bcm_sf2.c 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Broadcom Starfighter 2 DSA switch driver
 *
 * Copyright (C) 2014, Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
24
#include <linux/of_net.h>
25
#include <linux/of_mdio.h>
26
#include <net/dsa.h>
27
#include <linux/ethtool.h>
28
#include <linux/if_bridge.h>
29
#include <linux/brcmphy.h>
30
#include <linux/etherdevice.h>
31
#include <linux/platform_data/b53.h>
32 33 34

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"
35 36
#include "b53/b53_priv.h"
#include "b53/b53_regs.h"
37

38 39 40 41 42
static enum dsa_tag_protocol bcm_sf2_sw_get_tag_protocol(struct dsa_switch *ds)
{
	return DSA_TAG_PROTO_BRCM;
}

43
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
44
{
45
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
46
	unsigned int i;
47 48 49 50 51 52 53
	u32 reg;

	/* Enable the IMP Port to be in the same VLAN as the other ports
	 * on a per-port basis such that we only have Port i and IMP in
	 * the same VLAN.
	 */
	for (i = 0; i < priv->hw_params.num_ports; i++) {
54
		if (!((1 << i) & ds->enabled_port_mask))
55 56 57 58 59 60 61 62
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg |= (1 << cpu_port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
	}
}

63
static void bcm_sf2_brcm_hdr_setup(struct bcm_sf2_priv *priv, int port)
64
{
65
	u32 reg, val;
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

	/* Resolve which bit controls the Broadcom tag */
	switch (port) {
	case 8:
		val = BRCM_HDR_EN_P8;
		break;
	case 7:
		val = BRCM_HDR_EN_P7;
		break;
	case 5:
		val = BRCM_HDR_EN_P5;
		break;
	default:
		val = 0;
		break;
	}

	/* Enable Broadcom tags for IMP port */
	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
	reg |= val;
	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);

	/* Enable reception Broadcom tag for CPU TX (switch RX) to
	 * allow us to tag outgoing frames
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);

	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
	 * allow delivering frames to the per-port net_devices
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	u32 reg, offset;

	if (priv->type == BCM7445_DEVICE_ID)
		offset = CORE_STS_OVERRIDE_IMP;
	else
		offset = CORE_STS_OVERRIDE_IMP2;

	/* Enable the port memories */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
	reg = core_readl(priv, CORE_IMP_CTL);
	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
	reg &= ~(RX_DIS | TX_DIS);
	core_writel(priv, reg, CORE_IMP_CTL);

	/* Enable forwarding */
	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);

	/* Enable IMP port in dumb mode */
	reg = core_readl(priv, CORE_SWITCH_CTRL);
	reg |= MII_DUMB_FWDG_EN;
	core_writel(priv, reg, CORE_SWITCH_CTRL);

	bcm_sf2_brcm_hdr_setup(priv, port);
133 134

	/* Force link status for IMP port */
135
	reg = core_readl(priv, offset);
136
	reg |= (MII_SW_OR | LINK_STS);
137
	core_writel(priv, reg, offset);
138 139
}

140 141
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
{
142
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
143 144 145 146 147 148 149 150 151 152
	u32 reg;

	reg = core_readl(priv, CORE_EEE_EN_CTRL);
	if (enable)
		reg |= 1 << port;
	else
		reg &= ~(1 << port);
	core_writel(priv, reg, CORE_EEE_EN_CTRL);
}

153 154
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
155
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
156 157 158
	u32 reg;

	reg = reg_readl(priv, REG_SPHY_CNTRL);
159 160 161 162 163 164 165 166 167 168 169 170 171
	if (enable) {
		reg |= PHY_RESET;
		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		udelay(21);
		reg = reg_readl(priv, REG_SPHY_CNTRL);
		reg &= ~PHY_RESET;
	} else {
		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		mdelay(1);
		reg |= CK25_DIS;
	}
172
	reg_writel(priv, reg, REG_SPHY_CNTRL);
173 174 175 176 177 178 179

	/* Use PHY-driven LED signaling */
	if (!enable) {
		reg = reg_readl(priv, REG_LED_CNTRL(0));
		reg |= SPDLNK_SRC_SEL;
		reg_writel(priv, reg, REG_LED_CNTRL(0));
	}
180 181
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
					    int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}

static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
					     int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
		intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_set(priv, P_IRQ_MASK(off));
	intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}

