tx.c 37.0 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
B
Ben Hutchings 已提交
15
#include <linux/ipv6.h>
16
#include <linux/slab.h>
B
Ben Hutchings 已提交
17
#include <net/ipv6.h>
18 19
#include <linux/if_ether.h>
#include <linux/highmem.h>
20
#include <linux/cache.h>
21 22
#include "net_driver.h"
#include "efx.h"
23
#include "io.h"
B
Ben Hutchings 已提交
24
#include "nic.h"
25
#include "workarounds.h"
26
#include "ef10_regs.h"
27

28 29 30 31 32 33 34 35
#ifdef EFX_USE_PIO

#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;

#endif /* EFX_USE_PIO */

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
{
	return tx_queue->insert_count & tx_queue->ptr_mask;
}

static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
{
	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
}

static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer =
		__efx_tx_queue_get_insert_buffer(tx_queue);

	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->flags);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);

	return buffer;
}

61
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
T
Tom Herbert 已提交
62 63 64
			       struct efx_tx_buffer *buffer,
			       unsigned int *pkts_compl,
			       unsigned int *bytes_compl)
65 66
{
	if (buffer->unmap_len) {
67
		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68
		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69
		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 71
			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
					 DMA_TO_DEVICE);
72
		else
73 74
			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
				       DMA_TO_DEVICE);
75 76 77
		buffer->unmap_len = 0;
	}

78
	if (buffer->flags & EFX_TX_BUF_SKB) {
T
Tom Herbert 已提交
79 80
		(*pkts_compl)++;
		(*bytes_compl) += buffer->skb->len;
81
		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82 83 84
		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
			   "TX queue %d transmission id %x complete\n",
			   tx_queue->queue, tx_queue->read_count);
85 86
	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
		kfree(buffer->heap_buf);
87
	}
88

89 90
	buffer->len = 0;
	buffer->flags = 0;
91 92
}

B
Ben Hutchings 已提交
93
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94
			       struct sk_buff *skb);
95

96 97 98 99 100 101 102 103 104
static inline unsigned
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
{
	/* Depending on the NIC revision, we can use descriptor
	 * lengths up to 8K or 8K-1.  However, since PCI Express
	 * devices must split read requests at 4K boundaries, there is
	 * little benefit from using descriptors that cross those
	 * boundaries and we keep things simple by not doing so.
	 */
105
	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106 107 108 109 110 111 112 113

	/* Work around hardware bug for unaligned buffers. */
	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));

	return len;
}

114 115 116 117 118 119 120
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
{
	/* Header and payload descriptor for each output segment, plus
	 * one for every input fragment boundary within a segment
	 */
	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;

121 122 123 124
	/* Possibly one more per segment for the alignment workaround,
	 * or for option descriptors
	 */
	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 126 127 128 129 130 131 132 133 134
		max_descs += EFX_TSO_MAX_SEGS;

	/* Possibly more for PCIe page boundaries within input fragments */
	if (PAGE_SIZE > EFX_PAGE_SIZE)
		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));

	return max_descs;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* Get partner of a TX queue, seen as part of the same net core queue */
static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
{
	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
	else
		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
}

static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
	/* We need to consider both queues that the net core sees as one */
	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
	struct efx_nic *efx = txq1->efx;
	unsigned int fill_level;

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	if (likely(fill_level < efx->txq_stop_thresh))
		return;

	/* We used the stale old_read_count above, which gives us a
	 * pessimistic estimate of the fill level (which may even
	 * validly be >= efx->txq_entries).  Now try again using
	 * read_count (more likely to be a cache miss).
	 *
	 * If we read read_count and then conditionally stop the
	 * queue, it is possible for the completion path to race with
	 * us and complete all outstanding descriptors in the middle,
	 * after which there will be no more completions to wake it.
	 * Therefore we stop the queue first, then read read_count
	 * (with a memory barrier to ensure the ordering), then
	 * restart the queue if the fill level turns out to be low
	 * enough.
	 */
	netif_tx_stop_queue(txq1->core_txq);
	smp_mb();
	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
	if (likely(fill_level < efx->txq_stop_thresh)) {
		smp_mb();
		if (likely(!efx->loopback_selftest))
			netif_tx_start_queue(txq1->core_txq);
	}
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#ifdef EFX_USE_PIO

struct efx_short_copy_buffer {
	int used;
	u8 buf[L1_CACHE_BYTES];
};

/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 */
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
				    u8 *data, int len,
				    struct efx_short_copy_buffer *copy_buf)
{
	int block_len = len & ~(sizeof(copy_buf->buf) - 1);

	memcpy_toio(*piobuf, data, block_len);
	*piobuf += block_len;
	len -= block_len;

	if (len) {
		data += block_len;
		BUG_ON(copy_buf->used);
		BUG_ON(len > sizeof(copy_buf->buf));
		memcpy(copy_buf->buf, data, len);
		copy_buf->used = len;
	}
}

