list_mutex);
}

/**
259 260
 * dma_chans_notify_available - tell the clients that a channel is going away
 * @chan: channel on its way out
261
 */
262
static void dma_clients_notify_removed(struct dma_chan *chan)
263 264
{
	struct dma_client *client;
265
	enum dma_state_client ack;
266

267 268 269 270 271 272 273 274 275
	mutex_lock(&dma_list_mutex);

	list_for_each_entry(client, &dma_client_list, global_node) {
		ack = client->event_callback(client, chan,
				DMA_RESOURCE_REMOVED);

		/* client was holding resources for this channel so
		 * free it
		 */
276
		if (ack == DMA_ACK) {
277
			dma_chan_put(chan);
278 279
			chan->client_count--;
		}
280
	}
281

282 283
	mutex_unlock(&dma_list_mutex);
}
284

285 286 287 288 289 290
/**
 * dma_async_client_register - register a &dma_client
 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
 */
void dma_async_client_register(struct dma_client *client)
{
291 292 293 294
	mutex_lock(&dma_list_mutex);
	list_add_tail(&client->global_node, &dma_client_list);
	mutex_unlock(&dma_list_mutex);
}
295
EXPORT_SYMBOL(dma_async_client_register);
296 297 298

/**
 * dma_async_client_unregister - unregister a client and free the &dma_client
299
 * @client: &dma_client to free
300 301 302 303 304
 *
 * Force frees any allocated DMA channels, frees the &dma_client memory
 */
void dma_async_client_unregister(struct dma_client *client)
{
305
	struct dma_device *device;
306
	struct dma_chan *chan;
307
	enum dma_state_client ack;
308 309 310 311 312

	if (!client)
		return;

	mutex_lock(&dma_list_mutex);
313 314 315 316 317 318
	/* free all channels the client is holding */
	list_for_each_entry(device, &dma_device_list, global_node)
		list_for_each_entry(chan, &device->channels, device_node) {
			ack = client->event_callback(client, chan,
				DMA_RESOURCE_REMOVED);

319
			if (ack == DMA_ACK) {
320
				dma_chan_put(chan);
321 322
				chan->client_count--;
			}
323 324
		}

325 326 327
	list_del(&client->global_node);
	mutex_unlock(&dma_list_mutex);
}
328
EXPORT_SYMBOL(dma_async_client_unregister);
329 330

/**
331 332 333
 * dma_async_client_chan_request - send all available channels to the
 * client that satisfy the capability mask
 * @client - requester
334
 */
335
void dma_async_client_chan_request(struct dma_client *client)
336
{
337 338 339
	mutex_lock(&dma_list_mutex);
	dma_client_chan_alloc(client);
	mutex_unlock(&dma_list_mutex);
340
}
341
EXPORT_SYMBOL(dma_async_client_chan_request);
342 343

/**
344
 * dma_async_device_register - registers DMA devices found
345 346 347 348 349
 * @device: &dma_device
 */
int dma_async_device_register(struct dma_device *device)
{
	static int id;
350
	int chancnt = 0, rc;
351 352 353 354 355
	struct dma_chan* chan;

	if (!device)
		return -ENODEV;

356 357 358 359 360 361 362 363 364
	/* validate device routines */
	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
		!device->device_prep_dma_memcpy);
	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
		!device->device_prep_dma_xor);
	BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
		!device->device_prep_dma_zero_sum);
	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
		!device->device_prep_dma_memset);
365
	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
366 367 368 369 370 371 372 373
		!device->device_prep_dma_interrupt);

	BUG_ON(!device->device_alloc_chan_resources);
	BUG_ON(!device->device_free_chan_resources);
	BUG_ON(!device->device_is_tx_complete);
	BUG_ON(!device->device_issue_pending);
	BUG_ON(!device->dev);

374 375 376 377 378 379 380 381 382 383 384
	init_completion(&device->done);
	kref_init(&device->refcount);
	device->dev_id = id++;

	/* represent channels in sysfs. Probably want devs too */
	list_for_each_entry(chan, &device->channels, device_node) {
		chan->local = alloc_percpu(typeof(*chan->local));
		if (chan->local == NULL)
			continue;

		chan->chan_id = chancnt++;
385
		chan->dev.class = &dma_devclass;
386
		chan->dev.parent = device->dev;
387
		snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d",
388 389
		         device->dev_id, chan->chan_id);

390
		rc = device_register(&chan->dev);
391 392 393 394 395 396 397
		if (rc) {
			chancnt--;
			free_percpu(chan->local);
			chan->local = NULL;
			goto err_out;
		}

398 399
		/* One for the channel, one of the class device */
		kref_get(&device->refcount);
400
		kref_get(&device->refcount);
401
		kref_init(&chan->refcount);
402
		chan->client_count = 0;
403 404
		chan->slow_ref = 0;
		INIT_RCU_HEAD(&chan->rcu);
405 406 407 408 409 410
	}

	mutex_lock(&dma_list_mutex);
	list_add_tail(&device->global_node, &dma_device_list);
	mutex_unlock(&dma_list_mutex);