226 227
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
			      struct phy_device *phy)
228
{
229
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
230
	s8 cpu_port = ds->dst->cpu_dp->index;
231
	unsigned int i;
232 233 234 235 236 237 238
	u32 reg;

	/* Clear the memory power down */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

239 240 241 242
	/* Enable Broadcom tags for that port if requested */
	if (priv->brcm_tag_mask & BIT(port))
		bcm_sf2_brcm_hdr_setup(priv, port);

243 244 245 246 247 248 249 250
	/* Configure Traffic Class to QoS mapping, allow each priority to map
	 * to a different queue number
	 */
	reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
	for (i = 0; i < 8; i++)
		reg |= i << (PRT_TO_QID_SHIFT * i);
	core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));

251 252 253
	/* Clear the Rx and Tx disable bits and set to no spanning tree */
	core_writel(priv, 0, CORE_G_PCTL_PORT(port));

254
	/* Re-enable the GPHY and re-apply workarounds */
255
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		bcm_sf2_gphy_enable_set(ds, true);
		if (phy) {
			/* if phy_stop() has been called before, phy
			 * will be in halted state, and phy_start()
			 * will call resume.
			 *
			 * the resume path does not configure back
			 * autoneg settings, and since we hard reset
			 * the phy manually here, we need to reset the
			 * state machine also.
			 */
			phy->state = PHY_READY;
			phy_init_hw(phy);
		}
	}

272 273 274
	/* Enable MoCA port interrupts to get notified */
	if (port == priv->moca_port)
		bcm_sf2_port_intr_enable(priv, port);
275

276 277 278 279
	/* Set this port, and only this one to be in the default VLAN,
	 * if member of a bridge, restore its membership prior to
	 * bringing down this port.
	 */
280 281 282
	reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
	reg &= ~PORT_VLAN_CTRL_MASK;
	reg |= (1 << port);
283
	reg |= priv->dev->ports[port].vlan_ctl_mask;
284
	core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
285 286 287

	bcm_sf2_imp_vlan_setup(ds, cpu_port);

288 289 290 291
	/* If EEE was enabled, restore it */
	if (priv->port_sts[port].eee.eee_enabled)
		bcm_sf2_eee_enable_set(ds, port, true);

292
	return 0;
293 294
}

295 296
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
				 struct phy_device *phy)
297
{
298
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
299 300
	u32 off, reg;

301 302 303
	if (priv->wol_ports_mask & (1 << port))
		return;

304 305
	if (port == priv->moca_port)
		bcm_sf2_port_intr_disable(priv, port);
306

307
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
308 309
		bcm_sf2_gphy_enable_set(ds, false);

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	if (dsa_is_cpu_port(ds, port))
		off = CORE_IMP_CTL;
	else
		off = CORE_G_PCTL_PORT(port);

	reg = core_readl(priv, off);
	reg |= RX_DIS | TX_DIS;
	core_writel(priv, reg, off);

	/* Power down the port memory */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg |= P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* Returns 0 if EEE was not enabled, or 1 otherwise
 */
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
			    struct phy_device *phy)
{
	int ret;

	ret = phy_init_eee(phy, 0);
	if (ret)
		return 0;

	bcm_sf2_eee_enable_set(ds, port, true);

	return 1;
}

static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
344
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
345 346 347 348 349 350 351 352 353 354 355 356 357
	struct ethtool_eee *p = &priv->port_sts[port].eee;
	u32 reg;

	reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
	e->eee_enabled = p->eee_enabled;
	e->eee_active = !!(reg & (1 << port));

	return 0;
}

static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
358
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
359 360 361
	struct ethtool_eee *p = &priv->port_sts[port].eee;

	p->eee_enabled = e->eee_enabled;
362
	bcm_sf2_eee_enable_set(ds, port, e->eee_enabled);
363 364 365 366

	return 0;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
			       int regnum, u16 val)
{
	int ret = 0;
	u32 reg;

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg |= MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	/* Page << 8 | offset */
	reg = 0x70;
	reg <<= 2;
	core_writel(priv, addr, reg);