/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 */
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
				       u8 *data, int len,
				       struct efx_short_copy_buffer *copy_buf)
{
	if (copy_buf->used) {
		/* if the copy buffer is partially full, fill it up and write */
		int copy_to_buf =
			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);

		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
		copy_buf->used += copy_to_buf;

		/* if we didn't fill it up then we're done for now */
		if (copy_buf->used < sizeof(copy_buf->buf))
			return;

		memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
		*piobuf += sizeof(copy_buf->buf);
		data += copy_to_buf;
		len -= copy_to_buf;
		copy_buf->used = 0;
	}

	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
}

static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
				  struct efx_short_copy_buffer *copy_buf)
{
	/* if there's anything in it, write the whole buffer, including junk */
	if (copy_buf->used)
		memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
}

/* Traverse skb structure and copy fragments in to PIO buffer.
 * Advances piobuf pointer.
 */
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
				     u8 __iomem **piobuf,
				     struct efx_short_copy_buffer *copy_buf)
{
	int i;

	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
				copy_buf);

	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
		u8 *vaddr;

		vaddr = kmap_atomic(skb_frag_page(f));

		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
					   skb_frag_size(f), copy_buf);
		kunmap_atomic(vaddr);
	}

	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
}

static struct efx_tx_buffer *
efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
	struct efx_tx_buffer *buffer =
		efx_tx_queue_get_insert_buffer(tx_queue);
	u8 __iomem *piobuf = tx_queue->piobuf;

	/* Copy to PIO buffer. Ensure the writes are padded to the end
	 * of a cache line, as this is required for write-combining to be
	 * effective on at least x86.
	 */

	if (skb_shinfo(skb)->nr_frags) {
		/* The size of the copy buffer will ensure all writes
		 * are the size of a cache line.
		 */
		struct efx_short_copy_buffer copy_buf;

		copy_buf.used = 0;

		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
					 &piobuf, &copy_buf);
		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
	} else {
		/* Pad the write to the size of a cache line.
		 * We can do this because we know the skb_shared_info sruct is
		 * after the source, and the destination buffer is big enough.
		 */
		BUILD_BUG_ON(L1_CACHE_BYTES >
			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
		memcpy_toio(tx_queue->piobuf, skb->data,
			    ALIGN(skb->len, L1_CACHE_BYTES));
	}

	EFX_POPULATE_QWORD_5(buffer->option,
			     ESF_DZ_TX_DESC_IS_OPT, 1,
			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
			     ESF_DZ_TX_PIO_CONT, 0,
			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
			     ESF_DZ_TX_PIO_BUF_ADDR,
			     tx_queue->piobuf_offset);
	++tx_queue->pio_packets;
	++tx_queue->insert_count;
	return buffer;
}
#endif /* EFX_USE_PIO */

324 325 326 327 328 329 330 331 332 333
/*
 * Add a socket buffer to a TX queue
 *
 * This maps all fragments of a socket buffer for DMA and adds them to
 * the TX queue.  The queue's insert pointer will be incremented by
 * the number of fragments in the socket buffer.
 *
 * If any DMA mapping fails, any mapped fragments will be unmapped,
 * the queue's insert pointer will be restored to its original value.
 *
334 335 336
 * This function is split out from efx_hard_start_xmit to allow the
 * loopback test to direct packets via specific TX queues.
 *
337
 * Returns NETDEV_TX_OK.
338 339
 * You must hold netif_tx_lock() to call this function.
 */
340
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
341 342
{
	struct efx_nic *efx = tx_queue->efx;
343
	struct device *dma_dev = &efx->pci_dev->dev;
344 345
	struct efx_tx_buffer *buffer;
	skb_frag_t *fragment;
346
	unsigned int len, unmap_len = 0;
347 348
	dma_addr_t dma_addr, unmap_addr = 0;
	unsigned int dma_len;
349
	unsigned short dma_flags;
350
	int i = 0;
351 352 353

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

354
	if (skb_shinfo(skb)->gso_size)
B
Ben Hutchings 已提交
355 356
		return efx_enqueue_skb_tso(tx_queue, skb);

357 358 359
	/* Get size of the initial fragment */
	len = skb_headlen(skb);

360 361 362 363 364 365 366 367
	/* Pad if necessary */
	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
		EFX_BUG_ON_PARANOID(skb->data_len);
		len = 32 + 1;
		if (skb_pad(skb, len - skb->len))
			return NETDEV_TX_OK;
	}

368 369 370 371 372 373 374 375 376 377 378
	/* Consider using PIO for short packets */
#ifdef EFX_USE_PIO
	if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
	    efx_nic_tx_is_empty(tx_queue) &&
	    efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
		buffer = efx_enqueue_skb_pio(tx_queue, skb);
		dma_flags = EFX_TX_BUF_OPTION;
		goto finish_packet;
	}
#endif

