tree-log.c 117.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/blkdev.h>
J
Josef Bacik 已提交
22
#include <linux/list_sort.h>
23
#include "tree-log.h"
24 25 26
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
M
Mark Fasheh 已提交
27 28
#include "backref.h"
#include "hash.h"
29 30 31 32 33 34 35 36 37 38

/* magic values for the inode_only field in btrfs_log_inode:
 *
 * LOG_INODE_ALL means to log everything
 * LOG_INODE_EXISTS means to log just enough to recreate the inode
 * during log replay
 */
#define LOG_INODE_ALL 0
#define LOG_INODE_EXISTS 1

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * directory trouble cases
 *
 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 * log, we must force a full commit before doing an fsync of the directory
 * where the unlink was done.
 * ---> record transid of last unlink/rename per directory
 *
 * mkdir foo/some_dir
 * normal commit
 * rename foo/some_dir foo2/some_dir
 * mkdir foo/some_dir
 * fsync foo/some_dir/some_file
 *
 * The fsync above will unlink the original some_dir without recording
 * it in its new location (foo2).  After a crash, some_dir will be gone
 * unless the fsync of some_file forces a full commit
 *
 * 2) we must log any new names for any file or dir that is in the fsync
 * log. ---> check inode while renaming/linking.
 *
 * 2a) we must log any new names for any file or dir during rename
 * when the directory they are being removed from was logged.
 * ---> check inode and old parent dir during rename
 *
 *  2a is actually the more important variant.  With the extra logging
 *  a crash might unlink the old name without recreating the new one
 *
 * 3) after a crash, we must go through any directories with a link count
 * of zero and redo the rm -rf
 *
 * mkdir f1/foo
 * normal commit
 * rm -rf f1/foo
 * fsync(f1)
 *
 * The directory f1 was fully removed from the FS, but fsync was never
 * called on f1, only its parent dir.  After a crash the rm -rf must
 * be replayed.  This must be able to recurse down the entire
 * directory tree.  The inode link count fixup code takes care of the
 * ugly details.
 */

82 83 84 85 86 87 88 89 90 91 92
/*
 * stages for the tree walking.  The first
 * stage (0) is to only pin down the blocks we find
 * the second stage (1) is to make sure that all the inodes
 * we find in the log are created in the subvolume.
 *
 * The last stage is to deal with directories and links and extents
 * and all the other fun semantics
 */
#define LOG_WALK_PIN_ONLY 0
#define LOG_WALK_REPLAY_INODES 1
93 94
#define LOG_WALK_REPLAY_DIR_INDEX 2
#define LOG_WALK_REPLAY_ALL 3
95

96
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 98 99 100
			   struct btrfs_root *root, struct inode *inode,
			   int inode_only,
			   const loff_t start,
			   const loff_t end);
101 102 103
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_path *path, u64 objectid);
104 105 106 107 108
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       u64 dirid, int del_all);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

/*
 * tree logging is a special write ahead log used to make sure that
 * fsyncs and O_SYNCs can happen without doing full tree commits.
 *
 * Full tree commits are expensive because they require commonly
 * modified blocks to be recowed, creating many dirty pages in the
 * extent tree an 4x-6x higher write load than ext3.
 *
 * Instead of doing a tree commit on every fsync, we use the
 * key ranges and transaction ids to find items for a given file or directory
 * that have changed in this transaction.  Those items are copied into
 * a special tree (one per subvolume root), that tree is written to disk
 * and then the fsync is considered complete.
 *
 * After a crash, items are copied out of the log-tree back into the
 * subvolume tree.  Any file data extents found are recorded in the extent
 * allocation tree, and the log-tree freed.
 *
 * The log tree is read three times, once to pin down all the extents it is
 * using in ram and once, once to create all the inodes logged in the tree
 * and once to do all the other items.
 */

/*
 * start a sub transaction and setup the log tree
 * this increments the log tree writer count to make the people
 * syncing the tree wait for us to finish
 */
static int start_log_trans(struct btrfs_trans_handle *trans,
139 140
			   struct btrfs_root *root,
			   struct btrfs_log_ctx *ctx)
141
{
142
	int index;
143
	int ret;
144 145 146

	mutex_lock(&root->log_mutex);
	if (root->log_root) {
147
		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
148 149 150
			ret = -EAGAIN;
			goto out;
		}
151 152
		if (!root->log_start_pid) {
			root->log_start_pid = current->pid;
153
			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154
		} else if (root->log_start_pid != current->pid) {
155
			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 157
		}

158
		atomic_inc(&root->log_batch);
159
		atomic_inc(&root->log_writers);
160 161 162
		if (ctx) {
			index = root->log_transid % 2;
			list_add_tail(&ctx->list, &root->log_ctxs[index]);
163
			ctx->log_transid = root->log_transid;
164
		}
165 166 167
		mutex_unlock(&root->log_mutex);
		return 0;
	}
168 169

	ret = 0;
170
	mutex_lock(&root->fs_info->tree_log_mutex);
171
	if (!root->fs_info->log_root_tree)
172
		ret = btrfs_init_log_root_tree(trans, root->fs_info);
173 174 175 176 177
	mutex_unlock(&root->fs_info->tree_log_mutex);
	if (ret)
		goto out;

	if (!root->log_root) {
178
		ret = btrfs_add_log_tree(trans, root);
179
		if (ret)
180
			goto out;
181
	}
182
	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
183
	root->log_start_pid = current->pid;
184
	atomic_inc(&root->log_batch);
185
	atomic_inc(&root->log_writers);
186 187 188
	if (ctx) {
		index = root->log_transid % 2;
		list_add_tail(&ctx->list, &root->log_ctxs[index]);
189
		ctx->log_transid = root->log_transid;
190
	}
191
out:
192
	mutex_unlock(&root->log_mutex);
193
	return ret;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

/*
 * returns 0 if there was a log transaction running and we were able
 * to join, or returns -ENOENT if there were not transactions
 * in progress
 */
static int join_running_log_trans(struct btrfs_root *root)
{
	int ret = -ENOENT;

	smp_mb();
	if (!root->log_root)
		return -ENOENT;

209
	mutex_lock(&root->log_mutex);
210 211
	if (root->log_root) {
		ret = 0;
212
		atomic_inc(&root->log_writers);
213
	}
214
	mutex_unlock(&root->log_mutex);
215 216 217
	return ret;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * This either makes the current running log transaction wait
 * until you call btrfs_end_log_trans() or it makes any future
 * log transactions wait until you call btrfs_end_log_trans()
 */
int btrfs_pin_log_trans(struct btrfs_root *root)
{
	int ret = -ENOENT;

	mutex_lock(&root->log_mutex);
	atomic_inc(&root->log_writers);
	mutex_unlock(&root->log_mutex);
	return ret;
}

233 234 235 236
/*
 * indicate we're done making changes to the log tree
 * and wake up anyone waiting to do a sync
 */
237
void btrfs_end_log_trans(struct btrfs_root *root)
238
{
239 240 241 242 243
	if (atomic_dec_and_test(&root->log_writers)) {
		smp_mb();
		if (waitqueue_active(&root->log_writer_wait))
			wake_up(&root->log_writer_wait);
	}
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}


/*
 * the walk control struct is used to pass state down the chain when
 * processing the log tree.  The stage field tells us which part
 * of the log tree processing we are currently doing.  The others
 * are state fields used for that specific part
 */
struct walk_control {
	/* should we free the extent on disk when done?  This is used
	 * at transaction commit time while freeing a log tree
	 */
	int free;

	/* should we write out the extent buffer?  This is used
	 * while flushing the log tree to disk during a sync
	 */
	int write;

	/* should we wait for the extent buffer io to finish?  Also used
	 * while flushing the log tree to disk for a sync
	 */
	int wait;

	/* pin only walk, we record which extents on disk belong to the
	 * log trees
	 */
	int pin;

	/* what stage of the replay code we're currently in */
	int stage;

	/* the root we are currently replaying */
	struct btrfs_root *replay_dest;

	/* the trans handle for the current replay */
	struct btrfs_trans_handle *trans;

	/* the function that gets used to process blocks we find in the
	 * tree.  Note the extent_buffer might not be up to date when it is
	 * passed in, and it must be checked or read if you need the data
	 * inside it
	 */
	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
			    struct walk_control *wc, u64 gen);
};

/*
 * process_func used to pin down extents, write them or wait on them
 */
static int process_one_buffer(struct btrfs_root *log,
			      struct extent_buffer *eb,
			      struct walk_control *wc, u64 gen)
{
299 300
	int ret = 0;

301 302 303 304 305 306 307 308 309 310
	/*
	 * If this fs is mixed then we need to be able to process the leaves to
	 * pin down any logged extents, so we have to read the block.
	 */
	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
		ret = btrfs_read_buffer(eb, gen);
		if (ret)
			return ret;
	}

311
	if (wc->pin)
312 313
		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
						      eb->start, eb->len);
314

315
	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
316 317
		if (wc->pin && btrfs_header_level(eb) == 0)
			ret = btrfs_exclude_logged_extents(log, eb);
318 319 320 321 322
		if (wc->write)
			btrfs_write_tree_block(eb);
		if (wc->wait)
			btrfs_wait_tree_block_writeback(eb);
	}
323
	return ret;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

/*
 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 * to the src data we are copying out.
 *
 * root is the tree we are copying into, and path is a scratch
 * path for use in this function (it should be released on entry and
 * will be released on exit).
 *
 * If the key is already in the destination tree the existing item is
 * overwritten.  If the existing item isn't big enough, it is extended.
 * If it is too large, it is truncated.
 *
 * If the key isn't in the destination yet, a new item is inserted.
 */
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct btrfs_path *path,
				   struct extent_buffer *eb, int slot,
				   struct btrfs_key *key)
{
	int ret;
	u32 item_size;
	u64 saved_i_size = 0;
	int save_old_i_size = 0;
	unsigned long src_ptr;
	unsigned long dst_ptr;
	int overwrite_root = 0;
353
	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 355 356 357 358 359 360 361 362

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
		overwrite_root = 1;

	item_size = btrfs_item_size_nr(eb, slot);
	src_ptr = btrfs_item_ptr_offset(eb, slot);

	/* look for the key in the destination tree */
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 364 365
	if (ret < 0)
		return ret;

366 367 368 369 370 371 372 373 374
	if (ret == 0) {
		char *src_copy;
		char *dst_copy;
		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
						  path->slots[0]);
		if (dst_size != item_size)
			goto insert;

		if (item_size == 0) {
375
			btrfs_release_path(path);
376 377 378 379
			return 0;
		}
		dst_copy = kmalloc(item_size, GFP_NOFS);
		src_copy = kmalloc(item_size, GFP_NOFS);
380
		if (!dst_copy || !src_copy) {
381
			btrfs_release_path(path);
382 383 384 385
			kfree(dst_copy);
			kfree(src_copy);
			return -ENOMEM;
		}
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

		read_extent_buffer(eb, src_copy, src_ptr, item_size);

		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
				   item_size);
		ret = memcmp(dst_copy, src_copy, item_size);

		kfree(dst_copy);
		kfree(src_copy);
		/*
		 * they have the same contents, just return, this saves
		 * us from cowing blocks in the destination tree and doing
		 * extra writes that may not have been done by a previous
		 * sync
		 */
		if (ret == 0) {
403
			btrfs_release_path(path);
404 405 406
			return 0;
		}

407 408 409 410 411 412 413
		/*
		 * We need to load the old nbytes into the inode so when we
		 * replay the extents we've logged we get the right nbytes.
		 */
		if (inode_item) {
			struct btrfs_inode_item *item;
			u64 nbytes;
414
			u32 mode;
415 416 417 418 419 420 421

			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
					      struct btrfs_inode_item);
			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
			item = btrfs_item_ptr(eb, slot,
					      struct btrfs_inode_item);
			btrfs_set_inode_nbytes(eb, item, nbytes);
422 423 424 425 426 427 428 429 430

			/*
			 * If this is a directory we need to reset the i_size to
			 * 0 so that we can set it up properly when replaying
			 * the rest of the items in this log.
			 */
			mode = btrfs_inode_mode(eb, item);
			if (S_ISDIR(mode))
				btrfs_set_inode_size(eb, item, 0);
431 432 433
		}
	} else if (inode_item) {
		struct btrfs_inode_item *item;
434
		u32 mode;
435 436 437 438 439 440 441

		/*
		 * New inode, set nbytes to 0 so that the nbytes comes out
		 * properly when we replay the extents.
		 */
		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
		btrfs_set_inode_nbytes(eb, item, 0);
442 443 444 445 446 447 448 449 450

		/*
		 * If this is a directory we need to reset the i_size to 0 so
		 * that we can set it up properly when replaying the rest of
		 * the items in this log.
		 */
		mode = btrfs_inode_mode(eb, item);
		if (S_ISDIR(mode))
			btrfs_set_inode_size(eb, item, 0);
451 452
	}
insert:
453
	btrfs_release_path(path);
454 455 456 457 458 459 460 461 462
	/* try to insert the key into the destination tree */
	ret = btrfs_insert_empty_item(trans, root, path,
				      key, item_size);

	/* make sure any existing item is the correct size */
	if (ret == -EEXIST) {
		u32 found_size;
		found_size = btrfs_item_size_nr(path->nodes[0],
						path->slots[0]);
463
		if (found_size > item_size)
464
			btrfs_truncate_item(root, path, item_size, 1);
465
		else if (found_size < item_size)
466
			btrfs_extend_item(root, path,
467
					  item_size - found_size);
468
	} else if (ret) {
469
		return ret;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	}
	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
					path->slots[0]);

	/* don't overwrite an existing inode if the generation number
	 * was logged as zero.  This is done when the tree logging code
	 * is just logging an inode to make sure it exists after recovery.
	 *
	 * Also, don't overwrite i_size on directories during replay.
	 * log replay inserts and removes directory items based on the
	 * state of the tree found in the subvolume, and i_size is modified
	 * as it goes
	 */
	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
		struct btrfs_inode_item *src_item;
		struct btrfs_inode_item *dst_item;

		src_item = (struct btrfs_inode_item *)src_ptr;
		dst_item = (struct btrfs_inode_item *)dst_ptr;

		if (btrfs_inode_generation(eb, src_item) == 0)
			goto no_copy;

		if (overwrite_root &&
		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
			save_old_i_size = 1;
			saved_i_size = btrfs_inode_size(path->nodes[0],
							dst_item);
		}
	}

	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
			   src_ptr, item_size);

	if (save_old_i_size) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
	}

	/* make sure the generation is filled in */
	if (key->type == BTRFS_INODE_ITEM_KEY) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
			btrfs_set_inode_generation(path->nodes[0], dst_item,
						   trans->transid);
		}
	}
no_copy:
	btrfs_mark_buffer_dirty(path->nodes[0]);
522
	btrfs_release_path(path);
523 524 525 526 527 528 529 530 531 532
	return 0;
}

/*
 * simple helper to read an inode off the disk from a given root
 * This can only be called for subvolume roots and not for the log
 */
static noinline struct inode *read_one_inode(struct btrfs_root *root,
					     u64 objectid)
{
533
	struct btrfs_key key;
534 535
	struct inode *inode;

536 537 538
	key.objectid = objectid;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
539
	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
540 541 542
	if (IS_ERR(inode)) {
		inode = NULL;
	} else if (is_bad_inode(inode)) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		iput(inode);
		inode = NULL;
	}
	return inode;
}

/* replays a single extent in 'eb' at 'slot' with 'key' into the
 * subvolume 'root'.  path is released on entry and should be released
 * on exit.
 *
 * extents in the log tree have not been allocated out of the extent
 * tree yet.  So, this completes the allocation, taking a reference
 * as required if the extent already exists or creating a new extent
 * if it isn't in the extent allocation tree yet.
 *
 * The extent is inserted into the file, dropping any existing extents
 * from the file that overlap the new one.
 */
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      struct extent_buffer *eb, int slot,
				      struct btrfs_key *key)
{
	int found_type;
	u64 extent_end;
	u64 start = key->offset;
570
	u64 nbytes = 0;
571 572 573 574 575 576 577 578
	struct btrfs_file_extent_item *item;
	struct inode *inode = NULL;
	unsigned long size;
	int ret = 0;

	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	found_type = btrfs_file_extent_type(eb, item);