	/* Page << 8 | offset */
	reg = 0x80 << 8 | regnum << 1;
	reg <<= 2;

	if (op)
		ret = core_readl(priv, reg);
	else
		core_writel(priv, val, reg);

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg &= ~MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	return ret & 0xffff;
}

static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept reads from Broadcom pseudo-PHY address, else, send
	 * them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
		return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
	else
408
		return mdiobus_read_nested(priv->master_mii_bus, addr, regnum);
409 410 411 412 413 414 415 416 417 418 419 420 421
}

static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
				 u16 val)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept writes to the Broadcom pseudo-PHY address, else,
	 * send them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
		bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
	else
422
		mdiobus_write_nested(priv->master_mii_bus, addr, regnum, val);
423 424 425 426

	return 0;
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq0_mask;
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	return IRQ_HANDLED;
}

static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq1_mask;
	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 1;
	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 0;

	return IRQ_HANDLED;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
	core_writel(priv, reg, CORE_WATCHDOG_CTRL);

	do {
		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
		if (!(reg & SOFTWARE_RESET))
			break;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	if (timeout == 0)
		return -ETIMEDOUT;

	return 0;
}

477 478
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
479
	intrl2_0_mask_set(priv, 0xffffffff);
480
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
481
	intrl2_1_mask_set(priv, 0xffffffff);
482 483 484
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
				   struct device_node *dn)
{
	struct device_node *port;
	int mode;
	unsigned int port_num;

	priv->moca_port = -1;

	for_each_available_child_of_node(dn, port) {
		if (of_property_read_u32(port, "reg", &port_num))
			continue;

		/* Internal PHYs get assigned a specific 'phy-mode' property
		 * value: "internal" to help flag them before MDIO probing
		 * has completed, since they might be turned off at that
		 * time
		 */
		mode = of_get_phy_mode(port);
504 505 506 507 508
		if (mode < 0)
			continue;

		if (mode == PHY_INTERFACE_MODE_INTERNAL)
			priv->int_phy_mask |= 1 << port_num;
509 510 511

		if (mode == PHY_INTERFACE_MODE_MOCA)
			priv->moca_port = port_num;
512 513 514

		if (of_property_read_bool(port, "brcm,use-bcm-hdr"))
			priv->brcm_tag_mask |= 1 << port_num;
515 516 517
	}
}

518 519
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
520
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	struct device_node *dn;
	static int index;
	int err;

	/* Find our integrated MDIO bus node */
	dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
	priv->master_mii_bus = of_mdio_find_bus(dn);
	if (!priv->master_mii_bus)
		return -EPROBE_DEFER;

	get_device(&priv->master_mii_bus->dev);
	priv->master_mii_dn = dn;

	priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
	if (!priv->slave_mii_bus)
		return -ENOMEM;

	priv->slave_mii_bus->priv = priv;
	priv->slave_mii_bus->name = "sf2 slave mii";
	priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
	priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
	snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
		 index++);
	priv->slave_mii_bus->dev.of_node = dn;

	/* Include the pseudo-PHY address to divert reads towards our
	 * workaround. This is only required for 7445D0, since 7445E0
	 * disconnects the internal switch pseudo-PHY such that we can use the
	 * regular SWITCH_MDIO master controller instead.
	 *
	 * Here we flag the pseudo PHY as needing special treatment and would
	 * otherwise make all other PHY read/writes go to the master MDIO bus
	 * controller that comes with this switch backed by the "mdio-unimac"
	 * driver.
	 */
	if (of_machine_is_compatible("brcm,bcm7445d0"))
		priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
	else
		priv->indir_phy_mask = 0;

	ds->phys_mii_mask = priv->indir_phy_mask;
	ds->slave_mii_bus = priv->slave_mii_bus;
	priv->slave_mii_bus->parent = ds->dev->parent;
	priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;

	if (dn)
		err = of_mdiobus_register(priv->slave_mii_bus, dn);
	else
		err = mdiobus_register(priv->slave_mii_bus);

	if (err)
		of_node_put(dn);

	return err;
}

static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
	mdiobus_unregister(priv->slave_mii_bus);
	if (priv->master_mii_dn)
		of_node_put(priv->master_mii_dn);
}

