octeon-wdt-main.c 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * Octeon Watchdog driver
 *
 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
 *
 * Some parts derived from wdt.c
 *
 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
 *						All Rights Reserved.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
 *	warranty for any of this software. This material is provided
 *	"AS-IS" and at no charge.
 *
 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 *
 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
 * For most systems this is less than 10 seconds, so to allow for
 * software to request longer watchdog heartbeats, we maintain software
 * counters to count multiples of the base rate.  If the system locks
 * up in such a manner that we can not run the software counters, the
 * only result is a watchdog reset sooner than was requested.  But
 * that is OK, because in this case userspace would likely not be able
 * to do anything anyhow.
 *
 * The hardware watchdog interval we call the period.  The OCTEON
 * watchdog goes through several stages, after the first period an
 * irq is asserted, then if it is not reset, after the next period NMI
 * is asserted, then after an additional period a chip wide soft reset.
 * So for the software counters, we reset watchdog after each period
 * and decrement the counter.  But for the last two periods we need to
 * let the watchdog progress to the NMI stage so we disable the irq
 * and let it proceed.  Once in the NMI, we print the register state
 * to the serial port and then wait for the reset.
 *
 * A watchdog is maintained for each CPU in the system, that way if
 * one CPU suffers a lockup, we also get a register dump and reset.
 * The userspace ping resets the watchdog on all CPUs.
 *
 * Before userspace opens the watchdog device, we still run the
 * watchdogs to catch any lockups that may be kernel related.
 *
 */

#include <linux/miscdevice.h>
#include <linux/interrupt.h>
#include <linux/watchdog.h>
#include <linux/cpumask.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/fs.h>
67
#include <linux/irq.h>
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

#include <asm/mipsregs.h>
#include <asm/uasm.h>

#include <asm/octeon/octeon.h>

/* The count needed to achieve timeout_sec. */
static unsigned int timeout_cnt;

/* The maximum period supported. */
static unsigned int max_timeout_sec;

/* The current period.  */
static unsigned int timeout_sec;

/* Set to non-zero when userspace countdown mode active */
static int do_coundown;
static unsigned int countdown_reset;
static unsigned int per_cpu_countdown[NR_CPUS];

static cpumask_t irq_enabled_cpus;

#define WD_TIMO 60			/* Default heartbeat = 60 seconds */

static int heartbeat = WD_TIMO;
module_param(heartbeat, int, S_IRUGO);
MODULE_PARM_DESC(heartbeat,
	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
				__MODULE_STRING(WD_TIMO) ")");

static int nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, int, S_IRUGO);
MODULE_PARM_DESC(nowayout,
	"Watchdog cannot be stopped once started (default="
				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");

static unsigned long octeon_wdt_is_open;
static char expect_close;

static u32 __initdata nmi_stage1_insns[64];
/* We need one branch and therefore one relocation per target label. */
static struct uasm_label __initdata labels[5];
static struct uasm_reloc __initdata relocs[5];

enum lable_id {
	label_enter_bootloader = 1
};

/* Some CP0 registers */
#define K0		26
#define C0_CVMMEMCTL 11, 7
#define C0_STATUS 12, 0
#define C0_EBASE 15, 1
#define C0_DESAVE 31, 0

void octeon_wdt_nmi_stage2(void);

static void __init octeon_wdt_build_stage1(void)
{
	int i;
	int len;
	u32 *p = nmi_stage1_insns;
#ifdef CONFIG_HOTPLUG_CPU
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
#endif

	/*
	 * For the next few instructions running the debugger may
	 * cause corruption of k0 in the saved registers. Since we're
	 * about to crash, nobody probably cares.
	 *
	 * Save K0 into the debug scratch register
	 */
	uasm_i_dmtc0(&p, K0, C0_DESAVE);

	uasm_i_mfc0(&p, K0, C0_STATUS);
#ifdef CONFIG_HOTPLUG_CPU
	uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
#endif
	/* Force 64-bit addressing enabled */
	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
	uasm_i_mtc0(&p, K0, C0_STATUS);

#ifdef CONFIG_HOTPLUG_CPU
	uasm_i_mfc0(&p, K0, C0_EBASE);
	/* Coreid number in K0 */
	uasm_i_andi(&p, K0, K0, 0xf);
	/* 8 * coreid in bits 16-31 */
	uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
	uasm_i_ori(&p, K0, K0, 0x8001);
	uasm_i_dsll_safe(&p, K0, K0, 16);
	uasm_i_ori(&p, K0, K0, 0x0700);
	uasm_i_drotr_safe(&p, K0, K0, 32);
	/*
	 * Should result in: 0x8001,0700,0000,8*coreid which is
	 * CVMX_CIU_WDOGX(coreid) - 0x0500
	 *
	 * Now ld K0, CVMX_CIU_WDOGX(coreid)
	 */
	uasm_i_ld(&p, K0, 0x500, K0);
	/*
	 * If bit one set handle the NMI as a watchdog event.
	 * otherwise transfer control to bootloader.
	 */
	uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
	uasm_i_nop(&p);
#endif