579
	if (found_type == BTRFS_FILE_EXTENT_REG ||
580 581 582 583 584 585 586 587 588 589 590
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
		nbytes = btrfs_file_extent_num_bytes(eb, item);
		extent_end = start + nbytes;

		/*
		 * We don't add to the inodes nbytes if we are prealloc or a
		 * hole.
		 */
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
			nbytes = 0;
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
591
		size = btrfs_file_extent_inline_len(eb, slot, item);
592
		nbytes = btrfs_file_extent_ram_bytes(eb, item);
593
		extent_end = ALIGN(start + size, root->sectorsize);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	} else {
		ret = 0;
		goto out;
	}

	inode = read_one_inode(root, key->objectid);
	if (!inode) {
		ret = -EIO;
		goto out;
	}

	/*
	 * first check to see if we already have this extent in the
	 * file.  This must be done before the btrfs_drop_extents run
	 * so we don't try to drop this extent.
	 */
610
	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
611 612
				       start, 0);

613 614 615
	if (ret == 0 &&
	    (found_type == BTRFS_FILE_EXTENT_REG ||
	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		struct btrfs_file_extent_item cmp1;
		struct btrfs_file_extent_item cmp2;
		struct btrfs_file_extent_item *existing;
		struct extent_buffer *leaf;

		leaf = path->nodes[0];
		existing = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_file_extent_item);

		read_extent_buffer(eb, &cmp1, (unsigned long)item,
				   sizeof(cmp1));
		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
				   sizeof(cmp2));

		/*
		 * we already have a pointer to this exact extent,
		 * we don't have to do anything
		 */
		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
635
			btrfs_release_path(path);
636 637 638
			goto out;
		}
	}
639
	btrfs_release_path(path);
640 641

	/* drop any overlapping extents */
642
	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
643 644
	if (ret)
		goto out;
645

646 647
	if (found_type == BTRFS_FILE_EXTENT_REG ||
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
648
		u64 offset;
649 650 651 652 653
		unsigned long dest_offset;
		struct btrfs_key ins;

		ret = btrfs_insert_empty_item(trans, root, path, key,
					      sizeof(*item));
654 655
		if (ret)
			goto out;
656 657 658 659 660 661 662 663
		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
						    path->slots[0]);
		copy_extent_buffer(path->nodes[0], eb, dest_offset,
				(unsigned long)item,  sizeof(*item));

		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
		ins.type = BTRFS_EXTENT_ITEM_KEY;
664
		offset = key->offset - btrfs_file_extent_offset(eb, item);
665 666 667 668 669 670 671 672 673 674 675 676 677 678

		if (ins.objectid > 0) {
			u64 csum_start;
			u64 csum_end;
			LIST_HEAD(ordered_sums);
			/*
			 * is this extent already allocated in the extent
			 * allocation tree?  If so, just add a reference
			 */
			ret = btrfs_lookup_extent(root, ins.objectid,
						ins.offset);
			if (ret == 0) {
				ret = btrfs_inc_extent_ref(trans, root,
						ins.objectid, ins.offset,
679
						0, root->root_key.objectid,
680
						key->objectid, offset, 0);
681 682
				if (ret)
					goto out;
683 684 685 686 687
			} else {
				/*
				 * insert the extent pointer in the extent
				 * allocation tree
				 */
688 689 690
				ret = btrfs_alloc_logged_file_extent(trans,
						root, root->root_key.objectid,
						key->objectid, offset, &ins);
691 692
				if (ret)
					goto out;
693
			}
694
			btrfs_release_path(path);
695 696 697 698 699 700 701 702 703 704 705 706 707

			if (btrfs_file_extent_compression(eb, item)) {
				csum_start = ins.objectid;
				csum_end = csum_start + ins.offset;
			} else {
				csum_start = ins.objectid +
					btrfs_file_extent_offset(eb, item);
				csum_end = csum_start +
					btrfs_file_extent_num_bytes(eb, item);
			}

			ret = btrfs_lookup_csums_range(root->log_root,
						csum_start, csum_end - 1,
A
Arne Jansen 已提交
708
						&ordered_sums, 0);
709 710
			if (ret)
				goto out;
711 712 713 714 715
			while (!list_empty(&ordered_sums)) {
				struct btrfs_ordered_sum *sums;
				sums = list_entry(ordered_sums.next,
						struct btrfs_ordered_sum,
						list);
716 717
				if (!ret)
					ret = btrfs_csum_file_blocks(trans,
718 719 720 721 722
						root->fs_info->csum_root,
						sums);
				list_del(&sums->list);
				kfree(sums);
			}
723 724
			if (ret)
				goto out;
725
		} else {
726
			btrfs_release_path(path);
727 728 729 730
		}
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
		/* inline extents are easy, we just overwrite them */
		ret = overwrite_item(trans, root, path, eb, slot, key);
731 732
		if (ret)
			goto out;
733
	}
734

735
	inode_add_bytes(inode, nbytes);
736
	ret = btrfs_update_inode(trans, root, inode);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
out:
	if (inode)
		iput(inode);
	return ret;
}

/*
 * when cleaning up conflicts between the directory names in the
 * subvolume, directory names in the log and directory names in the
 * inode back references, we may have to unlink inodes from directories.
 *
 * This is a helper function to do the unlink of a specific directory
 * item
 */
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      struct inode *dir,
				      struct btrfs_dir_item *di)
{
	struct inode *inode;
	char *name;
	int name_len;
	struct extent_buffer *leaf;
	struct btrfs_key location;
	int ret;

	leaf = path->nodes[0];

	btrfs_dir_item_key_to_cpu(leaf, di, &location);
	name_len = btrfs_dir_name_len(leaf, di);
	name = kmalloc(name_len, GFP_NOFS);
769 770 771
	if (!name)
		return -ENOMEM;

772
	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
773
	btrfs_release_path(path);
774 775

	inode = read_one_inode(root, location.objectid);
776
	if (!inode) {
777 778
		ret = -EIO;
		goto out;
779
	}
780

781
	ret = link_to_fixup_dir(trans, root, path, location.objectid);
782 783
	if (ret)
		goto out;
784

785
	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
786 787
	if (ret)
		goto out;
788 789
	else
		ret = btrfs_run_delayed_items(trans, root);
790
out:
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	kfree(name);
	iput(inode);
	return ret;
}

/*
 * helper function to see if a given name and sequence number found
 * in an inode back reference are already in a directory and correctly
 * point to this inode
 */
static noinline int inode_in_dir(struct btrfs_root *root,
				 struct btrfs_path *path,
				 u64 dirid, u64 objectid, u64 index,
				 const char *name, int name_len)
{
	struct btrfs_dir_item *di;
	struct btrfs_key location;
	int match = 0;

	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
					 index, name, name_len, 0);
	if (di && !IS_ERR(di)) {
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid != objectid)
			goto out;
	} else
		goto out;
818
	btrfs_release_path(path);
819 820 821 822 823 824 825 826 827 828

	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
	if (di && !IS_ERR(di)) {
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid != objectid)
			goto out;
	} else
		goto out;
	match = 1;
out:
829
	btrfs_release_path(path);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	return match;
}

/*
 * helper function to check a log tree for a named back reference in
 * an inode.  This is used to decide if a back reference that is
 * found in the subvolume conflicts with what we find in the log.
 *
 * inode backreferences may have multiple refs in a single item,
 * during replay we process one reference at a time, and we don't
 * want to delete valid links to a file from the subvolume if that
 * link is also in the log.
 */
static noinline int backref_in_log(struct btrfs_root *log,
				   struct btrfs_key *key,
M
Mark Fasheh 已提交
845
				   u64 ref_objectid,
846 847 848 849 850 851 852 853 854 855 856 857 858
				   char *name, int namelen)
{
	struct btrfs_path *path;
	struct btrfs_inode_ref *ref;
	unsigned long ptr;
	unsigned long ptr_end;
	unsigned long name_ptr;
	int found_name_len;
	int item_size;
	int ret;
	int match = 0;

	path = btrfs_alloc_path();
859 860 861
	if (!path)
		return -ENOMEM;

862 863 864 865 866
	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
	if (ret != 0)
		goto out;

	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
M
Mark Fasheh 已提交
867 868 869 870 871 872 873 874 875 876

	if (key->type == BTRFS_INODE_EXTREF_KEY) {
		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
						   name, namelen, NULL))
			match = 1;

		goto out;
	}

	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	ptr_end = ptr + item_size;
	while (ptr < ptr_end) {
		ref = (struct btrfs_inode_ref *)ptr;
		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
		if (found_name_len == namelen) {
			name_ptr = (unsigned long)(ref + 1);
			ret = memcmp_extent_buffer(path->nodes[0], name,
						   name_ptr, namelen);
			if (ret == 0) {
				match = 1;
				goto out;
			}
		}
		ptr = (unsigned long)(ref + 1) + found_name_len;
	}
out:
	btrfs_free_path(path);
	return match;
}

897
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
898 899
				  struct btrfs_root *root,
				  struct btrfs_path *path,
900 901 902
				  struct btrfs_root *log_root,
				  struct inode *dir, struct inode *inode,
				  struct extent_buffer *eb,
M
Mark Fasheh 已提交
903 904 905
				  u64 inode_objectid, u64 parent_objectid,
				  u64 ref_index, char *name, int namelen,
				  int *search_done)
906
{
L
liubo 已提交
907
	int ret;
M
Mark Fasheh 已提交
908 909 910
	char *victim_name;
	int victim_name_len;
	struct extent_buffer *leaf;
911
	struct btrfs_dir_item *di;
M
Mark Fasheh 已提交
912 913
	struct btrfs_key search_key;
	struct btrfs_inode_extref *extref;
914

M
Mark Fasheh 已提交
915 916 917 918 919 920
again:
	/* Search old style refs */
	search_key.objectid = inode_objectid;
	search_key.type = BTRFS_INODE_REF_KEY;
	search_key.offset = parent_objectid;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
921 922 923 924
	if (ret == 0) {
		struct btrfs_inode_ref *victim_ref;
		unsigned long ptr;
		unsigned long ptr_end;
M
Mark Fasheh 已提交
925 926

		leaf = path->nodes[0];
927 928 929 930

		/* are we trying to overwrite a back ref for the root directory
		 * if so, just jump out, we're done
		 */
M
Mark Fasheh 已提交
931
		if (search_key.objectid == search_key.offset)
932
			return 1;
933 934 935 936 937 938 939

		/* check all the names in this back reference to see
		 * if they are in the log.  if so, we allow them to stay
		 * otherwise they must be unlinked as a conflict
		 */
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
940
		while (ptr < ptr_end) {
941 942 943 944
			victim_ref = (struct btrfs_inode_ref *)ptr;
			victim_name_len = btrfs_inode_ref_name_len(leaf,
								   victim_ref);
			victim_name = kmalloc(victim_name_len, GFP_NOFS);
945 946
			if (!victim_name)
				return -ENOMEM;
947 948 949 950 951

			read_extent_buffer(leaf, victim_name,
					   (unsigned long)(victim_ref + 1),
					   victim_name_len);

M
Mark Fasheh 已提交
952 953 954
			if (!backref_in_log(log_root, &search_key,
					    parent_objectid,
					    victim_name,
955
					    victim_name_len)) {
956
				inc_nlink(inode);
957
				btrfs_release_path(path);
958

959 960 961
				ret = btrfs_unlink_inode(trans, root, dir,
							 inode, victim_name,
							 victim_name_len);
M
Mark Fasheh 已提交
962
				kfree(victim_name);
963 964
				if (ret)
					return ret;
965 966 967
				ret = btrfs_run_delayed_items(trans, root);
				if (ret)
					return ret;
M
Mark Fasheh 已提交
968 969
				*search_done = 1;
				goto again;
970 971
			}
			kfree(victim_name);
M
Mark Fasheh 已提交
972

973 974 975
			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
		}

976 977 978 979
		/*
		 * NOTE: we have searched root tree and checked the
		 * coresponding ref, it does not need to check again.
		 */
980
		*search_done = 1;
981
	}
982
	btrfs_release_path(path);
983

M
Mark Fasheh 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	/* Same search but for extended refs */
	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
					   inode_objectid, parent_objectid, 0,
					   0);
	if (!IS_ERR_OR_NULL(extref)) {
		u32 item_size;
		u32 cur_offset = 0;
		unsigned long base;
		struct inode *victim_parent;

		leaf = path->nodes[0];

		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		base = btrfs_item_ptr_offset(leaf, path->slots[0]);

		while (cur_offset < item_size) {
			extref = (struct btrfs_inode_extref *)base + cur_offset;

			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);

			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
				goto next;

			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1008 1009
			if (!victim_name)
				return -ENOMEM;
M
Mark Fasheh 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
					   victim_name_len);

			search_key.objectid = inode_objectid;
			search_key.type = BTRFS_INODE_EXTREF_KEY;
			search_key.offset = btrfs_extref_hash(parent_objectid,
							      victim_name,
							      victim_name_len);
			ret = 0;
			if (!backref_in_log(log_root, &search_key,
					    parent_objectid, victim_name,
					    victim_name_len)) {
				ret = -ENOENT;
				victim_parent = read_one_inode(root,
							       parent_objectid);
				if (victim_parent) {
1026
					inc_nlink(inode);
M
Mark Fasheh 已提交
1027 1028 1029 1030 1031 1032 1033
					btrfs_release_path(path);

					ret = btrfs_unlink_inode(trans, root,
								 victim_parent,
								 inode,
								 victim_name,
								 victim_name_len);
1034 1035 1036
					if (!ret)
						ret = btrfs_run_delayed_items(
								  trans, root);
M
Mark Fasheh 已提交
1037 1038 1039
				}
				iput(victim_parent);
				kfree(victim_name);
1040 1041
				if (ret)
					return ret;
M
Mark Fasheh 已提交
1042 1043 1044 1045
				*search_done = 1;
				goto again;
			}
			kfree(victim_name);
1046 1047
			if (ret)
				return ret;
M
Mark Fasheh 已提交
1048 1049 1050 1051 1052 1053 1054
next:
			cur_offset += victim_name_len + sizeof(*extref);
		}
		*search_done = 1;
	}
	btrfs_release_path(path);

L
liubo 已提交
1055 1056
	/* look for a conflicting sequence number */
	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
M
Mark Fasheh 已提交
1057
					 ref_index, name, namelen, 0);
L
liubo 已提交
1058 1059
	if (di && !IS_ERR(di)) {
		ret = drop_one_dir_item(trans, root, path, dir, di);
1060 1061
		if (ret)
			return ret;
L
liubo 已提交
1062 1063 1064 1065 1066 1067 1068 1069
	}
	btrfs_release_path(path);

	/* look for a conflicing name */
	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
				   name, namelen, 0);
	if (di && !IS_ERR(di)) {
		ret = drop_one_dir_item(trans, root, path, dir, di);
1070 1071
		if (ret)
			return ret;
L
liubo 已提交
1072 1073 1074
	}
	btrfs_release_path(path);

1075 1076
	return 0;
}
1077

M
Mark Fasheh 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			     u32 *namelen, char **name, u64 *index,
			     u64 *parent_objectid)
{
	struct btrfs_inode_extref *extref;

	extref = (struct btrfs_inode_extref *)ref_ptr;

	*namelen = btrfs_inode_extref_name_len(eb, extref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
			   *namelen);

	*index = btrfs_inode_extref_index(eb, extref);
	if (parent_objectid)
		*parent_objectid = btrfs_inode_extref_parent(eb, extref);

	return 0;
}

static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			  u32 *namelen, char **name, u64 *index)
{
	struct btrfs_inode_ref *ref;

	ref = (struct btrfs_inode_ref *)ref_ptr;

	*namelen = btrfs_inode_ref_name_len(eb, ref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);