584 585
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
586
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
587 588 589 590 591 592 593 594 595

	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
	 * the REG_PHY_REVISION register layout is.
	 */

	return priv->hw_params.gphy_rev;
}

596 597 598
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
				   struct phy_device *phydev)
{
599
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
600
	struct ethtool_eee *p = &priv->port_sts[port].eee;
601 602
	u32 id_mode_dis = 0, port_mode;
	const char *str = NULL;
603 604 605 606 607 608
	u32 reg, offset;

	if (priv->type == BCM7445_DEVICE_ID)
		offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
	else
		offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

	switch (phydev->interface) {
	case PHY_INTERFACE_MODE_RGMII:
		str = "RGMII (no delay)";
		id_mode_dis = 1;
	case PHY_INTERFACE_MODE_RGMII_TXID:
		if (!str)
			str = "RGMII (TX delay)";
		port_mode = EXT_GPHY;
		break;
	case PHY_INTERFACE_MODE_MII:
		str = "MII";
		port_mode = EXT_EPHY;
		break;
	case PHY_INTERFACE_MODE_REVMII:
		str = "Reverse MII";
		port_mode = EXT_REVMII;
		break;
	default:
628 629 630 631 632 633 634 635 636
		/* All other PHYs: internal and MoCA */
		goto force_link;
	}

	/* If the link is down, just disable the interface to conserve power */
	if (!phydev->link) {
		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
		reg &= ~RGMII_MODE_EN;
		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		goto force_link;
	}

	/* Clear id_mode_dis bit, and the existing port mode, but
	 * make sure we enable the RGMII block for data to pass
	 */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	reg &= ~ID_MODE_DIS;
	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);

	reg |= port_mode | RGMII_MODE_EN;
	if (id_mode_dis)
		reg |= ID_MODE_DIS;

	if (phydev->pause) {
		if (phydev->asym_pause)
			reg |= TX_PAUSE_EN;
		reg |= RX_PAUSE_EN;
	}

	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));

	pr_info("Port %d configured for %s\n", port, str);

force_link:
	/* Force link settings detected from the PHY */
	reg = SW_OVERRIDE;
	switch (phydev->speed) {
	case SPEED_1000:
		reg |= SPDSTS_1000 << SPEED_SHIFT;
		break;
	case SPEED_100:
		reg |= SPDSTS_100 << SPEED_SHIFT;
		break;
	}

	if (phydev->link)
		reg |= LINK_STS;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= DUPLX_MODE;

679
	core_writel(priv, reg, offset);
680 681 682

	if (!phydev->is_pseudo_fixed_link)
		p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
683 684 685 686 687
}

static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
					 struct fixed_phy_status *status)
{
688
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
689
	u32 duplex, pause, offset;
690 691
	u32 reg;

692 693 694 695 696
	if (priv->type == BCM7445_DEVICE_ID)
		offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
	else
		offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);

697 698 699 700 701
	duplex = core_readl(priv, CORE_DUPSTS);
	pause = core_readl(priv, CORE_PAUSESTS);

	status->link = 0;

702
	/* MoCA port is special as we do not get link status from CORE_LNKSTS,
703 704 705
	 * which means that we need to force the link at the port override
	 * level to get the data to flow. We do use what the interrupt handler
	 * did determine before.
706 707 708
	 *
	 * For the other ports, we just force the link status, since this is
	 * a fixed PHY device.
709
	 */
710
	if (port == priv->moca_port) {
711
		status->link = priv->port_sts[port].link;
712 713 714 715 716 717
		/* For MoCA interfaces, also force a link down notification
		 * since some version of the user-space daemon (mocad) use
		 * cmd->autoneg to force the link, which messes up the PHY
		 * state machine and make it go in PHY_FORCING state instead.
		 */
		if (!status->link)
718
			netif_carrier_off(ds->ports[port].netdev);
719 720
		status->duplex = 1;
	} else {
721
		status->link = 1;
722 723 724
		status->duplex = !!(duplex & (1 << port));
	}

725
	reg = core_readl(priv, offset);
726 727 728 729 730
	reg |= SW_OVERRIDE;
	if (status->link)
		reg |= LINK_STS;
	else
		reg &= ~LINK_STS;
731
	core_writel(priv, reg, offset);
732