379
	/* Map for DMA.  Use dma_map_single rather than dma_map_page
380 381 382
	 * since this is more efficient on machines with sparse
	 * memory.
	 */
383
	dma_flags = EFX_TX_BUF_MAP_SINGLE;
384
	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
385 386 387

	/* Process all fragments */
	while (1) {
388 389
		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
			goto dma_err;
390 391 392 393 394 395 396 397

		/* Store fields for marking in the per-fragment final
		 * descriptor */
		unmap_len = len;
		unmap_addr = dma_addr;

		/* Add to TX queue, splitting across DMA boundaries */
		do {
398
			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
399

400 401
			dma_len = efx_max_tx_len(efx, dma_addr);
			if (likely(dma_len >= len))
402 403 404 405 406
				dma_len = len;

			/* Fill out per descriptor fields */
			buffer->len = dma_len;
			buffer->dma_addr = dma_addr;
407
			buffer->flags = EFX_TX_BUF_CONT;
408 409 410 411 412 413
			len -= dma_len;
			dma_addr += dma_len;
			++tx_queue->insert_count;
		} while (len);

		/* Transfer ownership of the unmapping to the final buffer */
414
		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
415
		buffer->unmap_len = unmap_len;
416
		buffer->dma_offset = buffer->dma_addr - unmap_addr;
417 418 419 420 421 422
		unmap_len = 0;

		/* Get address and size of next fragment */
		if (i >= skb_shinfo(skb)->nr_frags)
			break;
		fragment = &skb_shinfo(skb)->frags[i];
E
Eric Dumazet 已提交
423
		len = skb_frag_size(fragment);
424 425
		i++;
		/* Map for DMA */
426
		dma_flags = 0;
427
		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
428
					    DMA_TO_DEVICE);
429 430 431
	}

	/* Transfer ownership of the skb to the final buffer */
432
#ifdef EFX_USE_PIO
433
finish_packet:
434
#endif
435
	buffer->skb = skb;
436
	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
437

T
Tom Herbert 已提交
438 439
	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);

440
	/* Pass off to hardware */
441
	efx_nic_push_buffers(tx_queue);
442

443 444
	efx_tx_maybe_stop_queue(tx_queue);

445 446
	return NETDEV_TX_OK;

447
 dma_err:
448 449 450 451
	netif_err(efx, tx_err, efx->net_dev,
		  " TX queue %d could not map skb with %d bytes %d "
		  "fragments for DMA\n", tx_queue->queue, skb->len,
		  skb_shinfo(skb)->nr_frags + 1);
452 453

	/* Mark the packet as transmitted, and free the SKB ourselves */
454
	dev_kfree_skb_any(skb);
455 456 457

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
T
Tom Herbert 已提交
458
		unsigned int pkts_compl = 0, bytes_compl = 0;
459
		--tx_queue->insert_count;
460
		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
T
Tom Herbert 已提交
461
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
462 463 464
	}

	/* Free the fragment we were mid-way through pushing */
465
	if (unmap_len) {
466
		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
467 468
			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
					 DMA_TO_DEVICE);
469
		else
470 471
			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
				       DMA_TO_DEVICE);
472
	}
473

474
	return NETDEV_TX_OK;
475 476 477 478 479 480 481
}

/* Remove packets from the TX queue
 *
 * This removes packets from the TX queue, up to and including the
 * specified index.
 */
482
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
T
Tom Herbert 已提交
483 484 485
				unsigned int index,
				unsigned int *pkts_compl,
				unsigned int *bytes_compl)
486 487 488 489
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned int stop_index, read_ptr;

490 491
	stop_index = (index + 1) & tx_queue->ptr_mask;
	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
492 493 494

	while (read_ptr != stop_index) {
		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
495 496 497

		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
		    unlikely(buffer->len == 0)) {
498 499 500
			netif_err(efx, tx_err, efx->net_dev,
				  "TX queue %d spurious TX completion id %x\n",
				  tx_queue->queue, read_ptr);
501 502 503 504
			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
			return;
		}

T
Tom Herbert 已提交
505
		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
506 507

		++tx_queue->read_count;
508
		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
509 510 511 512 513 514 515 516 517 518 519 520
	}
}

/* Initiate a packet transmission.  We use one channel per CPU
 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 * completion events will be directed back to the CPU that transmitted
 * the packet, which should be cache-efficient.
 *
 * Context: non-blocking.
 * Note that returning anything other than NETDEV_TX_OK will cause the
 * OS to free the skb.
 */
521
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
B
Ben Hutchings 已提交
522
				struct net_device *net_dev)
523
{
524
	struct efx_nic *efx = netdev_priv(net_dev);
525
	struct efx_tx_queue *tx_queue;
526
	unsigned index, type;
527

528
	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
529

530 531 532 533 534 535
	/* PTP "event" packet */
	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
		return efx_ptp_tx(efx, skb);
	}