411
	dma_clients_notify_available();
412 413

	return 0;
414 415 416 417 418 419

err_out:
	list_for_each_entry(chan, &device->channels, device_node) {
		if (chan->local == NULL)
			continue;
		kref_put(&device->refcount, dma_async_device_cleanup);
420
		device_unregister(&chan->dev);
421 422 423 424
		chancnt--;
		free_percpu(chan->local);
	}
	return rc;
425
}
426
EXPORT_SYMBOL(dma_async_device_register);
427 428

/**
429 430
 * dma_async_device_cleanup - function called when all references are released
 * @kref: kernel reference object
431 432 433 434 435 436 437 438 439
 */
static void dma_async_device_cleanup(struct kref *kref)
{
	struct dma_device *device;

	device = container_of(kref, struct dma_device, refcount);
	complete(&device->done);
}

440 441 442 443 444
/**
 * dma_async_device_unregister - unregisters DMA devices
 * @device: &dma_device
 */
void dma_async_device_unregister(struct dma_device *device)
445 446 447 448 449 450 451 452
{
	struct dma_chan *chan;

	mutex_lock(&dma_list_mutex);
	list_del(&device->global_node);
	mutex_unlock(&dma_list_mutex);

	list_for_each_entry(chan, &device->channels, device_node) {
453
		dma_clients_notify_removed(chan);
454
		device_unregister(&chan->dev);
455
		dma_chan_release(chan);
456 457 458 459 460
	}

	kref_put(&device->refcount, dma_async_device_cleanup);
	wait_for_completion(&device->done);
}
461
EXPORT_SYMBOL(dma_async_device_unregister);
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
 * @chan: DMA channel to offload copy to
 * @dest: destination address (virtual)
 * @src: source address (virtual)
 * @len: length
 *
 * Both @dest and @src must be mappable to a bus address according to the
 * DMA mapping API rules for streaming mappings.
 * Both @dest and @src must stay memory resident (kernel memory or locked
 * user space pages).
 */
dma_cookie_t
dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
			void *src, size_t len)
{
	struct dma_device *dev = chan->device;
	struct dma_async_tx_descriptor *tx;
481
	dma_addr_t dma_dest, dma_src;
482 483 484
	dma_cookie_t cookie;
	int cpu;

485 486
	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
487 488
	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
					 DMA_CTRL_ACK);
489 490 491 492

	if (!tx) {
		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
493
		return -ENOMEM;
494
	}
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

	tx->callback = NULL;
	cookie = tx->tx_submit(tx);

	cpu = get_cpu();
	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
	put_cpu();

	return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);

/**
 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
 * @chan: DMA channel to offload copy to
 * @page: destination page
 * @offset: offset in page to copy to
 * @kdata: source address (virtual)
 * @len: length
 *
 * Both @page/@offset and @kdata must be mappable to a bus address according
 * to the DMA mapping API rules for streaming mappings.
 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
 * locked user space pages)
 */
dma_cookie_t
dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
			unsigned int offset, void *kdata, size_t len)
{
	struct dma_device *dev = chan->device;
	struct dma_async_tx_descriptor *tx;
527
	dma_addr_t dma_dest, dma_src;
528 529 530
	dma_cookie_t cookie;
	int cpu;

531 532
	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
533 534
	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
					 DMA_CTRL_ACK);
535 536 537 538

	if (!tx) {
		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
539
		return -ENOMEM;
540
	}
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	tx->callback = NULL;
	cookie = tx->tx_submit(tx);

	cpu = get_cpu();
	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
	put_cpu();

	return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);

/**
 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
 * @chan: DMA channel to offload copy to
 * @dest_pg: destination page
 * @dest_off: offset in page to copy to
 * @src_pg: source page
 * @src_off: offset in page to copy from
 * @len: length
 *
 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
 * address according to the DMA mapping API rules for streaming mappings.
 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
 * (kernel memory or locked user space pages).
 */
dma_cookie_t
dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
	size_t len)
{
	struct dma_device *dev = chan->device;
	struct dma_async_tx_descriptor *tx;
575
	dma_addr_t dma_dest, dma_src;
576 577 578
	dma_cookie_t cookie;
	int cpu;

579 580 581
	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
				DMA_FROM_DEVICE);
582 583
	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
					 DMA_CTRL_ACK);
584 585 586 587

	if (!tx) {
		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
588
		return -ENOMEM;
589
	}
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	tx->callback = NULL;
	cookie = tx->tx_submit(tx);

	cpu = get_cpu();
	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
	put_cpu();

	return cookie;
}
EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);

void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
	struct dma_chan *chan)
{
	tx->chan = chan;
	spin_lock_init(&tx->lock);
}
EXPORT_SYMBOL(dma_async_tx_descriptor_init);

611 612 613 614 615 616 617
static int __init dma_bus_init(void)
{
	mutex_init(&dma_list_mutex);
	return class_register(&dma_devclass);
}
subsys_initcall(dma_bus_init);
新手
引导
客服 返回
顶部