733 734 735 736 737 738 739 740 741 742
	if ((pause & (1 << port)) &&
	    (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
		status->asym_pause = 1;
		status->pause = 1;
	}

	if (pause & (1 << port))
		status->pause = 1;
}

743 744
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
745
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
746 747
	unsigned int port;

748
	bcm_sf2_intr_disable(priv);
749 750 751 752 753 754

	/* Disable all ports physically present including the IMP
	 * port, the other ones have already been disabled during
	 * bcm_sf2_sw_setup
	 */
	for (port = 0; port < DSA_MAX_PORTS; port++) {
755
		if ((1 << port) & ds->enabled_port_mask ||
756
		    dsa_is_cpu_port(ds, port))
757
			bcm_sf2_port_disable(ds, port, NULL);
758 759 760 761 762 763 764
	}

	return 0;
}

static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
765
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
766 767 768 769 770 771 772 773 774
	unsigned int port;
	int ret;

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("%s: failed to software reset switch\n", __func__);
		return ret;
	}

775 776
	if (priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, true);
777 778

	for (port = 0; port < DSA_MAX_PORTS; port++) {
779
		if ((1 << port) & ds->enabled_port_mask)
780
			bcm_sf2_port_setup(ds, port, NULL);
781 782 783 784 785 786 787
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
	}

	return 0;
}

788 789 790
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
			       struct ethtool_wolinfo *wol)
{
791
	struct net_device *p = ds->dst[ds->index].cpu_dp->netdev;
792
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	struct ethtool_wolinfo pwol;

	/* Get the parent device WoL settings */
	p->ethtool_ops->get_wol(p, &pwol);

	/* Advertise the parent device supported settings */
	wol->supported = pwol.supported;
	memset(&wol->sopass, 0, sizeof(wol->sopass));

	if (pwol.wolopts & WAKE_MAGICSECURE)
		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));

	if (priv->wol_ports_mask & (1 << port))
		wol->wolopts = pwol.wolopts;
	else
		wol->wolopts = 0;
}

static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
			      struct ethtool_wolinfo *wol)
{
814
	struct net_device *p = ds->dst[ds->index].cpu_dp->netdev;
815
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
816
	s8 cpu_port = ds->dst->cpu_dp->index;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	struct ethtool_wolinfo pwol;

	p->ethtool_ops->get_wol(p, &pwol);
	if (wol->wolopts & ~pwol.supported)
		return -EINVAL;

	if (wol->wolopts)
		priv->wol_ports_mask |= (1 << port);
	else
		priv->wol_ports_mask &= ~(1 << port);

	/* If we have at least one port enabled, make sure the CPU port
	 * is also enabled. If the CPU port is the last one enabled, we disable
	 * it since this configuration does not make sense.
	 */
	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
		priv->wol_ports_mask |= (1 << cpu_port);
	else
		priv->wol_ports_mask &= ~(1 << cpu_port);

	return p->ethtool_ops->set_wol(p, wol);
}

840
static int bcm_sf2_vlan_op_wait(struct bcm_sf2_priv *priv)
841
{
842 843
	unsigned int timeout = 10;
	u32 reg;
844

845 846 847 848
	do {
		reg = core_readl(priv, CORE_ARLA_VTBL_RWCTRL);
		if (!(reg & ARLA_VTBL_STDN))
			return 0;
849

850 851
		usleep_range(1000, 2000);
	} while (timeout--);
852

853 854
	return -ETIMEDOUT;
}
855

856 857 858 859 860
static int bcm_sf2_vlan_op(struct bcm_sf2_priv *priv, u8 op)
{
	core_writel(priv, ARLA_VTBL_STDN | op, CORE_ARLA_VTBL_RWCTRL);

	return bcm_sf2_vlan_op_wait(priv);
861 862 863 864
}

static void bcm_sf2_sw_configure_vlan(struct dsa_switch *ds)
{
865
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
866 867 868 869 870 871 872 873 874 875 876 877 878
	unsigned int port;