536 537 538 539 540 541 542
	index = skb_get_queue_mapping(skb);
	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
	if (index >= efx->n_tx_channels) {
		index -= efx->n_tx_channels;
		type |= EFX_TXQ_TYPE_HIGHPRI;
	}
	tx_queue = efx_get_tx_queue(efx, index, type);
543

544
	return efx_enqueue_skb(tx_queue, skb);
545 546
}

547 548
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
549 550
	struct efx_nic *efx = tx_queue->efx;

551
	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	tx_queue->core_txq =
		netdev_get_tx_queue(efx->net_dev,
				    tx_queue->queue / EFX_TXQ_TYPES +
				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     efx->n_tx_channels : 0));
}

int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned tc;
	int rc;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
		return -EINVAL;

	if (num_tc == net_dev->num_tc)
		return 0;

	for (tc = 0; tc < num_tc; tc++) {
		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
	}

	if (num_tc > net_dev->num_tc) {
		/* Initialise high-priority queues as necessary */
		efx_for_each_channel(channel, efx) {
			efx_for_each_possible_channel_tx_queue(tx_queue,
							       channel) {
				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
					continue;
				if (!tx_queue->buffer) {
					rc = efx_probe_tx_queue(tx_queue);
					if (rc)
						return rc;
				}
				if (!tx_queue->initialised)
					efx_init_tx_queue(tx_queue);
				efx_init_tx_queue_core_txq(tx_queue);
			}
		}
	} else {
		/* Reduce number of classes before number of queues */
		net_dev->num_tc = num_tc;
	}

	rc = netif_set_real_num_tx_queues(net_dev,
					  max_t(int, num_tc, 1) *
					  efx->n_tx_channels);
	if (rc)
		return rc;

	/* Do not destroy high-priority queues when they become
	 * unused.  We would have to flush them first, and it is
	 * fairly difficult to flush a subset of TX queues.  Leave
	 * it to efx_fini_channels().
	 */

	net_dev->num_tc = num_tc;
	return 0;
614 615
}

616 617 618 619
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
	unsigned fill_level;
	struct efx_nic *efx = tx_queue->efx;
620
	struct efx_tx_queue *txq2;
T
Tom Herbert 已提交
621
	unsigned int pkts_compl = 0, bytes_compl = 0;
622

623
	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
624

T
Tom Herbert 已提交
625 626
	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
627

628 629 630
	if (pkts_compl > 1)
		++tx_queue->merge_events;

631 632 633 634
	/* See if we need to restart the netif queue.  This memory
	 * barrier ensures that we write read_count (inside
	 * efx_dequeue_buffers()) before reading the queue status.
	 */
635
	smp_mb();
636
	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
637
	    likely(efx->port_enabled) &&
638
	    likely(netif_device_present(efx->net_dev))) {
639 640 641 642
		txq2 = efx_tx_queue_partner(tx_queue);
		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
				 txq2->insert_count - txq2->read_count);
		if (fill_level <= efx->txq_wake_thresh)
643
			netif_tx_wake_queue(tx_queue->core_txq);
644
	}
645 646 647 648 649 650 651 652 653 654

	/* Check whether the hardware queue is now empty */
	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
		if (tx_queue->read_count == tx_queue->old_write_count) {
			smp_mb();
			tx_queue->empty_read_count =
				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
		}
	}
655 656
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/* Size of page-based TSO header buffers.  Larger blocks must be
 * allocated from the heap.
 */
#define TSOH_STD_SIZE	128
#define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)

/* At most half the descriptors in the queue at any time will refer to
 * a TSO header buffer, since they must always be followed by a
 * payload descriptor referring to an skb.
 */
static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
{
	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
}

672 673 674
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
675
	unsigned int entries;
676
	int rc;
677

678 679 680 681 682 683 684 685
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	tx_queue->ptr_mask = entries - 1;

	netif_dbg(efx, probe, efx->net_dev,
		  "creating TX queue %d size %#x mask %#x\n",
		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
686 687

	/* Allocate software ring */
688
	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
689
				   GFP_KERNEL);
690 691
	if (!tx_queue->buffer)
		return -ENOMEM;
692

693 694 695 696 697 698 699 700 701 702
	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
		tx_queue->tsoh_page =
			kcalloc(efx_tsoh_page_count(tx_queue),
				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
		if (!tx_queue->tsoh_page) {
			rc = -ENOMEM;
			goto fail1;
		}
	}

703
	/* Allocate hardware ring */
704
	rc = efx_nic_probe_tx(tx_queue);
705
	if (rc)
706
		goto fail2;
707 708 709

	return 0;

710 711 712 713
fail2:
	kfree(tx_queue->tsoh_page);
	tx_queue->tsoh_page = NULL;
fail1:
714 715 716 717 718
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
	return rc;
}

719
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
720
{
721 722
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "initialising TX queue %d\n", tx_queue->queue);
723 724 725

	tx_queue->insert_count = 0;
	tx_queue->write_count = 0;
726
	tx_queue->old_write_count = 0;
727 728
	tx_queue->read_count = 0;
	tx_queue->old_read_count = 0;
729
	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
730 731