	*index = btrfs_inode_ref_index(eb, ref);

	return 0;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * replay one inode back reference item found in the log tree.
 * eb, slot and key refer to the buffer and key found in the log tree.
 * root is the destination we are replaying into, and path is for temp
 * use by this function.  (it should be released on return).
 */
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
				  struct btrfs_root *root,
				  struct btrfs_root *log,
				  struct btrfs_path *path,
				  struct extent_buffer *eb, int slot,
				  struct btrfs_key *key)
{
1133 1134
	struct inode *dir = NULL;
	struct inode *inode = NULL;
1135 1136
	unsigned long ref_ptr;
	unsigned long ref_end;
1137
	char *name = NULL;
1138 1139 1140
	int namelen;
	int ret;
	int search_done = 0;
M
Mark Fasheh 已提交
1141 1142 1143
	int log_ref_ver = 0;
	u64 parent_objectid;
	u64 inode_objectid;
1144
	u64 ref_index = 0;
M
Mark Fasheh 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	int ref_struct_size;

	ref_ptr = btrfs_item_ptr_offset(eb, slot);
	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);

	if (key->type == BTRFS_INODE_EXTREF_KEY) {
		struct btrfs_inode_extref *r;

		ref_struct_size = sizeof(struct btrfs_inode_extref);
		log_ref_ver = 1;
		r = (struct btrfs_inode_extref *)ref_ptr;
		parent_objectid = btrfs_inode_extref_parent(eb, r);
	} else {
		ref_struct_size = sizeof(struct btrfs_inode_ref);
		parent_objectid = key->offset;
	}
	inode_objectid = key->objectid;
1162

1163 1164 1165 1166 1167 1168
	/*
	 * it is possible that we didn't log all the parent directories
	 * for a given inode.  If we don't find the dir, just don't
	 * copy the back ref in.  The link count fixup code will take
	 * care of the rest
	 */
M
Mark Fasheh 已提交
1169
	dir = read_one_inode(root, parent_objectid);
1170 1171 1172 1173
	if (!dir) {
		ret = -ENOENT;
		goto out;
	}
1174

M
Mark Fasheh 已提交
1175
	inode = read_one_inode(root, inode_objectid);
1176
	if (!inode) {
1177 1178
		ret = -EIO;
		goto out;
1179 1180 1181
	}

	while (ref_ptr < ref_end) {
M
Mark Fasheh 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
		if (log_ref_ver) {
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
						&ref_index, &parent_objectid);
			/*
			 * parent object can change from one array
			 * item to another.
			 */
			if (!dir)
				dir = read_one_inode(root, parent_objectid);
1191 1192 1193 1194
			if (!dir) {
				ret = -ENOENT;
				goto out;
			}
M
Mark Fasheh 已提交
1195 1196 1197 1198 1199
		} else {
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
					     &ref_index);
		}
		if (ret)
1200
			goto out;
1201 1202 1203

		/* if we already have a perfect match, we're done */
		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
M
Mark Fasheh 已提交
1204
				  ref_index, name, namelen)) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			/*
			 * look for a conflicting back reference in the
			 * metadata. if we find one we have to unlink that name
			 * of the file before we add our new link.  Later on, we
			 * overwrite any existing back reference, and we don't
			 * want to create dangling pointers in the directory.
			 */

			if (!search_done) {
				ret = __add_inode_ref(trans, root, path, log,
M
Mark Fasheh 已提交
1215 1216 1217 1218
						      dir, inode, eb,
						      inode_objectid,
						      parent_objectid,
						      ref_index, name, namelen,
1219
						      &search_done);
1220 1221 1222
				if (ret) {
					if (ret == 1)
						ret = 0;
1223 1224
					goto out;
				}
1225 1226 1227 1228
			}

			/* insert our name */
			ret = btrfs_add_link(trans, dir, inode, name, namelen,
M
Mark Fasheh 已提交
1229
					     0, ref_index);
1230 1231
			if (ret)
				goto out;
1232 1233 1234 1235

			btrfs_update_inode(trans, root, inode);
		}

M
Mark Fasheh 已提交
1236
		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1237
		kfree(name);
1238
		name = NULL;
M
Mark Fasheh 已提交
1239 1240 1241 1242
		if (log_ref_ver) {
			iput(dir);
			dir = NULL;
		}
1243
	}
1244 1245 1246

	/* finally write the back reference in the inode */
	ret = overwrite_item(trans, root, path, eb, slot, key);
1247
out:
1248
	btrfs_release_path(path);
1249
	kfree(name);
1250 1251
	iput(dir);
	iput(inode);
1252
	return ret;
1253 1254
}

1255 1256 1257 1258
static int insert_orphan_item(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root, u64 offset)
{
	int ret;
1259 1260
	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1261 1262 1263 1264 1265
	if (ret > 0)
		ret = btrfs_insert_orphan_item(trans, root, offset);
	return ret;
}

M
Mark Fasheh 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static int count_inode_extrefs(struct btrfs_root *root,
			       struct inode *inode, struct btrfs_path *path)
{
	int ret = 0;
	int name_len;
	unsigned int nlink = 0;
	u32 item_size;
	u32 cur_offset = 0;
	u64 inode_objectid = btrfs_ino(inode);
	u64 offset = 0;
	unsigned long ptr;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;

	while (1) {
		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
					    &extref, &offset);
		if (ret)
			break;
1285

M
Mark Fasheh 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);

		while (cur_offset < item_size) {
			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
			name_len = btrfs_inode_extref_name_len(leaf, extref);

			nlink++;

			cur_offset += name_len + sizeof(*extref);
		}

		offset++;
		btrfs_release_path(path);
	}
	btrfs_release_path(path);

	if (ret < 0)
		return ret;
	return nlink;
}

static int count_inode_refs(struct btrfs_root *root,
			       struct inode *inode, struct btrfs_path *path)
1311 1312 1313
{
	int ret;
	struct btrfs_key key;
M
Mark Fasheh 已提交
1314
	unsigned int nlink = 0;
1315 1316 1317
	unsigned long ptr;
	unsigned long ptr_end;
	int name_len;
1318
	u64 ino = btrfs_ino(inode);
1319

1320
	key.objectid = ino;
1321 1322 1323
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = (u64)-1;

1324
	while (1) {
1325 1326 1327 1328 1329 1330 1331 1332
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			break;
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
1333
process_slot:
1334 1335
		btrfs_item_key_to_cpu(path->nodes[0], &key,
				      path->slots[0]);
1336
		if (key.objectid != ino ||
1337 1338 1339 1340 1341
		    key.type != BTRFS_INODE_REF_KEY)
			break;
		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
						   path->slots[0]);
1342
		while (ptr < ptr_end) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			struct btrfs_inode_ref *ref;

			ref = (struct btrfs_inode_ref *)ptr;
			name_len = btrfs_inode_ref_name_len(path->nodes[0],
							    ref);
			ptr = (unsigned long)(ref + 1) + name_len;
			nlink++;
		}

		if (key.offset == 0)
			break;
1354 1355 1356 1357
		if (path->slots[0] > 0) {
			path->slots[0]--;
			goto process_slot;
		}
1358
		key.offset--;
1359
		btrfs_release_path(path);
1360
	}
1361
	btrfs_release_path(path);
M
Mark Fasheh 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	return nlink;
}

/*
 * There are a few corners where the link count of the file can't
 * be properly maintained during replay.  So, instead of adding
 * lots of complexity to the log code, we just scan the backrefs
 * for any file that has been through replay.
 *
 * The scan will update the link count on the inode to reflect the
 * number of back refs found.  If it goes down to zero, the iput
 * will free the inode.
 */
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
					   struct btrfs_root *root,
					   struct inode *inode)
{
	struct btrfs_path *path;
	int ret;
	u64 nlink = 0;
	u64 ino = btrfs_ino(inode);

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = count_inode_refs(root, inode, path);
	if (ret < 0)
		goto out;

	nlink = ret;

	ret = count_inode_extrefs(root, inode, path);
	if (ret == -ENOENT)
		ret = 0;

	if (ret < 0)
		goto out;

	nlink += ret;

	ret = 0;

1406
	if (nlink != inode->i_nlink) {
1407
		set_nlink(inode, nlink);
1408 1409
		btrfs_update_inode(trans, root, inode);
	}
1410
	BTRFS_I(inode)->index_cnt = (u64)-1;
1411

1412 1413 1414
	if (inode->i_nlink == 0) {
		if (S_ISDIR(inode->i_mode)) {
			ret = replay_dir_deletes(trans, root, NULL, path,
1415
						 ino, 1);
1416 1417
			if (ret)
				goto out;
1418
		}
1419
		ret = insert_orphan_item(trans, root, ino);
1420 1421
	}

M
Mark Fasheh 已提交
1422 1423 1424
out:
	btrfs_free_path(path);
	return ret;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
					    struct btrfs_root *root,
					    struct btrfs_path *path)
{
	int ret;
	struct btrfs_key key;
	struct inode *inode;

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
	key.offset = (u64)-1;
1438
	while (1) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret < 0)
			break;

		if (ret == 1) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
		    key.type != BTRFS_ORPHAN_ITEM_KEY)
			break;

		ret = btrfs_del_item(trans, root, path);
1455 1456
		if (ret)
			goto out;
1457

1458
		btrfs_release_path(path);
1459
		inode = read_one_inode(root, key.offset);
1460 1461
		if (!inode)
			return -EIO;
1462 1463 1464

		ret = fixup_inode_link_count(trans, root, inode);
		iput(inode);
1465 1466
		if (ret)
			goto out;
1467

1468 1469 1470 1471 1472 1473
		/*
		 * fixup on a directory may create new entries,
		 * make sure we always look for the highset possible
		 * offset
		 */
		key.offset = (u64)-1;
1474
	}
1475 1476
	ret = 0;
out:
1477
	btrfs_release_path(path);
1478
	return ret;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
}


/*
 * record a given inode in the fixup dir so we can check its link
 * count when replay is done.  The link count is incremented here
 * so the inode won't go away until we check it
 */
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      u64 objectid)
{
	struct btrfs_key key;
	int ret = 0;
	struct inode *inode;

	inode = read_one_inode(root, objectid);
1497 1498
	if (!inode)
		return -EIO;
1499 1500 1501 1502 1503 1504 1505

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
	key.offset = objectid;

	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);

1506
	btrfs_release_path(path);
1507
	if (ret == 0) {
1508 1509 1510
		if (!inode->i_nlink)
			set_nlink(inode, 1);
		else
1511
			inc_nlink(inode);
1512
		ret = btrfs_update_inode(trans, root, inode);
1513 1514 1515
	} else if (ret == -EEXIST) {
		ret = 0;
	} else {
1516
		BUG(); /* Logic Error */
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	}
	iput(inode);

	return ret;
}

/*
 * when replaying the log for a directory, we only insert names
 * for inodes that actually exist.  This means an fsync on a directory
 * does not implicitly fsync all the new files in it
 */
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    u64 dirid, u64 index,
				    char *name, int name_len, u8 type,
				    struct btrfs_key *location)
{
	struct inode *inode;
	struct inode *dir;
	int ret;

	inode = read_one_inode(root, location->objectid);
	if (!inode)
		return -ENOENT;

	dir = read_one_inode(root, dirid);
	if (!dir) {
		iput(inode);
		return -EIO;
	}
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);

	/* FIXME, put inode into FIXUP list */

	iput(inode);
	iput(dir);
	return ret;
}

/*
 * take a single entry in a log directory item and replay it into
 * the subvolume.
 *
 * if a conflicting item exists in the subdirectory already,
 * the inode it points to is unlinked and put into the link count
 * fix up tree.
 *
 * If a name from the log points to a file or directory that does
 * not exist in the FS, it is skipped.  fsyncs on directories
 * do not force down inodes inside that directory, just changes to the
 * names or unlinks in a directory.
 */
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *eb,
				    struct btrfs_dir_item *di,
				    struct btrfs_key *key)
{
	char *name;
	int name_len;
	struct btrfs_dir_item *dst_di;
	struct btrfs_key found_key;
	struct btrfs_key log_key;
	struct inode *dir;
	u8 log_type;
C
Chris Mason 已提交
1585
	int exists;
1586
	int ret = 0;
1587
	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1588 1589

	dir = read_one_inode(root, key->objectid);
1590 1591
	if (!dir)
		return -EIO;
1592 1593 1594

	name_len = btrfs_dir_name_len(eb, di);
	name = kmalloc(name_len, GFP_NOFS);
1595 1596 1597 1598
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}
1599

1600 1601 1602 1603 1604
	log_type = btrfs_dir_type(eb, di);
	read_extent_buffer(eb, name, (unsigned long)(di + 1),
		   name_len);

	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
C
Chris Mason 已提交
1605 1606 1607 1608 1609
	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
	if (exists == 0)
		exists = 1;
	else
		exists = 0;
1610
	btrfs_release_path(path);
C
Chris Mason 已提交
1611

1612 1613 1614
	if (key->type == BTRFS_DIR_ITEM_KEY) {
		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
				       name, name_len, 1);
1615
	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1616 1617 1618 1619 1620
		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
						     key->objectid,
						     key->offset, name,
						     name_len, 1);
	} else {
1621 1622 1623
		/* Corruption */
		ret = -EINVAL;
		goto out;
1624
	}
1625
	if (IS_ERR_OR_NULL(dst_di)) {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		/* we need a sequence number to insert, so we only
		 * do inserts for the BTRFS_DIR_INDEX_KEY types
		 */
		if (key->type != BTRFS_DIR_INDEX_KEY)
			goto out;
		goto insert;
	}

	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
	/* the existing item matches the logged item */
	if (found_key.objectid == log_key.objectid &&
	    found_key.type == log_key.type &&
	    found_key.offset == log_key.offset &&
	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
		goto out;
	}

	/*
	 * don't drop the conflicting directory entry if the inode
	 * for the new entry doesn't exist
	 */
C
Chris Mason 已提交
1647
	if (!exists)
1648 1649 1650
		goto out;

	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1651 1652
	if (ret)
		goto out;
1653 1654 1655 1656

	if (key->type == BTRFS_DIR_INDEX_KEY)
		goto insert;
out:
1657
	btrfs_release_path(path);
1658 1659 1660 1661
	if (!ret && update_size) {
		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
		ret = btrfs_update_inode(trans, root, dir);
	}
1662 1663
	kfree(name);
	iput(dir);
1664
	return ret;
1665 1666

insert:
1667
	btrfs_release_path(path);
1668 1669
	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
			      name, name_len, log_type, &log_key);
1670 1671
	if (ret && ret != -ENOENT)
		goto out;
1672
	update_size = false;
1673
	ret = 0;
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	goto out;
}

/*
 * find all the names in a directory item and reconcile them into
 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 * one name in a directory item, but the same code gets used for
 * both directory index types
 */
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct extent_buffer *eb, int slot,
					struct btrfs_key *key)
{
	int ret;
	u32 item_size = btrfs_item_size_nr(eb, slot);
	struct btrfs_dir_item *di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;

	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
1698
	while (ptr < ptr_end) {
1699
		di = (struct btrfs_dir_item *)ptr;
1700 1701
		if (verify_dir_item(root, eb, di))
			return -EIO;
1702 1703
		name_len = btrfs_dir_name_len(eb, di);
		ret = replay_one_name(trans, root, path, eb, di, key);
1704 1705
		if (ret)
			return ret;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		ptr = (unsigned long)(di + 1);
		ptr += name_len;
	}
	return 0;
}

/*
 * directory replay has two parts.  There are the standard directory
 * items in the log copied from the subvolume, and range items
 * created in the log while the subvolume was logged.
 *
 * The range items tell us which parts of the key space the log
 * is authoritative for.  During replay, if a key in the subvolume
 * directory is in a logged range item, but not actually in the log
 * that means it was deleted from the directory before the fsync
 * and should be removed.
 */
static noinline int find_dir_range(struct btrfs_root *root,
				   struct btrfs_path *path,
				   u64 dirid, int key_type,
				   u64 *start_ret, u64 *end_ret)
{
	struct btrfs_key key;
	u64 found_end;
	struct btrfs_dir_log_item *item;
	int ret;
	int nritems;

	if (*start_ret == (u64)-1)
		return 1;

	key.objectid = dirid;
	key.type = key_type;
	key.offset = *start_ret;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		if (path->slots[0] == 0)
			goto out;
		path->slots[0]--;
	}
	if (ret != 0)
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto next;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);

	if (*start_ret >= key.offset && *start_ret <= found_end) {
		ret = 0;
		*start_ret = key.offset;
		*end_ret = found_end;
		goto out;
	}
	ret = 1;
next:
	/* check the next slot in the tree to see if it is a valid item */
	nritems = btrfs_header_nritems(path->nodes[0]);
	if (path->slots[0] >= nritems) {
		ret = btrfs_next_leaf(root, path);
		if (ret)
			goto out;
	} else {
		path->slots[0]++;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto out;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);
	*start_ret = key.offset;
	*end_ret = found_end;
	ret = 0;
out:
1791
	btrfs_release_path(path);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	return ret;
}