	/* Clear all VLANs */
	bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_CLEAR);

	for (port = 0; port < priv->hw_params.num_ports; port++) {
		if (!((1 << port) & ds->enabled_port_mask))
			continue;

		core_writel(priv, 1, CORE_DEFAULT_1Q_TAG_P(port));
	}
}

879 880
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
881
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
882
	unsigned int port;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/* Enable all valid ports and disable those unused */
	for (port = 0; port < priv->hw_params.num_ports; port++) {
		/* IMP port receives special treatment */
		if ((1 << port) & ds->enabled_port_mask)
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
		else
			bcm_sf2_port_disable(ds, port, NULL);
	}

	bcm_sf2_sw_configure_vlan(ds);

	return 0;
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
/* The SWITCH_CORE register space is managed by b53 but operates on a page +
 * register basis so we need to translate that into an address that the
 * bus-glue understands.
 */
#define SF2_PAGE_REG_MKADDR(page, reg)	((page) << 10 | (reg) << 2)

static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
			      u8 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
			       u16 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
			       u32 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
			       u64 *val)
{
	struct bcm_sf2_priv *priv = dev->priv;

	*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
			       u8 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
				u16 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
				u32 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
				u64 value)
{
	struct bcm_sf2_priv *priv = dev->priv;

	core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));

	return 0;
}

986
static struct b53_io_ops bcm_sf2_io_ops = {
987 988 989 990 991 992 993 994 995 996 997 998
	.read8	= bcm_sf2_core_read8,
	.read16	= bcm_sf2_core_read16,
	.read32	= bcm_sf2_core_read32,
	.read48	= bcm_sf2_core_read64,
	.read64	= bcm_sf2_core_read64,
	.write8	= bcm_sf2_core_write8,
	.write16 = bcm_sf2_core_write16,
	.write32 = bcm_sf2_core_write32,
	.write48 = bcm_sf2_core_write64,
	.write64 = bcm_sf2_core_write64,
};

999
static const struct dsa_switch_ops bcm_sf2_ops = {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	.get_tag_protocol	= bcm_sf2_sw_get_tag_protocol,
	.setup			= bcm_sf2_sw_setup,
	.get_strings		= b53_get_strings,
	.get_ethtool_stats	= b53_get_ethtool_stats,
	.get_sset_count		= b53_get_sset_count,
	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
	.adjust_link		= bcm_sf2_sw_adjust_link,
	.fixed_link_update	= bcm_sf2_sw_fixed_link_update,
	.suspend		= bcm_sf2_sw_suspend,
	.resume			= bcm_sf2_sw_resume,
	.get_wol		= bcm_sf2_sw_get_wol,
	.set_wol		= bcm_sf2_sw_set_wol,
	.port_enable		= bcm_sf2_port_setup,
	.port_disable		= bcm_sf2_port_disable,
	.get_eee		= bcm_sf2_sw_get_eee,
	.set_eee		= bcm_sf2_sw_set_eee,
	.port_bridge_join	= b53_br_join,
	.port_bridge_leave	= b53_br_leave,
	.port_stp_state_set	= b53_br_set_stp_state,
	.port_fast_age		= b53_br_fast_age,
	.port_vlan_filtering	= b53_vlan_filtering,
	.port_vlan_prepare	= b53_vlan_prepare,
	.port_vlan_add		= b53_vlan_add,
	.port_vlan_del		= b53_vlan_del,
	.port_vlan_dump		= b53_vlan_dump,
	.port_fdb_prepare	= b53_fdb_prepare,
	.port_fdb_dump		= b53_fdb_dump,
	.port_fdb_add		= b53_fdb_add,
	.port_fdb_del		= b53_fdb_del,
1029 1030
	.get_rxnfc		= bcm_sf2_get_rxnfc,
	.set_rxnfc		= bcm_sf2_set_rxnfc,
1031 1032
	.port_mirror_add	= b53_mirror_add,
	.port_mirror_del	= b53_mirror_del,
1033 1034
};

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
struct bcm_sf2_of_data {
	u32 type;
	const u16 *reg_offsets;
	unsigned int core_reg_align;
};