	/* Clear Dcache so cvmseg works right. */
	uasm_i_cache(&p, 1, 0, 0);

	/* Use K0 to do a read/modify/write of CVMMEMCTL */
	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
	/* Clear out the size of CVMSEG	*/
	uasm_i_dins(&p, K0, 0, 0, 6);
	/* Set CVMSEG to its largest value */
	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
	/* Store the CVMMEMCTL value */
	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);

	/* Load the address of the second stage handler */
	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
	uasm_i_jr(&p, K0);
	uasm_i_dmfc0(&p, K0, C0_DESAVE);

#ifdef CONFIG_HOTPLUG_CPU
	uasm_build_label(&l, p, label_enter_bootloader);
	/* Jump to the bootloader and restore K0 */
	UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
	uasm_i_jr(&p, K0);
	uasm_i_dmfc0(&p, K0, C0_DESAVE);
#endif
	uasm_resolve_relocs(relocs, labels);

	len = (int)(p - nmi_stage1_insns);
	pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");
	for (i = 0; i < len; i++)
		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
	pr_debug("\t.set pop\n");

	if (len > 32)
		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
}

static int cpu2core(int cpu)
{
#ifdef CONFIG_SMP
	return cpu_logical_map(cpu);
#else
	return cvmx_get_core_num();
#endif
}

static int core2cpu(int coreid)
{
#ifdef CONFIG_SMP
	return cpu_number_map(coreid);
#else
	return 0;
#endif
}

/**
 * Poke the watchdog when an interrupt is received
 *
 * @cpl:
 * @dev_id:
 *
 * Returns
 */
static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
{
	unsigned int core = cvmx_get_core_num();
	int cpu = core2cpu(core);

	if (do_coundown) {
		if (per_cpu_countdown[cpu] > 0) {
			/* We're alive, poke the watchdog */
			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
			per_cpu_countdown[cpu]--;
		} else {
			/* Bad news, you are about to reboot. */
			disable_irq_nosync(cpl);
			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
		}
	} else {
		/* Not open, just ping away... */
		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
	}
	return IRQ_HANDLED;
}

/* From setup.c */
extern int prom_putchar(char c);

/**
 * Write a string to the uart
 *
 * @str:        String to write
 */
static void octeon_wdt_write_string(const char *str)
{
	/* Just loop writing one byte at a time */
	while (*str)
		prom_putchar(*str++);
}

/**
 * Write a hex number out of the uart
 *
 * @value:      Number to display
 * @digits:     Number of digits to print (1 to 16)
 */
static void octeon_wdt_write_hex(u64 value, int digits)
{
	int d;
	int v;
	for (d = 0; d < digits; d++) {
		v = (value >> ((digits - d - 1) * 4)) & 0xf;
		if (v >= 10)
			prom_putchar('a' + v - 10);
		else
			prom_putchar('0' + v);
	}
}

const char *reg_name[] = {
	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};

/**
 * NMI stage 3 handler. NMIs are handled in the following manner:
 * 1) The first NMI handler enables CVMSEG and transfers from
 * the bootbus region into normal memory. It is careful to not
 * destroy any registers.
 * 2) The second stage handler uses CVMSEG to save the registers
 * and create a stack for C code. It then calls the third level
 * handler with one argument, a pointer to the register values.
 * 3) The third, and final, level handler is the following C
 * function that prints out some useful infomration.
 *
 * @reg:    Pointer to register state before the NMI
 */
void octeon_wdt_nmi_stage3(u64 reg[32])
{
	u64 i;

	unsigned int coreid = cvmx_get_core_num();
	/*
	 * Save status and cause early to get them before any changes
	 * might happen.
	 */
	u64 cp0_cause = read_c0_cause();
	u64 cp0_status = read_c0_status();
	u64 cp0_error_epc = read_c0_errorepc();
	u64 cp0_epc = read_c0_epc();

	/* Delay so output from all cores output is not jumbled together. */
	__delay(100000000ull * coreid);