/*
 * this looks for a given directory item in the log.  If the directory
 * item is not in the log, the item is removed and the inode it points
 * to is unlinked
 */
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_root *log,
				      struct btrfs_path *path,
				      struct btrfs_path *log_path,
				      struct inode *dir,
				      struct btrfs_key *dir_key)
{
	int ret;
	struct extent_buffer *eb;
	int slot;
	u32 item_size;
	struct btrfs_dir_item *di;
	struct btrfs_dir_item *log_di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;
	char *name;
	struct inode *inode;
	struct btrfs_key location;

again:
	eb = path->nodes[0];
	slot = path->slots[0];
	item_size = btrfs_item_size_nr(eb, slot);
	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
1827
	while (ptr < ptr_end) {
1828
		di = (struct btrfs_dir_item *)ptr;
1829 1830 1831 1832 1833
		if (verify_dir_item(root, eb, di)) {
			ret = -EIO;
			goto out;
		}

1834 1835 1836 1837 1838 1839 1840 1841 1842
		name_len = btrfs_dir_name_len(eb, di);
		name = kmalloc(name_len, GFP_NOFS);
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
		read_extent_buffer(eb, name, (unsigned long)(di + 1),
				  name_len);
		log_di = NULL;
1843
		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1844 1845 1846
			log_di = btrfs_lookup_dir_item(trans, log, log_path,
						       dir_key->objectid,
						       name, name_len, 0);
1847
		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1848 1849 1850 1851 1852 1853
			log_di = btrfs_lookup_dir_index_item(trans, log,
						     log_path,
						     dir_key->objectid,
						     dir_key->offset,
						     name, name_len, 0);
		}
1854
		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1855
			btrfs_dir_item_key_to_cpu(eb, di, &location);
1856 1857
			btrfs_release_path(path);
			btrfs_release_path(log_path);
1858
			inode = read_one_inode(root, location.objectid);
1859 1860 1861 1862
			if (!inode) {
				kfree(name);
				return -EIO;
			}
1863 1864 1865

			ret = link_to_fixup_dir(trans, root,
						path, location.objectid);
1866 1867 1868 1869 1870 1871
			if (ret) {
				kfree(name);
				iput(inode);
				goto out;
			}

1872
			inc_nlink(inode);
1873 1874
			ret = btrfs_unlink_inode(trans, root, dir, inode,
						 name, name_len);
1875
			if (!ret)
1876
				ret = btrfs_run_delayed_items(trans, root);
1877 1878
			kfree(name);
			iput(inode);
1879 1880
			if (ret)
				goto out;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

			/* there might still be more names under this key
			 * check and repeat if required
			 */
			ret = btrfs_search_slot(NULL, root, dir_key, path,
						0, 0);
			if (ret == 0)
				goto again;
			ret = 0;
			goto out;
1891 1892 1893
		} else if (IS_ERR(log_di)) {
			kfree(name);
			return PTR_ERR(log_di);
1894
		}
1895
		btrfs_release_path(log_path);
1896 1897 1898 1899 1900 1901 1902
		kfree(name);

		ptr = (unsigned long)(di + 1);
		ptr += name_len;
	}
	ret = 0;
out:
1903 1904
	btrfs_release_path(path);
	btrfs_release_path(log_path);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	return ret;
}

/*
 * deletion replay happens before we copy any new directory items
 * out of the log or out of backreferences from inodes.  It
 * scans the log to find ranges of keys that log is authoritative for,
 * and then scans the directory to find items in those ranges that are
 * not present in the log.
 *
 * Anything we don't find in the log is unlinked and removed from the
 * directory.
 */
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
1922
				       u64 dirid, int del_all)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
{
	u64 range_start;
	u64 range_end;
	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
	int ret = 0;
	struct btrfs_key dir_key;
	struct btrfs_key found_key;
	struct btrfs_path *log_path;
	struct inode *dir;

	dir_key.objectid = dirid;
	dir_key.type = BTRFS_DIR_ITEM_KEY;
	log_path = btrfs_alloc_path();
	if (!log_path)
		return -ENOMEM;

	dir = read_one_inode(root, dirid);
	/* it isn't an error if the inode isn't there, that can happen
	 * because we replay the deletes before we copy in the inode item
	 * from the log
	 */
	if (!dir) {
		btrfs_free_path(log_path);
		return 0;
	}
again:
	range_start = 0;
	range_end = 0;
1951
	while (1) {
1952 1953 1954 1955 1956 1957 1958 1959
		if (del_all)
			range_end = (u64)-1;
		else {
			ret = find_dir_range(log, path, dirid, key_type,
					     &range_start, &range_end);
			if (ret != 0)
				break;
		}
1960 1961

		dir_key.offset = range_start;
1962
		while (1) {
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
			int nritems;
			ret = btrfs_search_slot(NULL, root, &dir_key, path,
						0, 0);
			if (ret < 0)
				goto out;

			nritems = btrfs_header_nritems(path->nodes[0]);
			if (path->slots[0] >= nritems) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
					      path->slots[0]);
			if (found_key.objectid != dirid ||
			    found_key.type != dir_key.type)
				goto next_type;

			if (found_key.offset > range_end)
				break;

			ret = check_item_in_log(trans, root, log, path,
1985 1986
						log_path, dir,
						&found_key);
1987 1988
			if (ret)
				goto out;
1989 1990 1991 1992
			if (found_key.offset == (u64)-1)
				break;
			dir_key.offset = found_key.offset + 1;
		}
1993
		btrfs_release_path(path);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (range_end == (u64)-1)
			break;
		range_start = range_end + 1;
	}

next_type:
	ret = 0;
	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
		key_type = BTRFS_DIR_LOG_INDEX_KEY;
		dir_key.type = BTRFS_DIR_INDEX_KEY;
2004
		btrfs_release_path(path);
2005 2006 2007
		goto again;
	}
out:
2008
	btrfs_release_path(path);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	btrfs_free_path(log_path);
	iput(dir);
	return ret;
}

/*
 * the process_func used to replay items from the log tree.  This
 * gets called in two different stages.  The first stage just looks
 * for inodes and makes sure they are all copied into the subvolume.
 *
 * The second stage copies all the other item types from the log into
 * the subvolume.  The two stage approach is slower, but gets rid of
 * lots of complexity around inodes referencing other inodes that exist
 * only in the log (references come from either directory items or inode
 * back refs).
 */
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
			     struct walk_control *wc, u64 gen)
{
	int nritems;
	struct btrfs_path *path;
	struct btrfs_root *root = wc->replay_dest;
	struct btrfs_key key;
	int level;
	int i;
	int ret;

2036 2037 2038
	ret = btrfs_read_buffer(eb, gen);
	if (ret)
		return ret;
2039 2040 2041 2042 2043 2044 2045

	level = btrfs_header_level(eb);

	if (level != 0)
		return 0;

	path = btrfs_alloc_path();
2046 2047
	if (!path)
		return -ENOMEM;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	nritems = btrfs_header_nritems(eb);
	for (i = 0; i < nritems; i++) {
		btrfs_item_key_to_cpu(eb, &key, i);

		/* inode keys are done during the first stage */
		if (key.type == BTRFS_INODE_ITEM_KEY &&
		    wc->stage == LOG_WALK_REPLAY_INODES) {
			struct btrfs_inode_item *inode_item;
			u32 mode;

			inode_item = btrfs_item_ptr(eb, i,
					    struct btrfs_inode_item);
			mode = btrfs_inode_mode(eb, inode_item);
			if (S_ISDIR(mode)) {
				ret = replay_dir_deletes(wc->trans,
2064
					 root, log, path, key.objectid, 0);
2065 2066
				if (ret)
					break;
2067 2068 2069
			}
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2070 2071
			if (ret)
				break;
2072

2073 2074 2075
			/* for regular files, make sure corresponding
			 * orhpan item exist. extents past the new EOF
			 * will be truncated later by orphan cleanup.
2076 2077
			 */
			if (S_ISREG(mode)) {
2078 2079
				ret = insert_orphan_item(wc->trans, root,
							 key.objectid);
2080 2081
				if (ret)
					break;
2082
			}
2083

2084 2085
			ret = link_to_fixup_dir(wc->trans, root,
						path, key.objectid);
2086 2087
			if (ret)
				break;
2088
		}
2089 2090 2091 2092 2093 2094 2095 2096 2097

		if (key.type == BTRFS_DIR_INDEX_KEY &&
		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
			if (ret)
				break;
		}

2098 2099 2100 2101 2102 2103 2104
		if (wc->stage < LOG_WALK_REPLAY_ALL)
			continue;

		/* these keys are simply copied */
		if (key.type == BTRFS_XATTR_ITEM_KEY) {
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2105 2106
			if (ret)
				break;
2107 2108
		} else if (key.type == BTRFS_INODE_REF_KEY ||
			   key.type == BTRFS_INODE_EXTREF_KEY) {
M
Mark Fasheh 已提交
2109 2110
			ret = add_inode_ref(wc->trans, root, log, path,
					    eb, i, &key);
2111 2112 2113
			if (ret && ret != -ENOENT)
				break;
			ret = 0;
2114 2115 2116
		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
			ret = replay_one_extent(wc->trans, root, path,
						eb, i, &key);
2117 2118
			if (ret)
				break;
2119
		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2120 2121
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
2122 2123
			if (ret)
				break;
2124 2125 2126
		}
	}
	btrfs_free_path(path);
2127
	return ret;
2128 2129
}

2130
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
				   struct btrfs_root *root,
				   struct btrfs_path *path, int *level,
				   struct walk_control *wc)
{
	u64 root_owner;
	u64 bytenr;
	u64 ptr_gen;
	struct extent_buffer *next;
	struct extent_buffer *cur;
	struct extent_buffer *parent;
	u32 blocksize;
	int ret = 0;

	WARN_ON(*level < 0);
	WARN_ON(*level >= BTRFS_MAX_LEVEL);

2147
	while (*level > 0) {
2148 2149 2150 2151
		WARN_ON(*level < 0);
		WARN_ON(*level >= BTRFS_MAX_LEVEL);
		cur = path->nodes[*level];

2152
		WARN_ON(btrfs_header_level(cur) != *level);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

		if (path->slots[*level] >=
		    btrfs_header_nritems(cur))
			break;

		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
		blocksize = btrfs_level_size(root, *level - 1);

		parent = path->nodes[*level];
		root_owner = btrfs_header_owner(parent);

		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2166 2167
		if (!next)
			return -ENOMEM;
2168 2169

		if (*level == 1) {
2170
			ret = wc->process_func(root, next, wc, ptr_gen);
2171 2172
			if (ret) {
				free_extent_buffer(next);
2173
				return ret;
2174
			}
2175

2176 2177
			path->slots[*level]++;
			if (wc->free) {
2178 2179 2180 2181 2182
				ret = btrfs_read_buffer(next, ptr_gen);
				if (ret) {
					free_extent_buffer(next);
					return ret;
				}
2183

2184 2185 2186 2187 2188 2189 2190
				if (trans) {
					btrfs_tree_lock(next);
					btrfs_set_lock_blocking(next);
					clean_tree_block(trans, root, next);
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
				}
2191 2192 2193

				WARN_ON(root_owner !=
					BTRFS_TREE_LOG_OBJECTID);
2194
				ret = btrfs_free_and_pin_reserved_extent(root,
2195
							 bytenr, blocksize);
2196 2197 2198 2199
				if (ret) {
					free_extent_buffer(next);
					return ret;
				}
2200 2201 2202 2203
			}
			free_extent_buffer(next);
			continue;
		}
2204 2205 2206 2207 2208
		ret = btrfs_read_buffer(next, ptr_gen);
		if (ret) {
			free_extent_buffer(next);
			return ret;
		}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

		WARN_ON(*level <= 0);
		if (path->nodes[*level-1])
			free_extent_buffer(path->nodes[*level-1]);
		path->nodes[*level-1] = next;
		*level = btrfs_header_level(next);
		path->slots[*level] = 0;
		cond_resched();
	}
	WARN_ON(*level < 0);
	WARN_ON(*level >= BTRFS_MAX_LEVEL);

2221
	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2222 2223 2224 2225 2226

	cond_resched();
	return 0;
}

2227
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2228 2229 2230 2231 2232 2233 2234 2235 2236
				 struct btrfs_root *root,
				 struct btrfs_path *path, int *level,
				 struct walk_control *wc)
{
	u64 root_owner;
	int i;
	int slot;
	int ret;

2237
	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2238
		slot = path->slots[i];
2239
		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2240 2241 2242 2243 2244
			path->slots[i]++;
			*level = i;
			WARN_ON(*level == 0);
			return 0;
		} else {
2245 2246 2247 2248 2249 2250 2251
			struct extent_buffer *parent;
			if (path->nodes[*level] == root->node)
				parent = path->nodes[*level];
			else
				parent = path->nodes[*level + 1];

			root_owner = btrfs_header_owner(parent);
2252
			ret = wc->process_func(root, path->nodes[*level], wc,
2253
				 btrfs_header_generation(path->nodes[*level]));
2254 2255 2256
			if (ret)
				return ret;

2257 2258 2259 2260 2261
			if (wc->free) {
				struct extent_buffer *next;

				next = path->nodes[*level];

2262 2263 2264 2265 2266 2267 2268
				if (trans) {
					btrfs_tree_lock(next);
					btrfs_set_lock_blocking(next);
					clean_tree_block(trans, root, next);
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
				}
2269 2270

				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2271
				ret = btrfs_free_and_pin_reserved_extent(root,
2272
						path->nodes[*level]->start,
2273
						path->nodes[*level]->len);
2274 2275
				if (ret)
					return ret;
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
			}
			free_extent_buffer(path->nodes[*level]);
			path->nodes[*level] = NULL;
			*level = i + 1;
		}
	}
	return 1;
}

/*
 * drop the reference count on the tree rooted at 'snap'.  This traverses
 * the tree freeing any blocks that have a ref count of zero after being
 * decremented.
 */
static int walk_log_tree(struct btrfs_trans_handle *trans,
			 struct btrfs_root *log, struct walk_control *wc)
{
	int ret = 0;
	int wret;
	int level;
	struct btrfs_path *path;
	int orig_level;

	path = btrfs_alloc_path();
2300 2301
	if (!path)
		return -ENOMEM;
2302 2303 2304 2305 2306 2307 2308

	level = btrfs_header_level(log->node);
	orig_level = level;
	path->nodes[level] = log->node;
	extent_buffer_get(log->node);
	path->slots[level] = 0;

2309
	while (1) {
2310 2311 2312
		wret = walk_down_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2313
		if (wret < 0) {
2314
			ret = wret;
2315 2316
			goto out;
		}
2317 2318 2319 2320

		wret = walk_up_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2321
		if (wret < 0) {
2322
			ret = wret;
2323 2324
			goto out;
		}
2325 2326 2327 2328
	}

	/* was the root node processed? if not, catch it here */
	if (path->nodes[orig_level]) {
2329
		ret = wc->process_func(log, path->nodes[orig_level], wc,
2330
			 btrfs_header_generation(path->nodes[orig_level]));
2331 2332
		if (ret)
			goto out;
2333 2334 2335 2336 2337
		if (wc->free) {
			struct extent_buffer *next;

			next = path->nodes[orig_level];

2338 2339 2340 2341 2342 2343 2344
			if (trans) {
				btrfs_tree_lock(next);
				btrfs_set_lock_blocking(next);
				clean_tree_block(trans, log, next);
				btrfs_wait_tree_block_writeback(next);
				btrfs_tree_unlock(next);
			}
2345 2346 2347

			WARN_ON(log->root_key.objectid !=
				BTRFS_TREE_LOG_OBJECTID);
2348
			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2349
							 next->len);
2350 2351
			if (ret)
				goto out;
2352 2353 2354
		}
	}

2355
out:
2356 2357 2358 2359
	btrfs_free_path(path);
	return ret;
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * helper function to update the item for a given subvolumes log root
 * in the tree of log roots
 */
static int update_log_root(struct btrfs_trans_handle *trans,
			   struct btrfs_root *log)
{
	int ret;

	if (log->log_transid == 1) {
		/* insert root item on the first sync */
		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
				&log->root_key, &log->root_item);
	} else {
		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
				&log->root_key, &log->root_item);
	}
	return ret;
}

2380 2381
static void wait_log_commit(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root, int transid)
2382 2383
{
	DEFINE_WAIT(wait);
2384
	int index = transid % 2;
2385