	/* Set up TX descriptor ring */
732
	efx_nic_init_tx(tx_queue);
733 734

	tx_queue->initialised = true;
735 736
}

737
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
738 739 740
{
	struct efx_tx_buffer *buffer;

741 742 743
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "shutting down TX queue %d\n", tx_queue->queue);

744 745 746 747 748
	if (!tx_queue->buffer)
		return;

	/* Free any buffers left in the ring */
	while (tx_queue->read_count != tx_queue->write_count) {
T
Tom Herbert 已提交
749
		unsigned int pkts_compl = 0, bytes_compl = 0;
750
		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
T
Tom Herbert 已提交
751
		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
752 753 754

		++tx_queue->read_count;
	}
T
Tom Herbert 已提交
755
	netdev_tx_reset_queue(tx_queue->core_txq);
756 757 758 759
}

void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
760 761
	int i;

762 763 764
	if (!tx_queue->buffer)
		return;

765 766
	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
		  "destroying TX queue %d\n", tx_queue->queue);
767
	efx_nic_remove_tx(tx_queue);
768

769 770 771 772 773 774 775 776
	if (tx_queue->tsoh_page) {
		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
			efx_nic_free_buffer(tx_queue->efx,
					    &tx_queue->tsoh_page[i]);
		kfree(tx_queue->tsoh_page);
		tx_queue->tsoh_page = NULL;
	}

777 778 779 780 781
	kfree(tx_queue->buffer);
	tx_queue->buffer = NULL;
}


B
Ben Hutchings 已提交
782 783 784 785 786 787 788 789 790 791 792
/* Efx TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

/* Number of bytes inserted at the start of a TSO header buffer,
 * similar to NET_IP_ALIGN.
 */
793
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
B
Ben Hutchings 已提交
794 795 796 797 798 799 800 801 802
#define TSOH_OFFSET	0
#else
#define TSOH_OFFSET	NET_IP_ALIGN
#endif

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))

/**
 * struct tso_state - TSO state for an SKB
803
 * @out_len: Remaining length in current segment
B
Ben Hutchings 已提交
804
 * @seqnum: Current sequence number
805
 * @ipv4_id: Current IPv4 ID, host endian
B
Ben Hutchings 已提交
806
 * @packet_space: Remaining space in current packet
807 808 809 810
 * @dma_addr: DMA address of current position
 * @in_len: Remaining length in current SKB fragment
 * @unmap_len: Length of SKB fragment
 * @unmap_addr: DMA address of SKB fragment
811
 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
B
Ben Hutchings 已提交
812
 * @protocol: Network protocol (after any VLAN header)
813 814
 * @ip_off: Offset of IP header
 * @tcp_off: Offset of TCP header
815
 * @header_len: Number of bytes of header
816
 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
817 818 819
 * @header_dma_addr: Header DMA address, when using option descriptors
 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
 *	descriptors
B
Ben Hutchings 已提交
820 821 822 823 824
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
825 826
	/* Output position */
	unsigned out_len;
B
Ben Hutchings 已提交
827
	unsigned seqnum;
828
	u16 ipv4_id;
B
Ben Hutchings 已提交
829 830
	unsigned packet_space;

831 832 833 834 835
	/* Input position */
	dma_addr_t dma_addr;
	unsigned in_len;
	unsigned unmap_len;
	dma_addr_t unmap_addr;
836
	unsigned short dma_flags;
837

B
Ben Hutchings 已提交
838
	__be16 protocol;
839 840
	unsigned int ip_off;
	unsigned int tcp_off;
841
	unsigned header_len;
842
	unsigned int ip_base_len;
843 844
	dma_addr_t header_dma_addr;
	unsigned int header_unmap_len;
B
Ben Hutchings 已提交
845 846 847 848 849
};


/*
 * Verify that our various assumptions about sk_buffs and the conditions
B
Ben Hutchings 已提交
850
 * under which TSO will be attempted hold true.  Return the protocol number.
B
Ben Hutchings 已提交
851
 */
B
Ben Hutchings 已提交
852
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
B
Ben Hutchings 已提交
853
{
854 855
	__be16 protocol = skb->protocol;

B
Ben Hutchings 已提交
856
	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
857 858 859 860 861 862
			    protocol);
	if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
		protocol = veh->h_vlan_encapsulated_proto;
	}

B
Ben Hutchings 已提交
863 864 865 866 867 868
	if (protocol == htons(ETH_P_IP)) {
		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	} else {
		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
	}
B
Ben Hutchings 已提交
869 870 871
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));
B
Ben Hutchings 已提交
872 873

	return protocol;
B
Ben Hutchings 已提交
874 875
}

876 877
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer, unsigned int len)
B
Ben Hutchings 已提交
878
{
879
	u8 *result;
B
Ben Hutchings 已提交
880

881 882 883
	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->flags);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);
B
Ben Hutchings 已提交
884