/* Register offsets for the SWITCH_REG_* block */
static const u16 bcm_sf2_7445_reg_offsets[] = {
	[REG_SWITCH_CNTRL]	= 0x00,
	[REG_SWITCH_STATUS]	= 0x04,
	[REG_DIR_DATA_WRITE]	= 0x08,
	[REG_DIR_DATA_READ]	= 0x0C,
	[REG_SWITCH_REVISION]	= 0x18,
	[REG_PHY_REVISION]	= 0x1C,
	[REG_SPHY_CNTRL]	= 0x2C,
	[REG_RGMII_0_CNTRL]	= 0x34,
	[REG_RGMII_1_CNTRL]	= 0x40,
	[REG_RGMII_2_CNTRL]	= 0x4c,
	[REG_LED_0_CNTRL]	= 0x90,
	[REG_LED_1_CNTRL]	= 0x94,
	[REG_LED_2_CNTRL]	= 0x98,
};

static const struct bcm_sf2_of_data bcm_sf2_7445_data = {
	.type		= BCM7445_DEVICE_ID,
	.core_reg_align	= 0,
	.reg_offsets	= bcm_sf2_7445_reg_offsets,
};

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static const u16 bcm_sf2_7278_reg_offsets[] = {
	[REG_SWITCH_CNTRL]	= 0x00,
	[REG_SWITCH_STATUS]	= 0x04,
	[REG_DIR_DATA_WRITE]	= 0x08,
	[REG_DIR_DATA_READ]	= 0x0c,
	[REG_SWITCH_REVISION]	= 0x10,
	[REG_PHY_REVISION]	= 0x14,
	[REG_SPHY_CNTRL]	= 0x24,
	[REG_RGMII_0_CNTRL]	= 0xe0,
	[REG_RGMII_1_CNTRL]	= 0xec,
	[REG_RGMII_2_CNTRL]	= 0xf8,
	[REG_LED_0_CNTRL]	= 0x40,
	[REG_LED_1_CNTRL]	= 0x4c,
	[REG_LED_2_CNTRL]	= 0x58,
};

static const struct bcm_sf2_of_data bcm_sf2_7278_data = {
	.type		= BCM7278_DEVICE_ID,
	.core_reg_align	= 1,
	.reg_offsets	= bcm_sf2_7278_reg_offsets,
};

1086 1087 1088 1089
static const struct of_device_id bcm_sf2_of_match[] = {
	{ .compatible = "brcm,bcm7445-switch-v4.0",
	  .data = &bcm_sf2_7445_data
	},
1090 1091 1092
	{ .compatible = "brcm,bcm7278-switch-v4.0",
	  .data = &bcm_sf2_7278_data
	},
1093 1094 1095 1096
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bcm_sf2_of_match);

1097 1098 1099 1100
static int bcm_sf2_sw_probe(struct platform_device *pdev)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct device_node *dn = pdev->dev.of_node;
1101 1102
	const struct of_device_id *of_id = NULL;
	const struct bcm_sf2_of_data *data;
1103
	struct b53_platform_data *pdata;
1104
	struct dsa_switch_ops *ops;
1105
	struct bcm_sf2_priv *priv;
1106
	struct b53_device *dev;
1107 1108
	struct dsa_switch *ds;
	void __iomem **base;
1109
	struct resource *r;
1110 1111 1112 1113
	unsigned int i;
	u32 reg, rev;
	int ret;

1114 1115 1116 1117
	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

1118 1119 1120 1121
	ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL);
	if (!ops)
		return -ENOMEM;

1122 1123
	dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
	if (!dev)
1124 1125
		return -ENOMEM;

1126 1127 1128 1129
	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	of_id = of_match_node(bcm_sf2_of_match, dn);
	if (!of_id || !of_id->data)
		return -EINVAL;

	data = of_id->data;

	/* Set SWITCH_REG register offsets and SWITCH_CORE align factor */
	priv->type = data->type;
	priv->reg_offsets = data->reg_offsets;
	priv->core_reg_align = data->core_reg_align;

1141 1142 1143 1144
	/* Auto-detection using standard registers will not work, so
	 * provide an indication of what kind of device we are for
	 * b53_common to work with
	 */
1145
	pdata->chip_id = priv->type;
1146 1147 1148 1149
	dev->pdata = pdata;

	priv->dev = dev;
	ds = dev->ds;
1150
	ds->ops = &bcm_sf2_ops;
1151

1152
	dev_set_drvdata(&pdev->dev, priv);
1153

1154 1155
	spin_lock_init(&priv->indir_lock);
	mutex_init(&priv->stats_mutex);
1156 1157 1158 1159 1160 1161
	mutex_init(&priv->cfp.lock);