2386 2387 2388 2389 2390
	/*
	 * we only allow two pending log transactions at a time,
	 * so we know that if ours is more than 2 older than the
	 * current transaction, we're done
	 */
2391
	do {
2392 2393 2394
		prepare_to_wait(&root->log_commit_wait[index],
				&wait, TASK_UNINTERRUPTIBLE);
		mutex_unlock(&root->log_mutex);
2395

2396
		if (root->log_transid_committed < transid &&
2397 2398
		    atomic_read(&root->log_commit[index]))
			schedule();
2399

2400 2401
		finish_wait(&root->log_commit_wait[index], &wait);
		mutex_lock(&root->log_mutex);
2402
	} while (root->log_transid_committed < transid &&
2403 2404 2405
		 atomic_read(&root->log_commit[index]));
}

2406 2407
static void wait_for_writer(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
2408 2409
{
	DEFINE_WAIT(wait);
2410 2411

	while (atomic_read(&root->log_writers)) {
2412 2413 2414
		prepare_to_wait(&root->log_writer_wait,
				&wait, TASK_UNINTERRUPTIBLE);
		mutex_unlock(&root->log_mutex);
2415
		if (atomic_read(&root->log_writers))
2416
			schedule();
2417 2418 2419
		mutex_lock(&root->log_mutex);
		finish_wait(&root->log_writer_wait, &wait);
	}
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
					struct btrfs_log_ctx *ctx)
{
	if (!ctx)
		return;

	mutex_lock(&root->log_mutex);
	list_del_init(&ctx->list);
	mutex_unlock(&root->log_mutex);
}

/* 
 * Invoked in log mutex context, or be sure there is no other task which
 * can access the list.
 */
static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
					     int index, int error)
{
	struct btrfs_log_ctx *ctx;

	if (!error) {
		INIT_LIST_HEAD(&root->log_ctxs[index]);
		return;
	}

	list_for_each_entry(ctx, &root->log_ctxs[index], list)
		ctx->log_ret = error;

	INIT_LIST_HEAD(&root->log_ctxs[index]);
}

2453 2454 2455
/*
 * btrfs_sync_log does sends a given tree log down to the disk and
 * updates the super blocks to record it.  When this call is done,
2456 2457 2458 2459 2460 2461 2462 2463
 * you know that any inodes previously logged are safely on disk only
 * if it returns 0.
 *
 * Any other return value means you need to call btrfs_commit_transaction.
 * Some of the edge cases for fsyncing directories that have had unlinks
 * or renames done in the past mean that sometimes the only safe
 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 * that has happened.
2464 2465
 */
int btrfs_sync_log(struct btrfs_trans_handle *trans,
2466
		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2467
{
2468 2469
	int index1;
	int index2;
2470
	int mark;
2471 2472
	int ret;
	struct btrfs_root *log = root->log_root;
2473
	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2474
	int log_transid = 0;
2475
	struct btrfs_log_ctx root_log_ctx;
2476
	struct blk_plug plug;
2477

2478
	mutex_lock(&root->log_mutex);
2479 2480 2481 2482 2483 2484 2485
	log_transid = ctx->log_transid;
	if (root->log_transid_committed >= log_transid) {
		mutex_unlock(&root->log_mutex);
		return ctx->log_ret;
	}

	index1 = log_transid % 2;
2486
	if (atomic_read(&root->log_commit[index1])) {
2487
		wait_log_commit(trans, root, log_transid);
2488
		mutex_unlock(&root->log_mutex);
2489
		return ctx->log_ret;
2490
	}
2491
	ASSERT(log_transid == root->log_transid);
2492 2493 2494 2495
	atomic_set(&root->log_commit[index1], 1);

	/* wait for previous tree log sync to complete */
	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2496
		wait_log_commit(trans, root, log_transid - 1);
2497

2498
	while (1) {
2499
		int batch = atomic_read(&root->log_batch);
2500
		/* when we're on an ssd, just kick the log commit out */
2501 2502
		if (!btrfs_test_opt(root, SSD) &&
		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2503 2504 2505 2506
			mutex_unlock(&root->log_mutex);
			schedule_timeout_uninterruptible(1);
			mutex_lock(&root->log_mutex);
		}
2507
		wait_for_writer(trans, root);
2508
		if (batch == atomic_read(&root->log_batch))
2509 2510 2511
			break;
	}

2512
	/* bail out if we need to do a full commit */
2513
	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2514
		ret = -EAGAIN;
2515
		btrfs_free_logged_extents(log, log_transid);
2516 2517 2518 2519
		mutex_unlock(&root->log_mutex);
		goto out;
	}

2520 2521 2522 2523 2524
	if (log_transid % 2 == 0)
		mark = EXTENT_DIRTY;
	else
		mark = EXTENT_NEW;

2525 2526 2527
	/* we start IO on  all the marked extents here, but we don't actually
	 * wait for them until later.
	 */
2528
	blk_start_plug(&plug);
2529
	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2530
	if (ret) {
2531
		blk_finish_plug(&plug);
2532
		btrfs_abort_transaction(trans, root, ret);
2533
		btrfs_free_logged_extents(log, log_transid);
2534
		btrfs_set_log_full_commit(root->fs_info, trans);
2535 2536 2537
		mutex_unlock(&root->log_mutex);
		goto out;
	}
2538

2539
	btrfs_set_root_node(&log->root_item, log->node);
2540 2541 2542

	root->log_transid++;
	log->log_transid = root->log_transid;
2543
	root->log_start_pid = 0;
2544
	/*
2545 2546 2547
	 * IO has been started, blocks of the log tree have WRITTEN flag set
	 * in their headers. new modifications of the log will be written to
	 * new positions. so it's safe to allow log writers to go in.
2548 2549 2550
	 */
	mutex_unlock(&root->log_mutex);

2551 2552
	btrfs_init_log_ctx(&root_log_ctx);

2553
	mutex_lock(&log_root_tree->log_mutex);
2554
	atomic_inc(&log_root_tree->log_batch);
2555
	atomic_inc(&log_root_tree->log_writers);
2556 2557 2558 2559 2560

	index2 = log_root_tree->log_transid % 2;
	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
	root_log_ctx.log_transid = log_root_tree->log_transid;

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	mutex_unlock(&log_root_tree->log_mutex);

	ret = update_log_root(trans, log);

	mutex_lock(&log_root_tree->log_mutex);
	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
		smp_mb();
		if (waitqueue_active(&log_root_tree->log_writer_wait))
			wake_up(&log_root_tree->log_writer_wait);
	}

2572
	if (ret) {
2573 2574 2575
		if (!list_empty(&root_log_ctx.list))
			list_del_init(&root_log_ctx.list);

2576
		blk_finish_plug(&plug);
2577 2578
		btrfs_set_log_full_commit(root->fs_info, trans);

2579 2580 2581 2582 2583
		if (ret != -ENOSPC) {
			btrfs_abort_transaction(trans, root, ret);
			mutex_unlock(&log_root_tree->log_mutex);
			goto out;
		}
2584
		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2585
		btrfs_free_logged_extents(log, log_transid);
2586 2587 2588 2589 2590
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out;
	}

2591 2592 2593 2594 2595
	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
		mutex_unlock(&log_root_tree->log_mutex);
		ret = root_log_ctx.log_ret;
		goto out;
	}
2596

2597
	index2 = root_log_ctx.log_transid % 2;
2598
	if (atomic_read(&log_root_tree->log_commit[index2])) {
2599
		blk_finish_plug(&plug);
2600
		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2601
		wait_log_commit(trans, log_root_tree,
2602
				root_log_ctx.log_transid);
2603
		btrfs_free_logged_extents(log, log_transid);
2604
		mutex_unlock(&log_root_tree->log_mutex);
2605
		ret = root_log_ctx.log_ret;
2606 2607
		goto out;
	}
2608
	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2609 2610
	atomic_set(&log_root_tree->log_commit[index2], 1);

2611 2612
	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
		wait_log_commit(trans, log_root_tree,
2613
				root_log_ctx.log_transid - 1);
2614 2615 2616
	}

	wait_for_writer(trans, log_root_tree);
2617

2618 2619 2620 2621
	/*
	 * now that we've moved on to the tree of log tree roots,
	 * check the full commit flag again
	 */
2622
	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2623
		blk_finish_plug(&plug);
2624
		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2625
		btrfs_free_logged_extents(log, log_transid);
2626 2627 2628 2629
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out_wake_log_root;
	}
2630

2631 2632 2633 2634
	ret = btrfs_write_marked_extents(log_root_tree,
					 &log_root_tree->dirty_log_pages,
					 EXTENT_DIRTY | EXTENT_NEW);
	blk_finish_plug(&plug);
2635
	if (ret) {
2636
		btrfs_set_log_full_commit(root->fs_info, trans);
2637
		btrfs_abort_transaction(trans, root, ret);
2638
		btrfs_free_logged_extents(log, log_transid);
2639 2640 2641
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	}
2642
	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2643 2644 2645
	btrfs_wait_marked_extents(log_root_tree,
				  &log_root_tree->dirty_log_pages,
				  EXTENT_NEW | EXTENT_DIRTY);
2646
	btrfs_wait_logged_extents(log, log_transid);
2647

2648
	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2649
				log_root_tree->node->start);
2650
	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2651
				btrfs_header_level(log_root_tree->node));
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	log_root_tree->log_transid++;
	mutex_unlock(&log_root_tree->log_mutex);

	/*
	 * nobody else is going to jump in and write the the ctree
	 * super here because the log_commit atomic below is protecting
	 * us.  We must be called with a transaction handle pinning
	 * the running transaction open, so a full commit can't hop
	 * in and cause problems either.
	 */
2663 2664
	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
	if (ret) {
2665
		btrfs_set_log_full_commit(root->fs_info, trans);
2666 2667 2668
		btrfs_abort_transaction(trans, root, ret);
		goto out_wake_log_root;
	}
2669

2670 2671 2672 2673 2674
	mutex_lock(&root->log_mutex);
	if (root->last_log_commit < log_transid)
		root->last_log_commit = log_transid;
	mutex_unlock(&root->log_mutex);

2675
out_wake_log_root:
2676 2677 2678 2679 2680 2681
	/*
	 * We needn't get log_mutex here because we are sure all
	 * the other tasks are blocked.
	 */
	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);

2682 2683
	mutex_lock(&log_root_tree->log_mutex);
	log_root_tree->log_transid_committed++;
2684
	atomic_set(&log_root_tree->log_commit[index2], 0);
2685 2686
	mutex_unlock(&log_root_tree->log_mutex);

2687 2688
	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
		wake_up(&log_root_tree->log_commit_wait[index2]);
2689
out:
2690 2691 2692
	/* See above. */
	btrfs_remove_all_log_ctxs(root, index1, ret);

2693 2694
	mutex_lock(&root->log_mutex);
	root->log_transid_committed++;
2695
	atomic_set(&root->log_commit[index1], 0);
2696
	mutex_unlock(&root->log_mutex);
2697

2698 2699
	if (waitqueue_active(&root->log_commit_wait[index1]))
		wake_up(&root->log_commit_wait[index1]);
2700
	return ret;
2701 2702
}

2703 2704
static void free_log_tree(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log)
2705 2706
{
	int ret;
2707 2708
	u64 start;
	u64 end;
2709 2710 2711 2712 2713
	struct walk_control wc = {
		.free = 1,
		.process_func = process_one_buffer
	};

2714 2715 2716 2717
	ret = walk_log_tree(trans, log, &wc);
	/* I don't think this can happen but just in case */
	if (ret)
		btrfs_abort_transaction(trans, log, ret);
2718

2719
	while (1) {
2720
		ret = find_first_extent_bit(&log->dirty_log_pages,
2721 2722
				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
				NULL);
2723 2724 2725
		if (ret)
			break;

2726 2727
		clear_extent_bits(&log->dirty_log_pages, start, end,
				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2728 2729
	}

2730 2731 2732 2733 2734 2735 2736 2737
	/*
	 * We may have short-circuited the log tree with the full commit logic
	 * and left ordered extents on our list, so clear these out to keep us
	 * from leaking inodes and memory.
	 */
	btrfs_free_logged_extents(log, 0);
	btrfs_free_logged_extents(log, 1);

2738 2739
	free_extent_buffer(log->node);
	kfree(log);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
}

/*
 * free all the extents used by the tree log.  This should be called
 * at commit time of the full transaction
 */
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
	if (root->log_root) {
		free_log_tree(trans, root->log_root);
		root->log_root = NULL;
	}
	return 0;
}

int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	if (fs_info->log_root_tree) {
		free_log_tree(trans, fs_info->log_root_tree);
		fs_info->log_root_tree = NULL;
	}
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	return 0;
}

/*
 * If both a file and directory are logged, and unlinks or renames are
 * mixed in, we have a few interesting corners:
 *
 * create file X in dir Y
 * link file X to X.link in dir Y
 * fsync file X
 * unlink file X but leave X.link
 * fsync dir Y
 *
 * After a crash we would expect only X.link to exist.  But file X
 * didn't get fsync'd again so the log has back refs for X and X.link.
 *
 * We solve this by removing directory entries and inode backrefs from the
 * log when a file that was logged in the current transaction is
 * unlinked.  Any later fsync will include the updated log entries, and
 * we'll be able to reconstruct the proper directory items from backrefs.
 *
 * This optimizations allows us to avoid relogging the entire inode
 * or the entire directory.
 */
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root,
				 const char *name, int name_len,
				 struct inode *dir, u64 index)
{
	struct btrfs_root *log;
	struct btrfs_dir_item *di;
	struct btrfs_path *path;
	int ret;
2795
	int err = 0;
2796
	int bytes_del = 0;
2797
	u64 dir_ino = btrfs_ino(dir);
2798

2799 2800 2801
	if (BTRFS_I(dir)->logged_trans < trans->transid)
		return 0;

2802 2803 2804 2805 2806 2807 2808 2809
	ret = join_running_log_trans(root);
	if (ret)
		return 0;

	mutex_lock(&BTRFS_I(dir)->log_mutex);

	log = root->log_root;
	path = btrfs_alloc_path();
2810 2811 2812 2813
	if (!path) {
		err = -ENOMEM;
		goto out_unlock;
	}
2814

2815
	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2816
				   name, name_len, -1);
2817 2818 2819 2820 2821
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
2822 2823
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
		bytes_del += name_len;
2824 2825 2826 2827
		if (ret) {
			err = ret;
			goto fail;
		}
2828
	}
2829
	btrfs_release_path(path);
2830
	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2831
					 index, name, name_len, -1);
2832 2833 2834 2835 2836
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
2837 2838
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
		bytes_del += name_len;
2839 2840 2841 2842
		if (ret) {
			err = ret;
			goto fail;
		}
2843 2844 2845 2846 2847 2848 2849 2850
	}

	/* update the directory size in the log to reflect the names
	 * we have removed
	 */
	if (bytes_del) {
		struct btrfs_key key;

2851
		key.objectid = dir_ino;
2852 2853
		key.offset = 0;
		key.type = BTRFS_INODE_ITEM_KEY;
2854
		btrfs_release_path(path);
2855 2856

		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2857 2858 2859 2860
		if (ret < 0) {
			err = ret;
			goto fail;
		}
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		if (ret == 0) {
			struct btrfs_inode_item *item;
			u64 i_size;

			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
					      struct btrfs_inode_item);
			i_size = btrfs_inode_size(path->nodes[0], item);
			if (i_size > bytes_del)
				i_size -= bytes_del;
			else
				i_size = 0;
			btrfs_set_inode_size(path->nodes[0], item, i_size);
			btrfs_mark_buffer_dirty(path->nodes[0]);
		} else
			ret = 0;
2876
		btrfs_release_path(path);
2877
	}
2878
fail:
2879
	btrfs_free_path(path);
2880
out_unlock:
2881
	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2882
	if (ret == -ENOSPC) {
2883
		btrfs_set_log_full_commit(root->fs_info, trans);
2884
		ret = 0;
2885 2886 2887
	} else if (ret < 0)
		btrfs_abort_transaction(trans, root, ret);

2888
	btrfs_end_log_trans(root);
2889

2890
	return err;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
}

/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       const char *name, int name_len,
			       struct inode *inode, u64 dirid)
{
	struct btrfs_root *log;
	u64 index;
	int ret;

2903 2904 2905
	if (BTRFS_I(inode)->logged_trans < trans->transid)
		return 0;