885 886 887 888 889 890 891
	if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
		unsigned index =
			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
		struct efx_buffer *page_buf =
			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
		unsigned offset =
			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
B
Ben Hutchings 已提交
892

893
		if (unlikely(!page_buf->addr) &&
894 895
		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
					 GFP_ATOMIC))
896
			return NULL;
B
Ben Hutchings 已提交
897

898 899 900 901 902
		result = (u8 *)page_buf->addr + offset;
		buffer->dma_addr = page_buf->dma_addr + offset;
		buffer->flags = EFX_TX_BUF_CONT;
	} else {
		tx_queue->tso_long_headers++;
B
Ben Hutchings 已提交
903

904 905 906 907 908
		buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
		if (unlikely(!buffer->heap_buf))
			return NULL;
		result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
B
Ben Hutchings 已提交
909 910
	}

911
	buffer->len = len;
B
Ben Hutchings 已提交
912

913
	return result;
B
Ben Hutchings 已提交
914 915 916 917 918 919 920
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
921
 * @final_buffer:	The final buffer inserted into the queue
B
Ben Hutchings 已提交
922
 *
923
 * Push descriptors onto the TX queue.
B
Ben Hutchings 已提交
924
 */
925 926 927
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
				dma_addr_t dma_addr, unsigned len,
				struct efx_tx_buffer **final_buffer)
B
Ben Hutchings 已提交
928 929 930
{
	struct efx_tx_buffer *buffer;
	struct efx_nic *efx = tx_queue->efx;
931
	unsigned dma_len;
B
Ben Hutchings 已提交
932 933 934 935

	EFX_BUG_ON_PARANOID(len <= 0);

	while (1) {
936
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
B
Ben Hutchings 已提交
937 938 939
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
940 941
				    tx_queue->read_count >=
				    efx->txq_entries);
B
Ben Hutchings 已提交
942 943 944

		buffer->dma_addr = dma_addr;

945
		dma_len = efx_max_tx_len(efx, dma_addr);
B
Ben Hutchings 已提交
946 947 948 949 950

		/* If there is enough space to send then do so */
		if (dma_len >= len)
			break;

951 952
		buffer->len = dma_len;
		buffer->flags = EFX_TX_BUF_CONT;
B
Ben Hutchings 已提交
953 954 955 956 957 958
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
959
	*final_buffer = buffer;
B
Ben Hutchings 已提交
960 961 962 963 964 965 966 967 968 969
}


/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
970 971
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
			      struct efx_tx_buffer *buffer, u8 *header)
B
Ben Hutchings 已提交
972
{
973 974 975 976 977 978 979 980 981 982 983 984
	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
						  header, buffer->len,
						  DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
					       buffer->dma_addr))) {
			kfree(buffer->heap_buf);
			buffer->len = 0;
			buffer->flags = 0;
			return -ENOMEM;
		}
		buffer->unmap_len = buffer->len;
985
		buffer->dma_offset = 0;
986 987
		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
	}
B
Ben Hutchings 已提交
988 989

	++tx_queue->insert_count;
990
	return 0;
B
Ben Hutchings 已提交
991 992 993
}


994 995 996
/* Remove buffers put into a tx_queue.  None of the buffers must have
 * an skb attached.
 */
B
Ben Hutchings 已提交
997 998 999 1000 1001 1002 1003
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
	struct efx_tx_buffer *buffer;

	/* Work backwards until we hit the original insert pointer value */
	while (tx_queue->insert_count != tx_queue->write_count) {
		--tx_queue->insert_count;
1004
		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1005
		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
B
Ben Hutchings 已提交
1006 1007 1008 1009 1010
	}
}


/* Parse the SKB header and initialise state. */
1011 1012
static int tso_start(struct tso_state *st, struct efx_nic *efx,
		     const struct sk_buff *skb)
B
Ben Hutchings 已提交
1013
{
1014 1015
	bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
	struct device *dma_dev = &efx->pci_dev->dev;
1016
	unsigned int header_len, in_len;
1017
	dma_addr_t dma_addr;
1018

1019 1020
	st->ip_off = skb_network_header(skb) - skb->data;
	st->tcp_off = skb_transport_header(skb) - skb->data;
1021 1022 1023 1024
	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
	in_len = skb_headlen(skb) - header_len;
	st->header_len = header_len;
	st->in_len = in_len;
1025
	if (st->protocol == htons(ETH_P_IP)) {
1026
		st->ip_base_len = st->header_len - st->ip_off;
B
Ben Hutchings 已提交
1027
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1028
	} else {
1029
		st->ip_base_len = st->header_len - st->tcp_off;
B
Ben Hutchings 已提交
1030
		st->ipv4_id = 0;
1031
	}
B
Ben Hutchings 已提交
1032 1033 1034 1035 1036 1037
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