	/* CFP rule #0 cannot be used for specific classifications, flag it as
	 * permanently used
	 */
	set_bit(0, priv->cfp.used);
1162

1163
	bcm_sf2_identify_ports(priv, dn->child);
1164 1165 1166 1167 1168 1169

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1170 1171 1172
		r = platform_get_resource(pdev, IORESOURCE_MEM, i);
		*base = devm_ioremap_resource(&pdev->dev, r);
		if (IS_ERR(*base)) {
1173
			pr_err("unable to find register: %s\n", reg_names[i]);
1174
			return PTR_ERR(*base);
1175 1176 1177 1178 1179 1180 1181
		}
		base++;
	}

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
1182
		return ret;
1183 1184 1185 1186 1187
	}

	ret = bcm_sf2_mdio_register(ds);
	if (ret) {
		pr_err("failed to register MDIO bus\n");
1188
		return ret;
1189 1190
	}

1191 1192 1193 1194 1195 1196
	ret = bcm_sf2_cfp_rst(priv);
	if (ret) {
		pr_err("failed to reset CFP\n");
		goto out_mdio;
	}

1197 1198 1199
	/* Disable all interrupts and request them */
	bcm_sf2_intr_disable(priv);

1200 1201
	ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
			       "switch_0", priv);
1202 1203
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
1204
		goto out_mdio;
1205 1206
	}

1207 1208
	ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
			       "switch_1", priv);
1209 1210
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
1211
		goto out_mdio;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

1239
	ret = b53_switch_register(dev);
1240
	if (ret)
1241
		goto out_mdio;
1242

1243 1244 1245 1246 1247 1248 1249
	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		priv->core, priv->irq0, priv->irq1);

	return 0;

1250 1251
out_mdio:
	bcm_sf2_mdio_unregister(priv);
1252 1253 1254
	return ret;
}

1255
static int bcm_sf2_sw_remove(struct platform_device *pdev)
1256
{
1257
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1258 1259 1260

	/* Disable all ports and interrupts */
	priv->wol_ports_mask = 0;
1261 1262
	bcm_sf2_sw_suspend(priv->dev->ds);
	dsa_unregister_switch(priv->dev->ds);
1263
	bcm_sf2_mdio_unregister(priv);
1264 1265 1266 1267

	return 0;
}

1268 1269 1270 1271 1272 1273 1274
static void bcm_sf2_sw_shutdown(struct platform_device *pdev)
{
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);

	/* For a kernel about to be kexec'd we want to keep the GPHY on for a
	 * successful MDIO bus scan to occur. If we did turn off the GPHY
	 * before (e.g: port_disable), this will also power it back on.
1275 1276
	 *
	 * Do not rely on kexec_in_progress, just power the PHY on.
1277 1278
	 */
	if (priv->hw_params.num_gphy == 1)
1279
		bcm_sf2_gphy_enable_set(priv->dev->ds, true);
1280 1281
}

1282 1283
#ifdef CONFIG_PM_SLEEP
static int bcm_sf2_suspend(struct device *dev)
1284
{
1285
	struct platform_device *pdev = to_platform_device(dev);
1286
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1287

1288
	return dsa_switch_suspend(priv->dev->ds);
1289
}
1290 1291 1292 1293

static int bcm_sf2_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
1294
	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1295

1296
	return dsa_switch_resume(priv->dev->ds);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
			 bcm_sf2_suspend, bcm_sf2_resume);


static struct platform_driver bcm_sf2_driver = {
	.probe	= bcm_sf2_sw_probe,
	.remove	= bcm_sf2_sw_remove,
1307
	.shutdown = bcm_sf2_sw_shutdown,
1308 1309 1310 1311 1312 1313 1314
	.driver = {
		.name = "brcm-sf2",
		.of_match_table = bcm_sf2_of_match,
		.pm = &bcm_sf2_pm_ops,
	},
};
module_platform_driver(bcm_sf2_driver);
1315 1316 1317 1318 1319

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");