	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
	octeon_wdt_write_hex(coreid, 1);
	octeon_wdt_write_string(" ***\r\n");
	for (i = 0; i < 32; i++) {
		octeon_wdt_write_string("\t");
		octeon_wdt_write_string(reg_name[i]);
		octeon_wdt_write_string("\t0x");
		octeon_wdt_write_hex(reg[i], 16);
		if (i & 1)
			octeon_wdt_write_string("\r\n");
	}
	octeon_wdt_write_string("\terr_epc\t0x");
	octeon_wdt_write_hex(cp0_error_epc, 16);

	octeon_wdt_write_string("\tepc\t0x");
	octeon_wdt_write_hex(cp0_epc, 16);
	octeon_wdt_write_string("\r\n");

	octeon_wdt_write_string("\tstatus\t0x");
	octeon_wdt_write_hex(cp0_status, 16);
	octeon_wdt_write_string("\tcause\t0x");
	octeon_wdt_write_hex(cp0_cause, 16);
	octeon_wdt_write_string("\r\n");

	octeon_wdt_write_string("\tsum0\t0x");
	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
	octeon_wdt_write_string("\ten0\t0x");
	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
	octeon_wdt_write_string("\r\n");

	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
}

static void octeon_wdt_disable_interrupt(int cpu)
{
	unsigned int core;
	unsigned int irq;
	union cvmx_ciu_wdogx ciu_wdog;

	core = cpu2core(cpu);

	irq = OCTEON_IRQ_WDOG0 + core;

	/* Poke the watchdog to clear out its state */
	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);

	/* Disable the hardware. */
	ciu_wdog.u64 = 0;
	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);

	free_irq(irq, octeon_wdt_poke_irq);
}

static void octeon_wdt_setup_interrupt(int cpu)
{
	unsigned int core;
	unsigned int irq;
	union cvmx_ciu_wdogx ciu_wdog;

	core = cpu2core(cpu);

	/* Disable it before doing anything with the interrupts. */
	ciu_wdog.u64 = 0;
	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);

	per_cpu_countdown[cpu] = countdown_reset;

	irq = OCTEON_IRQ_WDOG0 + core;

	if (request_irq(irq, octeon_wdt_poke_irq,
			IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
		panic("octeon_wdt: Couldn't obtain irq %d", irq);

	cpumask_set_cpu(cpu, &irq_enabled_cpus);

	/* Poke the watchdog to clear out its state */
	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);

	/* Finally enable the watchdog now that all handlers are installed */
	ciu_wdog.u64 = 0;
	ciu_wdog.s.len = timeout_cnt;
	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
}

static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
					   unsigned long action, void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action) {
	case CPU_DOWN_PREPARE:
		octeon_wdt_disable_interrupt(cpu);
		break;
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		octeon_wdt_setup_interrupt(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static void octeon_wdt_ping(void)
{
	int cpu;
	int coreid;

	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
		per_cpu_countdown[cpu] = countdown_reset;
		if ((countdown_reset || !do_coundown) &&
		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
			/* We have to enable the irq */
			int irq = OCTEON_IRQ_WDOG0 + coreid;
			enable_irq(irq);
			cpumask_set_cpu(cpu, &irq_enabled_cpus);
		}
	}
}

static void octeon_wdt_calc_parameters(int t)
{
	unsigned int periods;

	timeout_sec = max_timeout_sec;


	/*
	 * Find the largest interrupt period, that can evenly divide
	 * the requested heartbeat time.
	 */
	while ((t % timeout_sec) != 0)
		timeout_sec--;

	periods = t / timeout_sec;

	/*
	 * The last two periods are after the irq is disabled, and
	 * then to the nmi, so we subtract them off.
	 */

	countdown_reset = periods > 2 ? periods - 2 : 0;
	heartbeat = t;
481
	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
}

static int octeon_wdt_set_heartbeat(int t)
{
	int cpu;
	int coreid;
	union cvmx_ciu_wdogx ciu_wdog;

	if (t <= 0)
		return -1;

	octeon_wdt_calc_parameters(t);

	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
		ciu_wdog.u64 = 0;
		ciu_wdog.s.len = timeout_cnt;
		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
	}
	octeon_wdt_ping(); /* Get the irqs back on. */
	return 0;
}

/**
 *	octeon_wdt_write:
 *	@file: file handle to the watchdog
 *	@buf: buffer to write (unused as data does not matter here
 *	@count: count of bytes
 *	@ppos: pointer to the position to write. No seeks allowed
 *
 *	A write to a watchdog device is defined as a keepalive signal. Any
 *	write of data will do, as we we don't define content meaning.
 */

static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppos)
{
	if (count) {
		if (!nowayout) {
			size_t i;

			/* In case it was set long ago */
			expect_close = 0;

			for (i = 0; i != count; i++) {
				char c;
				if (get_user(c, buf + i))
					return -EFAULT;
				if (c == 'V')
					expect_close = 1;
			}
		}
		octeon_wdt_ping();
	}
	return count;
}