1038 1039
	st->out_len = skb->len - header_len;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (!use_options) {
		st->header_unmap_len = 0;

		if (likely(in_len == 0)) {
			st->dma_flags = 0;
			st->unmap_len = 0;
			return 0;
		}

		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
					  in_len, DMA_TO_DEVICE);
		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
		st->dma_addr = dma_addr;
		st->unmap_addr = dma_addr;
		st->unmap_len = in_len;
	} else {
		dma_addr = dma_map_single(dma_dev, skb->data,
					  skb_headlen(skb), DMA_TO_DEVICE);
		st->header_dma_addr = dma_addr;
		st->header_unmap_len = skb_headlen(skb);
1060
		st->dma_flags = 0;
1061 1062
		st->dma_addr = dma_addr + header_len;
		st->unmap_len = 0;
1063 1064
	}

1065
	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
B
Ben Hutchings 已提交
1066 1067
}

1068 1069
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
			    skb_frag_t *frag)
B
Ben Hutchings 已提交
1070
{
1071
	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
E
Eric Dumazet 已提交
1072
					  skb_frag_size(frag), DMA_TO_DEVICE);
1073
	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1074
		st->dma_flags = 0;
E
Eric Dumazet 已提交
1075 1076
		st->unmap_len = skb_frag_size(frag);
		st->in_len = skb_frag_size(frag);
1077
		st->dma_addr = st->unmap_addr;
1078 1079 1080 1081 1082
		return 0;
	}
	return -ENOMEM;
}

B
Ben Hutchings 已提交
1083 1084 1085 1086 1087 1088 1089 1090

/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
1091
 * of fragment or end-of-packet.
B
Ben Hutchings 已提交
1092
 */
1093 1094 1095
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					  const struct sk_buff *skb,
					  struct tso_state *st)
B
Ben Hutchings 已提交
1096
{
1097
	struct efx_tx_buffer *buffer;
1098
	int n;
B
Ben Hutchings 已提交
1099

1100
	if (st->in_len == 0)
1101
		return;
B
Ben Hutchings 已提交
1102
	if (st->packet_space == 0)
1103
		return;
B
Ben Hutchings 已提交
1104

1105
	EFX_BUG_ON_PARANOID(st->in_len <= 0);
B
Ben Hutchings 已提交
1106 1107
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

1108
	n = min(st->in_len, st->packet_space);
B
Ben Hutchings 已提交
1109 1110

	st->packet_space -= n;
1111 1112
	st->out_len -= n;
	st->in_len -= n;
B
Ben Hutchings 已提交
1113

1114
	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
B
Ben Hutchings 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	if (st->out_len == 0) {
		/* Transfer ownership of the skb */
		buffer->skb = skb;
		buffer->flags = EFX_TX_BUF_SKB;
	} else if (st->packet_space != 0) {
		buffer->flags = EFX_TX_BUF_CONT;
	}

	if (st->in_len == 0) {
		/* Transfer ownership of the DMA mapping */
		buffer->unmap_len = st->unmap_len;
1127
		buffer->dma_offset = buffer->unmap_len - buffer->len;
1128 1129
		buffer->flags |= st->dma_flags;
		st->unmap_len = 0;
1130 1131
	}

1132
	st->dma_addr += n;
B
Ben Hutchings 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
}


/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
1143
 * success, or -%ENOMEM if failed to alloc header.
B
Ben Hutchings 已提交
1144
 */
1145 1146 1147
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				const struct sk_buff *skb,
				struct tso_state *st)
B
Ben Hutchings 已提交
1148
{
1149
	struct efx_tx_buffer *buffer =
1150
		efx_tx_queue_get_insert_buffer(tx_queue);
1151 1152
	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
	u8 tcp_flags_clear;
B
Ben Hutchings 已提交
1153

1154
	if (!is_last) {
1155
		st->packet_space = skb_shinfo(skb)->gso_size;
1156
		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
B
Ben Hutchings 已提交
1157
	} else {
1158
		st->packet_space = st->out_len;
1159
		tcp_flags_clear = 0x00;
B
Ben Hutchings 已提交
1160 1161
	}

1162 1163 1164 1165 1166 1167
	if (!st->header_unmap_len) {
		/* Allocate and insert a DMA-mapped header buffer. */
		struct tcphdr *tsoh_th;
		unsigned ip_length;
		u8 *header;
		int rc;
B
Ben Hutchings 已提交
1168

1169 1170 1171
		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
		if (!header)
			return -ENOMEM;
B
Ben Hutchings 已提交
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		tsoh_th = (struct tcphdr *)(header + st->tcp_off);