2906 2907 2908 2909 2910 2911
	ret = join_running_log_trans(root);
	if (ret)
		return 0;
	log = root->log_root;
	mutex_lock(&BTRFS_I(inode)->log_mutex);

2912
	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2913 2914
				  dirid, &index);
	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2915
	if (ret == -ENOSPC) {
2916
		btrfs_set_log_full_commit(root->fs_info, trans);
2917
		ret = 0;
2918 2919
	} else if (ret < 0 && ret != -ENOENT)
		btrfs_abort_transaction(trans, root, ret);
2920
	btrfs_end_log_trans(root);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

	return ret;
}

/*
 * creates a range item in the log for 'dirid'.  first_offset and
 * last_offset tell us which parts of the key space the log should
 * be considered authoritative for.
 */
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       int key_type, u64 dirid,
				       u64 first_offset, u64 last_offset)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_dir_log_item *item;

	key.objectid = dirid;
	key.offset = first_offset;
	if (key_type == BTRFS_DIR_ITEM_KEY)
		key.type = BTRFS_DIR_LOG_ITEM_KEY;
	else
		key.type = BTRFS_DIR_LOG_INDEX_KEY;
	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2947 2948
	if (ret)
		return ret;
2949 2950 2951 2952 2953

	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
	btrfs_mark_buffer_dirty(path->nodes[0]);
2954
	btrfs_release_path(path);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	return 0;
}

/*
 * log all the items included in the current transaction for a given
 * directory.  This also creates the range items in the log tree required
 * to replay anything deleted before the fsync
 */
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct inode *inode,
			  struct btrfs_path *path,
			  struct btrfs_path *dst_path, int key_type,
			  u64 min_offset, u64 *last_offset_ret)
{
	struct btrfs_key min_key;
	struct btrfs_root *log = root->log_root;
	struct extent_buffer *src;
2972
	int err = 0;
2973 2974 2975 2976 2977
	int ret;
	int i;
	int nritems;
	u64 first_offset = min_offset;
	u64 last_offset = (u64)-1;
2978
	u64 ino = btrfs_ino(inode);
2979 2980 2981

	log = root->log_root;

2982
	min_key.objectid = ino;
2983 2984 2985 2986 2987
	min_key.type = key_type;
	min_key.offset = min_offset;

	path->keep_locks = 1;

2988
	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2989 2990 2991 2992 2993

	/*
	 * we didn't find anything from this transaction, see if there
	 * is anything at all
	 */
2994 2995
	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
		min_key.objectid = ino;
2996 2997
		min_key.type = key_type;
		min_key.offset = (u64)-1;
2998
		btrfs_release_path(path);
2999 3000
		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
		if (ret < 0) {
3001
			btrfs_release_path(path);
3002 3003
			return ret;
		}
3004
		ret = btrfs_previous_item(root, path, ino, key_type);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

		/* if ret == 0 there are items for this type,
		 * create a range to tell us the last key of this type.
		 * otherwise, there are no items in this directory after
		 * *min_offset, and we create a range to indicate that.
		 */
		if (ret == 0) {
			struct btrfs_key tmp;
			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
					      path->slots[0]);
3015
			if (key_type == tmp.type)
3016 3017 3018 3019 3020 3021
				first_offset = max(min_offset, tmp.offset) + 1;
		}
		goto done;
	}

	/* go backward to find any previous key */
3022
	ret = btrfs_previous_item(root, path, ino, key_type);
3023 3024 3025 3026 3027 3028 3029 3030
	if (ret == 0) {
		struct btrfs_key tmp;
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
		if (key_type == tmp.type) {
			first_offset = tmp.offset;
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3031 3032 3033 3034
			if (ret) {
				err = ret;
				goto done;
			}
3035 3036
		}
	}
3037
	btrfs_release_path(path);
3038 3039 3040

	/* find the first key from this transaction again */
	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3041
	if (WARN_ON(ret != 0))
3042 3043 3044 3045 3046 3047
		goto done;

	/*
	 * we have a block from this transaction, log every item in it
	 * from our directory
	 */
3048
	while (1) {
3049 3050 3051 3052 3053 3054
		struct btrfs_key tmp;
		src = path->nodes[0];
		nritems = btrfs_header_nritems(src);
		for (i = path->slots[0]; i < nritems; i++) {
			btrfs_item_key_to_cpu(src, &min_key, i);

3055
			if (min_key.objectid != ino || min_key.type != key_type)
3056 3057 3058
				goto done;
			ret = overwrite_item(trans, log, dst_path, src, i,
					     &min_key);
3059 3060 3061 3062
			if (ret) {
				err = ret;
				goto done;
			}
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		}
		path->slots[0] = nritems;

		/*
		 * look ahead to the next item and see if it is also
		 * from this directory and from this transaction
		 */
		ret = btrfs_next_leaf(root, path);
		if (ret == 1) {
			last_offset = (u64)-1;
			goto done;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3076
		if (tmp.objectid != ino || tmp.type != key_type) {
3077 3078 3079 3080 3081 3082 3083
			last_offset = (u64)-1;
			goto done;
		}
		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3084 3085 3086 3087
			if (ret)
				err = ret;
			else
				last_offset = tmp.offset;
3088 3089 3090 3091
			goto done;
		}
	}
done:
3092 3093
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
3094

3095 3096 3097 3098 3099 3100 3101
	if (err == 0) {
		*last_offset_ret = last_offset;
		/*
		 * insert the log range keys to indicate where the log
		 * is valid
		 */
		ret = insert_dir_log_key(trans, log, path, key_type,
3102
					 ino, first_offset, last_offset);
3103 3104 3105 3106
		if (ret)
			err = ret;
	}
	return err;
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
}

/*
 * logging directories is very similar to logging inodes, We find all the items
 * from the current transaction and write them to the log.
 *
 * The recovery code scans the directory in the subvolume, and if it finds a
 * key in the range logged that is not present in the log tree, then it means
 * that dir entry was unlinked during the transaction.
 *
 * In order for that scan to work, we must include one key smaller than
 * the smallest logged by this transaction and one key larger than the largest
 * key logged by this transaction.
 */
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct inode *inode,
			  struct btrfs_path *path,
			  struct btrfs_path *dst_path)
{
	u64 min_key;
	u64 max_key;
	int ret;
	int key_type = BTRFS_DIR_ITEM_KEY;

again:
	min_key = 0;
	max_key = 0;
3134
	while (1) {
3135 3136 3137
		ret = log_dir_items(trans, root, inode, path,
				    dst_path, key_type, min_key,
				    &max_key);
3138 3139
		if (ret)
			return ret;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
		if (max_key == (u64)-1)
			break;
		min_key = max_key + 1;
	}

	if (key_type == BTRFS_DIR_ITEM_KEY) {
		key_type = BTRFS_DIR_INDEX_KEY;
		goto again;
	}
	return 0;
}

/*
 * a helper function to drop items from the log before we relog an
 * inode.  max_key_type indicates the highest item type to remove.
 * This cannot be run for file data extents because it does not
 * free the extents they point to.
 */
static int drop_objectid_items(struct btrfs_trans_handle *trans,
				  struct btrfs_root *log,
				  struct btrfs_path *path,
				  u64 objectid, int max_key_type)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
3166
	int start_slot;
3167 3168 3169 3170 3171

	key.objectid = objectid;
	key.type = max_key_type;
	key.offset = (u64)-1;

3172
	while (1) {
3173
		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3174
		BUG_ON(ret == 0); /* Logic error */
3175
		if (ret < 0)
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
			break;

		if (path->slots[0] == 0)
			break;

		path->slots[0]--;
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);

		if (found_key.objectid != objectid)
			break;

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		found_key.offset = 0;
		found_key.type = 0;
		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
				       &start_slot);

		ret = btrfs_del_items(trans, log, path, start_slot,
				      path->slots[0] - start_slot + 1);
		/*
		 * If start slot isn't 0 then we don't need to re-search, we've
		 * found the last guy with the objectid in this tree.
		 */
		if (ret || start_slot != 0)
3200
			break;
3201
		btrfs_release_path(path);
3202
	}
3203
	btrfs_release_path(path);
3204 3205
	if (ret > 0)
		ret = 0;
3206
	return ret;
3207 3208
}

3209 3210 3211 3212 3213
static void fill_inode_item(struct btrfs_trans_handle *trans,
			    struct extent_buffer *leaf,
			    struct btrfs_inode_item *item,
			    struct inode *inode, int log_inode_only)
{
3214 3215 3216
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3217 3218 3219 3220 3221 3222 3223

	if (log_inode_only) {
		/* set the generation to zero so the recover code
		 * can tell the difference between an logging
		 * just to say 'this inode exists' and a logging
		 * to say 'update this inode with these values'
		 */
3224 3225
		btrfs_set_token_inode_generation(leaf, item, 0, &token);
		btrfs_set_token_inode_size(leaf, item, 0, &token);
3226
	} else {
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		btrfs_set_token_inode_generation(leaf, item,
						 BTRFS_I(inode)->generation,
						 &token);
		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
	}

	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);

	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
				     inode->i_atime.tv_sec, &token);
	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
				      inode->i_atime.tv_nsec, &token);

	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
				     inode->i_mtime.tv_sec, &token);
	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
				      inode->i_mtime.tv_nsec, &token);

	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
				     inode->i_ctime.tv_sec, &token);
	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
				      inode->i_ctime.tv_nsec, &token);

	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
				     &token);

	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3261 3262
}

3263 3264 3265 3266 3267 3268 3269
static int log_inode_item(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log, struct btrfs_path *path,
			  struct inode *inode)
{
	struct btrfs_inode_item *inode_item;
	int ret;

3270 3271
	ret = btrfs_insert_empty_item(trans, log, path,
				      &BTRFS_I(inode)->location,
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
				      sizeof(*inode_item));
	if (ret && ret != -EEXIST)
		return ret;
	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_inode_item);
	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
	btrfs_release_path(path);
	return 0;
}

3282
static noinline int copy_items(struct btrfs_trans_handle *trans,
3283
			       struct inode *inode,
3284
			       struct btrfs_path *dst_path,
3285
			       struct btrfs_path *src_path, u64 *last_extent,
3286 3287 3288 3289
			       int start_slot, int nr, int inode_only)
{
	unsigned long src_offset;
	unsigned long dst_offset;
3290
	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3291 3292
	struct btrfs_file_extent_item *extent;
	struct btrfs_inode_item *inode_item;
3293 3294
	struct extent_buffer *src = src_path->nodes[0];
	struct btrfs_key first_key, last_key, key;
3295 3296 3297 3298 3299
	int ret;
	struct btrfs_key *ins_keys;
	u32 *ins_sizes;
	char *ins_data;
	int i;
3300
	struct list_head ordered_sums;
3301
	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3302
	bool has_extents = false;
3303
	bool need_find_last_extent = true;
3304
	bool done = false;
3305 3306

	INIT_LIST_HEAD(&ordered_sums);
3307 3308 3309

	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
			   nr * sizeof(u32), GFP_NOFS);
3310 3311 3312
	if (!ins_data)
		return -ENOMEM;

3313 3314
	first_key.objectid = (u64)-1;

3315 3316 3317 3318 3319 3320 3321 3322 3323
	ins_sizes = (u32 *)ins_data;
	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));

	for (i = 0; i < nr; i++) {
		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
	}
	ret = btrfs_insert_empty_items(trans, log, dst_path,
				       ins_keys, ins_sizes, nr);
3324 3325 3326 3327
	if (ret) {
		kfree(ins_data);
		return ret;
	}
3328

3329
	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3330 3331 3332 3333 3334
		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
						   dst_path->slots[0]);

		src_offset = btrfs_item_ptr_offset(src, start_slot + i);

3335 3336 3337
		if ((i == (nr - 1)))
			last_key = ins_keys[i];

3338
		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3339 3340 3341
			inode_item = btrfs_item_ptr(dst_path->nodes[0],
						    dst_path->slots[0],
						    struct btrfs_inode_item);
3342 3343 3344 3345 3346
			fill_inode_item(trans, dst_path->nodes[0], inode_item,
					inode, inode_only == LOG_INODE_EXISTS);
		} else {
			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
					   src_offset, ins_sizes[i]);
3347
		}
3348

3349 3350 3351 3352 3353 3354 3355 3356
		/*
		 * We set need_find_last_extent here in case we know we were
		 * processing other items and then walk into the first extent in
		 * the inode.  If we don't hit an extent then nothing changes,
		 * we'll do the last search the next time around.
		 */
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
			has_extents = true;
3357
			if (first_key.objectid == (u64)-1)
3358 3359 3360 3361 3362
				first_key = ins_keys[i];
		} else {
			need_find_last_extent = false;
		}

3363 3364 3365 3366
		/* take a reference on file data extents so that truncates
		 * or deletes of this inode don't have to relog the inode
		 * again
		 */
3367 3368
		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
		    !skip_csum) {
3369 3370 3371 3372
			int found_type;
			extent = btrfs_item_ptr(src, start_slot + i,
						struct btrfs_file_extent_item);

3373 3374 3375
			if (btrfs_file_extent_generation(src, extent) < trans->transid)
				continue;

3376
			found_type = btrfs_file_extent_type(src, extent);
3377
			if (found_type == BTRFS_FILE_EXTENT_REG) {
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
				u64 ds, dl, cs, cl;
				ds = btrfs_file_extent_disk_bytenr(src,
								extent);
				/* ds == 0 is a hole */
				if (ds == 0)
					continue;

				dl = btrfs_file_extent_disk_num_bytes(src,
								extent);
				cs = btrfs_file_extent_offset(src, extent);
				cl = btrfs_file_extent_num_bytes(src,
3389
								extent);
3390 3391 3392 3393 3394
				if (btrfs_file_extent_compression(src,
								  extent)) {
					cs = 0;
					cl = dl;
				}
3395 3396 3397 3398

				ret = btrfs_lookup_csums_range(
						log->fs_info->csum_root,
						ds + cs, ds + cs + cl - 1,
A
Arne Jansen 已提交
3399
						&ordered_sums, 0);
3400 3401 3402 3403 3404
				if (ret) {
					btrfs_release_path(dst_path);
					kfree(ins_data);
					return ret;
				}
3405 3406 3407 3408 3409
			}
		}
	}

	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3410
	btrfs_release_path(dst_path);
3411
	kfree(ins_data);
3412 3413 3414 3415 3416

	/*
	 * we have to do this after the loop above to avoid changing the
	 * log tree while trying to change the log tree.
	 */
3417
	ret = 0;
3418
	while (!list_empty(&ordered_sums)) {
3419 3420 3421
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
3422 3423
		if (!ret)
			ret = btrfs_csum_file_blocks(trans, log, sums);
3424 3425 3426
		list_del(&sums->list);
		kfree(sums);
	}
3427 3428 3429 3430

	if (!has_extents)
		return ret;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	if (need_find_last_extent && *last_extent == first_key.offset) {
		/*
		 * We don't have any leafs between our current one and the one
		 * we processed before that can have file extent items for our
		 * inode (and have a generation number smaller than our current
		 * transaction id).
		 */
		need_find_last_extent = false;
	}

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	/*
	 * Because we use btrfs_search_forward we could skip leaves that were
	 * not modified and then assume *last_extent is valid when it really
	 * isn't.  So back up to the previous leaf and read the end of the last
	 * extent before we go and fill in holes.
	 */
	if (need_find_last_extent) {
		u64 len;

		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
		if (ret < 0)
			return ret;
		if (ret)
			goto fill_holes;
		if (src_path->slots[0])
			src_path->slots[0]--;
		src = src_path->nodes[0];
		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
		if (key.objectid != btrfs_ino(inode) ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			goto fill_holes;
		extent = btrfs_item_ptr(src, src_path->slots[0],
					struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(src, extent) ==
		    BTRFS_FILE_EXTENT_INLINE) {
3466 3467 3468
			len = btrfs_file_extent_inline_len(src,
							   src_path->slots[0],
							   extent);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
			*last_extent = ALIGN(key.offset + len,
					     log->sectorsize);
		} else {
			len = btrfs_file_extent_num_bytes(src, extent);
			*last_extent = key.offset + len;
		}
	}
fill_holes:
	/* So we did prev_leaf, now we need to move to the next leaf, but a few
	 * things could have happened
	 *
	 * 1) A merge could have happened, so we could currently be on a leaf
	 * that holds what we were copying in the first place.
	 * 2) A split could have happened, and now not all of the items we want
	 * are on the same leaf.
	 *
	 * So we need to adjust how we search for holes, we need to drop the
	 * path and re-search for the first extent key we found, and then walk
	 * forward until we hit the last one we copied.
	 */
	if (need_find_last_extent) {
		/* btrfs_prev_leaf could return 1 without releasing the path */
		btrfs_release_path(src_path);
		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
					src_path, 0, 0);
		if (ret < 0)
			return ret;
		ASSERT(ret == 0);
		src = src_path->nodes[0];
		i = src_path->slots[0];
	} else {
		i = start_slot;
	}