/**
 *	octeon_wdt_ioctl:
 *	@file: file handle to the device
 *	@cmd: watchdog command
 *	@arg: argument pointer
 *
 *	The watchdog API defines a common set of functions for all
 *	watchdogs according to their available features. We only
 *	actually usefully support querying capabilities and setting
 *	the timeout.
 */

static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
			     unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	int __user *p = argp;
	int new_heartbeat;

	static struct watchdog_info ident = {
		.options =		WDIOF_SETTIMEOUT|
					WDIOF_MAGICCLOSE|
					WDIOF_KEEPALIVEPING,
		.firmware_version =	1,
		.identity =		"OCTEON",
	};

	switch (cmd) {
	case WDIOC_GETSUPPORT:
		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
	case WDIOC_GETSTATUS:
	case WDIOC_GETBOOTSTATUS:
		return put_user(0, p);
	case WDIOC_KEEPALIVE:
		octeon_wdt_ping();
		return 0;
	case WDIOC_SETTIMEOUT:
		if (get_user(new_heartbeat, p))
			return -EFAULT;
		if (octeon_wdt_set_heartbeat(new_heartbeat))
			return -EINVAL;
		/* Fall through. */
	case WDIOC_GETTIMEOUT:
		return put_user(heartbeat, p);
	default:
		return -ENOTTY;
	}
}

/**
 *	octeon_wdt_open:
 *	@inode: inode of device
 *	@file: file handle to device
 *
 *	The watchdog device has been opened. The watchdog device is single
 *	open and on opening we do a ping to reset the counters.
 */

static int octeon_wdt_open(struct inode *inode, struct file *file)
{
	if (test_and_set_bit(0, &octeon_wdt_is_open))
		return -EBUSY;
	/*
	 *	Activate
	 */
	octeon_wdt_ping();
	do_coundown = 1;
	return nonseekable_open(inode, file);
}

/**
 *	octeon_wdt_release:
 *	@inode: inode to board
 *	@file: file handle to board
 *
 *	The watchdog has a configurable API. There is a religious dispute
 *	between people who want their watchdog to be able to shut down and
 *	those who want to be sure if the watchdog manager dies the machine
 *	reboots. In the former case we disable the counters, in the latter
 *	case you have to open it again very soon.
 */

static int octeon_wdt_release(struct inode *inode, struct file *file)
{
	if (expect_close) {
		do_coundown = 0;
		octeon_wdt_ping();
	} else {
		pr_crit("octeon_wdt: WDT device closed unexpectedly.  WDT will not stop!\n");
	}
	clear_bit(0, &octeon_wdt_is_open);
	expect_close = 0;
	return 0;
}

static const struct file_operations octeon_wdt_fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.write		= octeon_wdt_write,
	.unlocked_ioctl	= octeon_wdt_ioctl,
	.open		= octeon_wdt_open,
	.release	= octeon_wdt_release,
};

static struct miscdevice octeon_wdt_miscdev = {
	.minor	= WATCHDOG_MINOR,
	.name	= "watchdog",
	.fops	= &octeon_wdt_fops,
};

static struct notifier_block octeon_wdt_cpu_notifier = {
	.notifier_call = octeon_wdt_cpu_callback,
};


/**
 * Module/ driver initialization.
 *
 * Returns Zero on success
 */
static int __init octeon_wdt_init(void)
{
	int i;
	int ret;
	int cpu;
	u64 *ptr;

	/*
	 * Watchdog time expiration length = The 16 bits of LEN
	 * represent the most significant bits of a 24 bit decrementer
	 * that decrements every 256 cycles.
	 *
	 * Try for a timeout of 5 sec, if that fails a smaller number
	 * of even seconds,
	 */
	max_timeout_sec = 6;
	do {
		max_timeout_sec--;
680
		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	} while (timeout_cnt > 65535);

	BUG_ON(timeout_cnt == 0);

	octeon_wdt_calc_parameters(heartbeat);

	pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);

	ret = misc_register(&octeon_wdt_miscdev);
	if (ret) {
		pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
			WATCHDOG_MINOR, ret);
		goto out;
	}

	/* Build the NMI handler ... */
	octeon_wdt_build_stage1();

	/* ... and install it. */
	ptr = (u64 *) nmi_stage1_insns;
	for (i = 0; i < 16; i++) {
		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
	}
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);

	cpumask_clear(&irq_enabled_cpus);

	for_each_online_cpu(cpu)
		octeon_wdt_setup_interrupt(cpu);

	register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
out:
	return ret;
}

/**
 * Module / driver shutdown
 */
static void __exit octeon_wdt_cleanup(void)
{
	int cpu;

	misc_deregister(&octeon_wdt_miscdev);

	unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);

	for_each_online_cpu(cpu) {
		int core = cpu2core(cpu);
		/* Disable the watchdog */
		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
		/* Free the interrupt handler */
		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
	}
	/*
	 * Disable the boot-bus memory, the code it points to is soon
	 * to go missing.
	 */
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
module_init(octeon_wdt_init);
module_exit(octeon_wdt_cleanup);