		/* Copy and update the headers. */
		memcpy(header, skb->data, st->header_len);

		tsoh_th->seq = htonl(st->seqnum);
		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;

		ip_length = st->ip_base_len + st->packet_space;

		if (st->protocol == htons(ETH_P_IP)) {
			struct iphdr *tsoh_iph =
				(struct iphdr *)(header + st->ip_off);

			tsoh_iph->tot_len = htons(ip_length);
			tsoh_iph->id = htons(st->ipv4_id);
		} else {
			struct ipv6hdr *tsoh_iph =
				(struct ipv6hdr *)(header + st->ip_off);

			tsoh_iph->payload_len = htons(ip_length);
		}

		rc = efx_tso_put_header(tx_queue, buffer, header);
		if (unlikely(rc))
			return rc;
B
Ben Hutchings 已提交
1199
	} else {
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		/* Send the original headers with a TSO option descriptor
		 * in front
		 */
		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;

		buffer->flags = EFX_TX_BUF_OPTION;
		buffer->len = 0;
		buffer->unmap_len = 0;
		EFX_POPULATE_QWORD_5(buffer->option,
				     ESF_DZ_TX_DESC_IS_OPT, 1,
				     ESF_DZ_TX_OPTION_TYPE,
				     ESE_DZ_TX_OPTION_DESC_TSO,
				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
		++tx_queue->insert_count;
B
Ben Hutchings 已提交
1216

1217 1218 1219
		/* We mapped the headers in tso_start().  Unmap them
		 * when the last segment is completed.
		 */
1220
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1221 1222 1223 1224 1225
		buffer->dma_addr = st->header_dma_addr;
		buffer->len = st->header_len;
		if (is_last) {
			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
			buffer->unmap_len = st->header_unmap_len;
1226
			buffer->dma_offset = 0;
1227 1228 1229 1230 1231 1232 1233 1234 1235
			/* Ensure we only unmap them once in case of a
			 * later DMA mapping error and rollback
			 */
			st->header_unmap_len = 0;
		} else {
			buffer->flags = EFX_TX_BUF_CONT;
			buffer->unmap_len = 0;
		}
		++tx_queue->insert_count;
B
Ben Hutchings 已提交
1236
	}
B
Ben Hutchings 已提交
1237

1238 1239 1240 1241
	st->seqnum += skb_shinfo(skb)->gso_size;

	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
	++st->ipv4_id;
1242

B
Ben Hutchings 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	++tx_queue->tso_packets;

	return 0;
}


/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1258
 * %NETDEV_TX_OK.
B
Ben Hutchings 已提交
1259 1260
 */
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1261
			       struct sk_buff *skb)
B
Ben Hutchings 已提交
1262
{
1263
	struct efx_nic *efx = tx_queue->efx;
1264
	int frag_i, rc;
B
Ben Hutchings 已提交
1265 1266
	struct tso_state state;

B
Ben Hutchings 已提交
1267 1268
	/* Find the packet protocol and sanity-check it */
	state.protocol = efx_tso_check_protocol(skb);
B
Ben Hutchings 已提交
1269 1270 1271

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

1272 1273 1274
	rc = tso_start(&state, efx, skb);
	if (rc)
		goto mem_err;
B
Ben Hutchings 已提交
1275

1276
	if (likely(state.in_len == 0)) {
B
Ben Hutchings 已提交
1277 1278 1279
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
1280 1281
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1282 1283 1284
		if (rc)
			goto mem_err;
	} else {
1285
		/* Payload starts in the header area. */
B
Ben Hutchings 已提交
1286 1287 1288 1289 1290 1291 1292
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	while (1) {
1293
		tso_fill_packet_with_fragment(tx_queue, skb, &state);
B
Ben Hutchings 已提交
1294 1295

		/* Move onto the next fragment? */
1296
		if (state.in_len == 0) {
B
Ben Hutchings 已提交
1297 1298 1299
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
1300 1301
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
B
Ben Hutchings 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

1312 1313
	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);

B
Ben Hutchings 已提交
1314
	/* Pass off to hardware */
1315
	efx_nic_push_buffers(tx_queue);
B
Ben Hutchings 已提交
1316

1317 1318
	efx_tx_maybe_stop_queue(tx_queue);

B
Ben Hutchings 已提交
1319 1320 1321 1322
	tx_queue->tso_bursts++;
	return NETDEV_TX_OK;

 mem_err:
1323
	netif_err(efx, tx_err, efx->net_dev,
1324
		  "Out of memory for TSO headers, or DMA mapping error\n");
1325
	dev_kfree_skb_any(skb);
B
Ben Hutchings 已提交
1326

1327
	/* Free the DMA mapping we were in the process of writing out */
1328
	if (state.unmap_len) {
1329
		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1330 1331
			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
					 state.unmap_len, DMA_TO_DEVICE);
1332
		else
1333 1334
			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
				       state.unmap_len, DMA_TO_DEVICE);
1335
	}
1336

1337 1338 1339 1340 1341
	/* Free the header DMA mapping, if using option descriptors */
	if (state.header_unmap_len)
		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
				 state.header_unmap_len, DMA_TO_DEVICE);

B
Ben Hutchings 已提交
1342
	efx_enqueue_unwind(tx_queue);
1343
	return NETDEV_TX_OK;
B
Ben Hutchings 已提交
1344
}