	/*
	 * Ok so here we need to go through and fill in any holes we may have
	 * to make sure that holes are punched for those areas in case they had
	 * extents previously.
	 */
	while (!done) {
		u64 offset, len;
		u64 extent_end;

		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
			if (ret < 0)
				return ret;
			ASSERT(ret == 0);
			src = src_path->nodes[0];
			i = 0;
		}

		btrfs_item_key_to_cpu(src, &key, i);
		if (!btrfs_comp_cpu_keys(&key, &last_key))
			done = true;
		if (key.objectid != btrfs_ino(inode) ||
		    key.type != BTRFS_EXTENT_DATA_KEY) {
			i++;
			continue;
		}
		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(src, extent) ==
		    BTRFS_FILE_EXTENT_INLINE) {
3532
			len = btrfs_file_extent_inline_len(src, i, extent);
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
			extent_end = ALIGN(key.offset + len, log->sectorsize);
		} else {
			len = btrfs_file_extent_num_bytes(src, extent);
			extent_end = key.offset + len;
		}
		i++;

		if (*last_extent == key.offset) {
			*last_extent = extent_end;
			continue;
		}
		offset = *last_extent;
		len = key.offset - *last_extent;
		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
					       offset, 0, 0, len, 0, len, 0,
					       0, 0);
		if (ret)
			break;
3551
		*last_extent = extent_end;
3552 3553 3554 3555 3556 3557 3558
	}
	/*
	 * Need to let the callers know we dropped the path so they should
	 * re-search.
	 */
	if (!ret && need_find_last_extent)
		ret = 1;
3559
	return ret;
3560 3561
}

J
Josef Bacik 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct extent_map *em1, *em2;

	em1 = list_entry(a, struct extent_map, list);
	em2 = list_entry(b, struct extent_map, list);

	if (em1->start < em2->start)
		return -1;
	else if (em1->start > em2->start)
		return 1;
	return 0;
}

static int log_one_extent(struct btrfs_trans_handle *trans,
			  struct inode *inode, struct btrfs_root *root,
3578 3579
			  struct extent_map *em, struct btrfs_path *path,
			  struct list_head *logged_list)
J
Josef Bacik 已提交
3580 3581
{
	struct btrfs_root *log = root->log_root;
3582 3583
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
3584
	struct btrfs_ordered_extent *ordered;
3585
	struct list_head ordered_sums;
3586
	struct btrfs_map_token token;
J
Josef Bacik 已提交
3587
	struct btrfs_key key;
3588 3589 3590 3591
	u64 mod_start = em->mod_start;
	u64 mod_len = em->mod_len;
	u64 csum_offset;
	u64 csum_len;
3592 3593
	u64 extent_offset = em->start - em->orig_start;
	u64 block_len;
J
Josef Bacik 已提交
3594
	int ret;
3595
	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3596
	int extent_inserted = 0;
3597

3598
	INIT_LIST_HEAD(&ordered_sums);
3599
	btrfs_init_map_token(&token);
3600

3601 3602 3603
	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
				   em->start + em->len, NULL, 0, 1,
				   sizeof(*fi), &extent_inserted);
3604
	if (ret)
3605
		return ret;
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	if (!extent_inserted) {
		key.objectid = btrfs_ino(inode);
		key.type = BTRFS_EXTENT_DATA_KEY;
		key.offset = em->start;

		ret = btrfs_insert_empty_item(trans, log, path, &key,
					      sizeof(*fi));
		if (ret)
			return ret;
	}
3617 3618 3619
	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);
3620

3621 3622
	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
					       &token);
3623 3624
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
		skip_csum = true;
3625 3626 3627
		btrfs_set_token_file_extent_type(leaf, fi,
						 BTRFS_FILE_EXTENT_PREALLOC,
						 &token);
3628
	} else {
3629 3630 3631
		btrfs_set_token_file_extent_type(leaf, fi,
						 BTRFS_FILE_EXTENT_REG,
						 &token);
3632
		if (em->block_start == EXTENT_MAP_HOLE)
3633 3634 3635 3636 3637
			skip_csum = true;
	}

	block_len = max(em->block_len, em->orig_block_len);
	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3638 3639 3640 3641 3642
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
							em->block_start,
							&token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
							   &token);
3643
	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3644 3645 3646 3647 3648
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
							em->block_start -
							extent_offset, &token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
							   &token);
3649
	} else {
3650 3651 3652 3653 3654 3655 3656 3657 3658
		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
							   &token);
	}

	btrfs_set_token_file_extent_offset(leaf, fi,
					   em->start - em->orig_start,
					   &token);
	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3659
	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3660 3661 3662 3663
	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
						&token);
	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3664
	btrfs_mark_buffer_dirty(leaf);
3665

3666 3667 3668 3669
	btrfs_release_path(path);
	if (ret) {
		return ret;
	}
3670

3671 3672
	if (skip_csum)
		return 0;
J
Josef Bacik 已提交
3673

3674 3675 3676 3677
	/*
	 * First check and see if our csums are on our outstanding ordered
	 * extents.
	 */
3678
	list_for_each_entry(ordered, logged_list, log_list) {
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		struct btrfs_ordered_sum *sum;

		if (!mod_len)
			break;

		if (ordered->file_offset + ordered->len <= mod_start ||
		    mod_start + mod_len <= ordered->file_offset)
			continue;

		/*
		 * We are going to copy all the csums on this ordered extent, so
		 * go ahead and adjust mod_start and mod_len in case this
		 * ordered extent has already been logged.
		 */
		if (ordered->file_offset > mod_start) {
			if (ordered->file_offset + ordered->len >=
			    mod_start + mod_len)
				mod_len = ordered->file_offset - mod_start;
			/*
			 * If we have this case
			 *
			 * |--------- logged extent ---------|
			 *       |----- ordered extent ----|
			 *
			 * Just don't mess with mod_start and mod_len, we'll
			 * just end up logging more csums than we need and it
			 * will be ok.
			 */
		} else {
			if (ordered->file_offset + ordered->len <
			    mod_start + mod_len) {
				mod_len = (mod_start + mod_len) -
					(ordered->file_offset + ordered->len);
				mod_start = ordered->file_offset +
					ordered->len;
			} else {
				mod_len = 0;
			}
		}

		/*
		 * To keep us from looping for the above case of an ordered
		 * extent that falls inside of the logged extent.
		 */
		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
				     &ordered->flags))
			continue;

3727 3728 3729 3730 3731
		if (ordered->csum_bytes_left) {
			btrfs_start_ordered_extent(inode, ordered, 0);
			wait_event(ordered->wait,
				   ordered->csum_bytes_left == 0);
		}
3732 3733 3734

		list_for_each_entry(sum, &ordered->list, list) {
			ret = btrfs_csum_file_blocks(trans, log, sum);
3735
			if (ret)
3736 3737 3738 3739 3740 3741 3742 3743 3744
				goto unlocked;
		}

	}
unlocked:

	if (!mod_len || ret)
		return ret;

3745 3746 3747 3748 3749 3750 3751
	if (em->compress_type) {
		csum_offset = 0;
		csum_len = block_len;
	} else {
		csum_offset = mod_start - em->start;
		csum_len = mod_len;
	}
3752

3753 3754 3755 3756 3757 3758 3759
	/* block start is already adjusted for the file extent offset. */
	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
				       em->block_start + csum_offset,
				       em->block_start + csum_offset +
				       csum_len - 1, &ordered_sums, 0);
	if (ret)
		return ret;
J
Josef Bacik 已提交
3760

3761 3762 3763 3764 3765 3766 3767 3768
	while (!list_empty(&ordered_sums)) {
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
		if (!ret)
			ret = btrfs_csum_file_blocks(trans, log, sums);
		list_del(&sums->list);
		kfree(sums);
J
Josef Bacik 已提交
3769 3770
	}

3771
	return ret;
J
Josef Bacik 已提交
3772 3773 3774 3775 3776
}

static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct inode *inode,
3777 3778
				     struct btrfs_path *path,
				     struct list_head *logged_list)
J
Josef Bacik 已提交
3779 3780 3781 3782 3783 3784
{
	struct extent_map *em, *n;
	struct list_head extents;
	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
	u64 test_gen;
	int ret = 0;
3785
	int num = 0;
J
Josef Bacik 已提交
3786 3787 3788 3789 3790 3791 3792 3793

	INIT_LIST_HEAD(&extents);

	write_lock(&tree->lock);
	test_gen = root->fs_info->last_trans_committed;

	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
		list_del_init(&em->list);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

		/*
		 * Just an arbitrary number, this can be really CPU intensive
		 * once we start getting a lot of extents, and really once we
		 * have a bunch of extents we just want to commit since it will
		 * be faster.
		 */
		if (++num > 32768) {
			list_del_init(&tree->modified_extents);
			ret = -EFBIG;
			goto process;
		}

J
Josef Bacik 已提交
3807 3808
		if (em->generation <= test_gen)
			continue;
3809 3810 3811
		/* Need a ref to keep it from getting evicted from cache */
		atomic_inc(&em->refs);
		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
J
Josef Bacik 已提交
3812
		list_add_tail(&em->list, &extents);
3813
		num++;
J
Josef Bacik 已提交
3814 3815 3816 3817
	}

	list_sort(NULL, &extents, extent_cmp);

3818
process:
J
Josef Bacik 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827
	while (!list_empty(&extents)) {
		em = list_entry(extents.next, struct extent_map, list);

		list_del_init(&em->list);

		/*
		 * If we had an error we just need to delete everybody from our
		 * private list.
		 */
3828
		if (ret) {
3829
			clear_em_logging(tree, em);
3830
			free_extent_map(em);
J
Josef Bacik 已提交
3831
			continue;
3832 3833 3834
		}

		write_unlock(&tree->lock);
J
Josef Bacik 已提交
3835

3836
		ret = log_one_extent(trans, inode, root, em, path, logged_list);
3837
		write_lock(&tree->lock);
3838 3839
		clear_em_logging(tree, em);
		free_extent_map(em);
J
Josef Bacik 已提交
3840
	}
3841 3842
	WARN_ON(!list_empty(&extents));
	write_unlock(&tree->lock);
J
Josef Bacik 已提交
3843 3844 3845 3846 3847

	btrfs_release_path(path);
	return ret;
}

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
/* log a single inode in the tree log.
 * At least one parent directory for this inode must exist in the tree
 * or be logged already.
 *
 * Any items from this inode changed by the current transaction are copied
 * to the log tree.  An extra reference is taken on any extents in this
 * file, allowing us to avoid a whole pile of corner cases around logging
 * blocks that have been removed from the tree.
 *
 * See LOG_INODE_ALL and related defines for a description of what inode_only
 * does.
 *
 * This handles both files and directories.
 */
3862
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3863 3864 3865 3866
			   struct btrfs_root *root, struct inode *inode,
			   int inode_only,
			   const loff_t start,
			   const loff_t end)
3867 3868 3869 3870 3871 3872
{
	struct btrfs_path *path;
	struct btrfs_path *dst_path;
	struct btrfs_key min_key;
	struct btrfs_key max_key;
	struct btrfs_root *log = root->log_root;
3873
	struct extent_buffer *src = NULL;
3874
	LIST_HEAD(logged_list);
3875
	u64 last_extent = 0;
3876
	int err = 0;
3877
	int ret;
3878
	int nritems;
3879 3880
	int ins_start_slot = 0;
	int ins_nr;
J
Josef Bacik 已提交
3881
	bool fast_search = false;
3882
	u64 ino = btrfs_ino(inode);
3883
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3884 3885

	path = btrfs_alloc_path();
3886 3887
	if (!path)
		return -ENOMEM;
3888
	dst_path = btrfs_alloc_path();
3889 3890 3891 3892
	if (!dst_path) {
		btrfs_free_path(path);
		return -ENOMEM;
	}
3893

3894
	min_key.objectid = ino;
3895 3896 3897
	min_key.type = BTRFS_INODE_ITEM_KEY;
	min_key.offset = 0;

3898
	max_key.objectid = ino;
3899 3900


J
Josef Bacik 已提交
3901
	/* today the code can only do partial logging of directories */
3902 3903 3904 3905
	if (S_ISDIR(inode->i_mode) ||
	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
		       &BTRFS_I(inode)->runtime_flags) &&
	     inode_only == LOG_INODE_EXISTS))
3906 3907 3908 3909 3910
		max_key.type = BTRFS_XATTR_ITEM_KEY;
	else
		max_key.type = (u8)-1;
	max_key.offset = (u64)-1;

3911 3912 3913 3914 3915 3916 3917 3918 3919
	/* Only run delayed items if we are a dir or a new file */
	if (S_ISDIR(inode->i_mode) ||
	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
		ret = btrfs_commit_inode_delayed_items(trans, inode);
		if (ret) {
			btrfs_free_path(path);
			btrfs_free_path(dst_path);
			return ret;
		}
3920 3921
	}

3922 3923
	mutex_lock(&BTRFS_I(inode)->log_mutex);

3924
	btrfs_get_logged_extents(inode, &logged_list);
3925

3926 3927 3928 3929 3930 3931 3932 3933 3934
	/*
	 * a brute force approach to making sure we get the most uptodate
	 * copies of everything.
	 */
	if (S_ISDIR(inode->i_mode)) {
		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;

		if (inode_only == LOG_INODE_EXISTS)
			max_key_type = BTRFS_XATTR_ITEM_KEY;
3935
		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3936
	} else {
J
Josef Bacik 已提交
3937 3938
		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
				       &BTRFS_I(inode)->runtime_flags)) {
3939 3940
			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
				  &BTRFS_I(inode)->runtime_flags);
J
Josef Bacik 已提交
3941 3942
			ret = btrfs_truncate_inode_items(trans, log,
							 inode, 0, 0);
3943
		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3944 3945
					      &BTRFS_I(inode)->runtime_flags) ||
			   inode_only == LOG_INODE_EXISTS) {
3946 3947
			if (inode_only == LOG_INODE_ALL)
				fast_search = true;
3948
			max_key.type = BTRFS_XATTR_ITEM_KEY;
J
Josef Bacik 已提交
3949
			ret = drop_objectid_items(trans, log, path, ino,
3950
						  max_key.type);
3951 3952 3953 3954 3955 3956 3957 3958 3959
		} else {
			if (inode_only == LOG_INODE_ALL)
				fast_search = true;
			ret = log_inode_item(trans, log, dst_path, inode);
			if (ret) {
				err = ret;
				goto out_unlock;
			}
			goto log_extents;
J
Josef Bacik 已提交
3960
		}
3961

3962
	}
3963 3964 3965 3966
	if (ret) {
		err = ret;
		goto out_unlock;
	}
3967 3968
	path->keep_locks = 1;

3969
	while (1) {
3970
		ins_nr = 0;
3971
		ret = btrfs_search_forward(root, &min_key,
3972
					   path, trans->transid);
3973 3974
		if (ret != 0)
			break;
3975
again:
3976
		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3977
		if (min_key.objectid != ino)
3978 3979 3980
			break;
		if (min_key.type > max_key.type)
			break;
3981

3982
		src = path->nodes[0];
3983 3984 3985 3986 3987 3988 3989
		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
			ins_nr++;
			goto next_slot;
		} else if (!ins_nr) {
			ins_start_slot = path->slots[0];
			ins_nr = 1;
			goto next_slot;
3990 3991
		}

3992 3993 3994
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
				 ins_start_slot, ins_nr, inode_only);
		if (ret < 0) {
3995 3996
			err = ret;
			goto out_unlock;
3997 3998 3999 4000
		} if (ret) {
			ins_nr = 0;
			btrfs_release_path(path);
			continue;
4001
		}
4002 4003 4004
		ins_nr = 1;
		ins_start_slot = path->slots[0];
next_slot:
4005

4006 4007 4008 4009 4010 4011 4012
		nritems = btrfs_header_nritems(path->nodes[0]);
		path->slots[0]++;
		if (path->slots[0] < nritems) {
			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
					      path->slots[0]);
			goto again;
		}
4013
		if (ins_nr) {
4014 4015
			ret = copy_items(trans, inode, dst_path, path,
					 &last_extent, ins_start_slot,
4016
					 ins_nr, inode_only);
4017
			if (ret < 0) {
4018 4019 4020
				err = ret;
				goto out_unlock;
			}
4021
			ret = 0;
4022 4023
			ins_nr = 0;
		}
4024
		btrfs_release_path(path);
4025

4026
		if (min_key.offset < (u64)-1) {
4027
			min_key.offset++;
4028
		} else if (min_key.type < max_key.type) {
4029
			min_key.type++;
4030 4031
			min_key.offset = 0;
		} else {
4032
			break;
4033
		}
4034
	}
4035
	if (ins_nr) {
4036 4037 4038
		ret = copy_items(trans, inode, dst_path, path, &last_extent,
				 ins_start_slot, ins_nr, inode_only);
		if (ret < 0) {
4039 4040 4041
			err = ret;
			goto out_unlock;
		}
4042
		ret = 0;
4043 4044
		ins_nr = 0;
	}
J
Josef Bacik 已提交
4045

4046
log_extents:
4047 4048
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
J
Josef Bacik 已提交
4049
	if (fast_search) {
4050 4051
		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
						&logged_list);
J
Josef Bacik 已提交
4052 4053 4054 4055
		if (ret) {
			err = ret;
			goto out_unlock;
		}
4056
	} else if (inode_only == LOG_INODE_ALL) {
4057 4058
		struct extent_map *em, *n;

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
		write_lock(&em_tree->lock);
		/*
		 * We can't just remove every em if we're called for a ranged
		 * fsync - that is, one that doesn't cover the whole possible
		 * file range (0 to LLONG_MAX). This is because we can have
		 * em's that fall outside the range we're logging and therefore
		 * their ordered operations haven't completed yet
		 * (btrfs_finish_ordered_io() not invoked yet). This means we
		 * didn't get their respective file extent item in the fs/subvol
		 * tree yet, and need to let the next fast fsync (one which
		 * consults the list of modified extent maps) find the em so
		 * that it logs a matching file extent item and waits for the
		 * respective ordered operation to complete (if it's still
		 * running).
		 *
		 * Removing every em outside the range we're logging would make
		 * the next fast fsync not log their matching file extent items,
		 * therefore making us lose data after a log replay.
		 */
		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
					 list) {
			const u64 mod_end = em->mod_start + em->mod_len - 1;

			if (em->mod_start >= start && mod_end <= end)
				list_del_init(&em->list);
		}
		write_unlock(&em_tree->lock);
J
Josef Bacik 已提交
4086 4087
	}

4088
	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4089
		ret = log_directory_changes(trans, root, inode, path, dst_path);
4090 4091 4092 4093
		if (ret) {
			err = ret;
			goto out_unlock;
		}
4094
	}
4095

4096 4097
	BTRFS_I(inode)->logged_trans = trans->transid;
	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4098
out_unlock:
4099 4100 4101 4102
	if (unlikely(err))
		btrfs_put_logged_extents(&logged_list);
	else
		btrfs_submit_logged_extents(&logged_list, log);
4103 4104 4105 4106
	mutex_unlock(&BTRFS_I(inode)->log_mutex);

	btrfs_free_path(path);
	btrfs_free_path(dst_path);
4107
	return err;
4108 4109
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
/*
 * follow the dentry parent pointers up the chain and see if any
 * of the directories in it require a full commit before they can
 * be logged.  Returns zero if nothing special needs to be done or 1 if
 * a full commit is required.
 */
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
					       struct inode *inode,
					       struct dentry *parent,
					       struct super_block *sb,
					       u64 last_committed)
4121
{
4122 4123
	int ret = 0;
	struct btrfs_root *root;
4124
	struct dentry *old_parent = NULL;
4125
	struct inode *orig_inode = inode;
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	/*
	 * for regular files, if its inode is already on disk, we don't
	 * have to worry about the parents at all.  This is because
	 * we can use the last_unlink_trans field to record renames
	 * and other fun in this file.
	 */
	if (S_ISREG(inode->i_mode) &&
	    BTRFS_I(inode)->generation <= last_committed &&
	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
			goto out;

4138 4139 4140 4141 4142 4143 4144
	if (!S_ISDIR(inode->i_mode)) {
		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
			goto out;
		inode = parent->d_inode;
	}

	while (1) {
4145 4146 4147 4148 4149 4150 4151 4152
		/*
		 * If we are logging a directory then we start with our inode,
		 * not our parents inode, so we need to skipp setting the
		 * logged_trans so that further down in the log code we don't
		 * think this inode has already been logged.
		 */
		if (inode != orig_inode)
			BTRFS_I(inode)->logged_trans = trans->transid;
4153 4154 4155 4156 4157 4158 4159 4160 4161
		smp_mb();

		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
			root = BTRFS_I(inode)->root;

			/*
			 * make sure any commits to the log are forced
			 * to be full commits
			 */
4162
			btrfs_set_log_full_commit(root->fs_info, trans);
4163 4164 4165 4166 4167 4168 4169
			ret = 1;
			break;
		}

		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
			break;

4170
		if (IS_ROOT(parent))
4171 4172
			break;

4173 4174 4175
		parent = dget_parent(parent);
		dput(old_parent);
		old_parent = parent;
4176 4177 4178
		inode = parent->d_inode;

	}
4179
	dput(old_parent);
4180
out:
4181 4182 4183 4184 4185 4186 4187 4188 4189
	return ret;
}

/*
 * helper function around btrfs_log_inode to make sure newly created
 * parent directories also end up in the log.  A minimal inode and backref
 * only logging is done of any parent directories that are older than
 * the last committed transaction
 */
4190 4191
static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
			    	  struct btrfs_root *root, struct inode *inode,
4192 4193 4194 4195
				  struct dentry *parent,
				  const loff_t start,
				  const loff_t end,
				  int exists_only,
4196
				  struct btrfs_log_ctx *ctx)
4197
{
4198
	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4199
	struct super_block *sb;
4200
	struct dentry *old_parent = NULL;
4201 4202 4203 4204 4205
	int ret = 0;
	u64 last_committed = root->fs_info->last_trans_committed;

	sb = inode->i_sb;

S
Sage Weil 已提交
4206 4207 4208 4209 4210
	if (btrfs_test_opt(root, NOTREELOG)) {
		ret = 1;
		goto end_no_trans;
	}

4211 4212 4213 4214
	/*
	 * The prev transaction commit doesn't complete, we need do
	 * full commit by ourselves.
	 */
4215 4216 4217 4218 4219 4220
	if (root->fs_info->last_trans_log_full_commit >
	    root->fs_info->last_trans_committed) {
		ret = 1;
		goto end_no_trans;
	}

4221 4222 4223 4224 4225 4226
	if (root != BTRFS_I(inode)->root ||
	    btrfs_root_refs(&root->root_item) == 0) {
		ret = 1;
		goto end_no_trans;
	}

4227 4228 4229 4230
	ret = check_parent_dirs_for_sync(trans, inode, parent,
					 sb, last_committed);
	if (ret)
		goto end_no_trans;
4231

4232
	if (btrfs_inode_in_log(inode, trans->transid)) {
4233 4234 4235 4236
		ret = BTRFS_NO_LOG_SYNC;
		goto end_no_trans;
	}

4237
	ret = start_log_trans(trans, root, ctx);
4238
	if (ret)
4239
		goto end_no_trans;
4240

4241
	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end);
4242 4243
	if (ret)
		goto end_trans;
4244

4245 4246 4247 4248 4249 4250 4251 4252
	/*
	 * for regular files, if its inode is already on disk, we don't
	 * have to worry about the parents at all.  This is because
	 * we can use the last_unlink_trans field to record renames
	 * and other fun in this file.
	 */
	if (S_ISREG(inode->i_mode) &&
	    BTRFS_I(inode)->generation <= last_committed &&
4253 4254 4255 4256
	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
		ret = 0;
		goto end_trans;
	}
4257 4258

	inode_only = LOG_INODE_EXISTS;
4259 4260
	while (1) {
		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4261 4262
			break;

4263
		inode = parent->d_inode;
4264 4265 4266
		if (root != BTRFS_I(inode)->root)
			break;

4267 4268
		if (BTRFS_I(inode)->generation >
		    root->fs_info->last_trans_committed) {
4269 4270
			ret = btrfs_log_inode(trans, root, inode, inode_only,
					      0, LLONG_MAX);
4271 4272
			if (ret)
				goto end_trans;
4273
		}
4274
		if (IS_ROOT(parent))
4275
			break;
4276

4277 4278 4279
		parent = dget_parent(parent);
		dput(old_parent);
		old_parent = parent;
4280
	}
4281
	ret = 0;
4282
end_trans:
4283
	dput(old_parent);
4284
	if (ret < 0) {
4285
		btrfs_set_log_full_commit(root->fs_info, trans);
4286 4287
		ret = 1;
	}
4288 4289 4290

	if (ret)
		btrfs_remove_log_ctx(root, ctx);
4291 4292 4293
	btrfs_end_log_trans(root);
end_no_trans:
	return ret;
4294 4295 4296 4297 4298 4299 4300 4301 4302
}

/*
 * it is not safe to log dentry if the chunk root has added new
 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 * If this returns 1, you must commit the transaction to safely get your
 * data on disk.
 */
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4303
			  struct btrfs_root *root, struct dentry *dentry,
4304 4305
			  const loff_t start,
			  const loff_t end,
4306
			  struct btrfs_log_ctx *ctx)
4307
{
4308 4309 4310
	struct dentry *parent = dget_parent(dentry);
	int ret;

4311
	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4312
				     start, end, 0, ctx);
4313 4314 4315
	dput(parent);

	return ret;
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
}

/*
 * should be called during mount to recover any replay any log trees
 * from the FS
 */
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_trans_handle *trans;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key tmp_key;
	struct btrfs_root *log;
	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
	struct walk_control wc = {
		.process_func = process_one_buffer,
		.stage = 0,
	};

	path = btrfs_alloc_path();
4338 4339 4340 4341
	if (!path)
		return -ENOMEM;

	fs_info->log_root_recovering = 1;
4342

4343
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4344 4345 4346 4347
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto error;
	}
4348 4349 4350 4351

	wc.trans = trans;
	wc.pin = 1;

4352
	ret = walk_log_tree(trans, log_root_tree, &wc);
4353 4354 4355 4356 4357
	if (ret) {
		btrfs_error(fs_info, ret, "Failed to pin buffers while "
			    "recovering log root tree.");
		goto error;
	}
4358 4359 4360 4361 4362 4363

again:
	key.objectid = BTRFS_TREE_LOG_OBJECTID;
	key.offset = (u64)-1;
	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);

4364
	while (1) {
4365
		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4366 4367 4368 4369 4370 4371

		if (ret < 0) {
			btrfs_error(fs_info, ret,
				    "Couldn't find tree log root.");
			goto error;
		}
4372 4373 4374 4375 4376 4377 4378
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
4379
		btrfs_release_path(path);
4380 4381 4382
		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
			break;

4383
		log = btrfs_read_fs_root(log_root_tree, &found_key);
4384 4385 4386 4387 4388 4389
		if (IS_ERR(log)) {
			ret = PTR_ERR(log);
			btrfs_error(fs_info, ret,
				    "Couldn't read tree log root.");
			goto error;
		}
4390 4391 4392 4393 4394 4395

		tmp_key.objectid = found_key.offset;
		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
		tmp_key.offset = (u64)-1;

		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4396 4397
		if (IS_ERR(wc.replay_dest)) {
			ret = PTR_ERR(wc.replay_dest);
4398 4399 4400
			free_extent_buffer(log->node);
			free_extent_buffer(log->commit_root);
			kfree(log);
4401 4402 4403 4404
			btrfs_error(fs_info, ret, "Couldn't read target root "
				    "for tree log recovery.");
			goto error;
		}
4405

4406
		wc.replay_dest->log_root = log;
4407
		btrfs_record_root_in_trans(trans, wc.replay_dest);
4408 4409
		ret = walk_log_tree(trans, log, &wc);

4410
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4411 4412 4413 4414 4415
			ret = fixup_inode_link_counts(trans, wc.replay_dest,
						      path);
		}

		key.offset = found_key.offset - 1;
4416
		wc.replay_dest->log_root = NULL;
4417
		free_extent_buffer(log->node);
4418
		free_extent_buffer(log->commit_root);
4419 4420
		kfree(log);

4421 4422 4423
		if (ret)
			goto error;

4424 4425 4426
		if (found_key.offset == 0)
			break;
	}
4427
	btrfs_release_path(path);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

	/* step one is to pin it all, step two is to replay just inodes */
	if (wc.pin) {
		wc.pin = 0;
		wc.process_func = replay_one_buffer;
		wc.stage = LOG_WALK_REPLAY_INODES;
		goto again;
	}
	/* step three is to replay everything */
	if (wc.stage < LOG_WALK_REPLAY_ALL) {
		wc.stage++;
		goto again;
	}

	btrfs_free_path(path);

4444 4445 4446 4447 4448
	/* step 4: commit the transaction, which also unpins the blocks */
	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
	if (ret)
		return ret;

4449 4450 4451 4452
	free_extent_buffer(log_root_tree->node);
	log_root_tree->log_root = NULL;
	fs_info->log_root_recovering = 0;
	kfree(log_root_tree);
4453

4454
	return 0;
4455
error:
4456 4457
	if (wc.trans)
		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4458 4459
	btrfs_free_path(path);
	return ret;
4460
}
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

/*
 * there are some corner cases where we want to force a full
 * commit instead of allowing a directory to be logged.
 *
 * They revolve around files there were unlinked from the directory, and
 * this function updates the parent directory so that a full commit is
 * properly done if it is fsync'd later after the unlinks are done.
 */
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
			     struct inode *dir, struct inode *inode,
			     int for_rename)
{
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	/*
	 * when we're logging a file, if it hasn't been renamed
	 * or unlinked, and its inode is fully committed on disk,
	 * we don't have to worry about walking up the directory chain
	 * to log its parents.
	 *
	 * So, we use the last_unlink_trans field to put this transid
	 * into the file.  When the file is logged we check it and
	 * don't log the parents if the file is fully on disk.
	 */
	if (S_ISREG(inode->i_mode))
		BTRFS_I(inode)->last_unlink_trans = trans->transid;

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	/*
	 * if this directory was already logged any new
	 * names for this file/dir will get recorded
	 */
	smp_mb();
	if (BTRFS_I(dir)->logged_trans == trans->transid)
		return;

	/*
	 * if the inode we're about to unlink was logged,
	 * the log will be properly updated for any new names
	 */
	if (BTRFS_I(inode)->logged_trans == trans->transid)
		return;

	/*
	 * when renaming files across directories, if the directory
	 * there we're unlinking from gets fsync'd later on, there's
	 * no way to find the destination directory later and fsync it
	 * properly.  So, we have to be conservative and force commits
	 * so the new name gets discovered.
	 */
	if (for_rename)
		goto record;

	/* we can safely do the unlink without any special recording */
	return;

record:
	BTRFS_I(dir)->last_unlink_trans = trans->transid;
}

/*
 * Call this after adding a new name for a file and it will properly
 * update the log to reflect the new name.
 *
 * It will return zero if all goes well, and it will return 1 if a
 * full transaction commit is required.
 */
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
			struct inode *inode, struct inode *old_dir,
			struct dentry *parent)
{
	struct btrfs_root * root = BTRFS_I(inode)->root;

4532 4533 4534 4535 4536 4537 4538
	/*
	 * this will force the logging code to walk the dentry chain
	 * up for the file
	 */
	if (S_ISREG(inode->i_mode))
		BTRFS_I(inode)->last_unlink_trans = trans->transid;

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/*
	 * if this inode hasn't been logged and directory we're renaming it
	 * from hasn't been logged, we don't need to log it
	 */
	if (BTRFS_I(inode)->logged_trans <=
	    root->fs_info->last_trans_committed &&
	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
		    root->fs_info->last_trans_committed))
		return 0;

4549 4550
	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
				      LLONG_MAX, 1, NULL);
4551 4552
}
反馈
建议
客服 返回
顶部