mmzone.h 34.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifndef __ASSEMBLY__
C
Christoph Lameter 已提交
5
#ifndef __GENERATING_BOUNDS_H
L
Linus Torvalds 已提交
6 7 8 9

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
10
#include <linux/bitops.h>
L
Linus Torvalds 已提交
11 12 13 14
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
18
#include <generated/bounds.h>
L
Linus Torvalds 已提交
19
#include <asm/atomic.h>
R
Ralf Baechle 已提交
20
#include <asm/page.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
28
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
L
Linus Torvalds 已提交
29

A
Andy Whitcroft 已提交
30 31 32 33 34 35 36 37
/*
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
 * costly to service.  That is between allocation orders which should
 * coelesce naturally under reasonable reclaim pressure and those which
 * will not.
 */
#define PAGE_ALLOC_COSTLY_ORDER 3

38
#define MIGRATE_UNMOVABLE     0
39 40
#define MIGRATE_RECLAIMABLE   1
#define MIGRATE_MOVABLE       2
41
#define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42
#define MIGRATE_RESERVE       3
K
KAMEZAWA Hiroyuki 已提交
43 44
#define MIGRATE_ISOLATE       4 /* can't allocate from here */
#define MIGRATE_TYPES         5
45 46 47 48 49

#define for_each_migratetype_order(order, type) \
	for (order = 0; order < MAX_ORDER; order++) \
		for (type = 0; type < MIGRATE_TYPES; type++)

50 51 52 53 54 55 56
extern int page_group_by_mobility_disabled;

static inline int get_pageblock_migratetype(struct page *page)
{
	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
}

L
Linus Torvalds 已提交
57
struct free_area {
58
	struct list_head	free_list[MIGRATE_TYPES];
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
73
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
74 75 76 77 78
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

79
enum zone_stat_item {
80
	/* First 128 byte cacheline (assuming 64 bit words) */
81
	NR_FREE_PAGES,
82
	NR_LRU_BASE,
83 84 85 86
	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
L
Lee Schermerhorn 已提交
87
	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
N
Nick Piggin 已提交
88
	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 90
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91
			   only modified from process context */
92
	NR_FILE_PAGES,
93
	NR_FILE_DIRTY,
94
	NR_WRITEBACK,
95 96 97
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,		/* used for pagetables */
98 99
	NR_KERNEL_STACK,
	/* Second 128 byte cacheline */
100
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101
	NR_BOUNCE,
102
	NR_VMSCAN_WRITE,
103
	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
K
KOSAKI Motohiro 已提交
104 105
	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106
	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 108 109 110 111 112 113 114
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
115 116
	NR_VM_ZONE_STAT_ITEMS };

117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * We do arithmetic on the LRU lists in various places in the code,
 * so it is important to keep the active lists LRU_ACTIVE higher in
 * the array than the corresponding inactive lists, and to keep
 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 *
 * This has to be kept in sync with the statistics in zone_stat_item
 * above and the descriptions in vmstat_text in mm/vmstat.c
 */
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2

130
enum lru_list {
131 132 133 134
	LRU_INACTIVE_ANON = LRU_BASE,
	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
L
Lee Schermerhorn 已提交
135 136 137
	LRU_UNEVICTABLE,
	NR_LRU_LISTS
};
138 139 140

#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)

L
Lee Schermerhorn 已提交
141 142
#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)

143 144 145 146 147
static inline int is_file_lru(enum lru_list l)
{
	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
}

148 149
static inline int is_active_lru(enum lru_list l)
{
150
	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 152
}

L
Lee Schermerhorn 已提交
153 154 155 156 157
static inline int is_unevictable_lru(enum lru_list l)
{
	return (l == LRU_UNEVICTABLE);
}

158 159 160 161 162 163 164 165 166 167 168
enum zone_watermarks {
	WMARK_MIN,
	WMARK_LOW,
	WMARK_HIGH,
	NR_WMARK
};

#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])

L
Linus Torvalds 已提交
169 170 171 172
struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
173 174 175

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[MIGRATE_PCPTYPES];
L
Linus Torvalds 已提交
176 177 178
};

struct per_cpu_pageset {
179
	struct per_cpu_pages pcp;
180 181 182
#ifdef CONFIG_NUMA
	s8 expire;
#endif
183
#ifdef CONFIG_SMP
184
	s8 stat_threshold;
185 186
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
187
};
188

C
Christoph Lameter 已提交
189 190
#endif /* !__GENERATING_BOUNDS.H */

191
enum zone_type {
192
#ifdef CONFIG_ZONE_DMA
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
212
#endif
213
#ifdef CONFIG_ZONE_DMA32
214 215 216 217 218 219
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
220
#endif
221 222 223 224 225 226
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
227
#ifdef CONFIG_HIGHMEM
228 229 230 231 232 233 234 235 236
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
237
#endif
M
Mel Gorman 已提交
238
	ZONE_MOVABLE,
C
Christoph Lameter 已提交
239
	__MAX_NR_ZONES
240
};
L
Linus Torvalds 已提交
241

C
Christoph Lameter 已提交
242 243
#ifndef __GENERATING_BOUNDS_H

L
Linus Torvalds 已提交
244 245 246 247 248
/*
 * When a memory allocation must conform to specific limitations (such
 * as being suitable for DMA) the caller will pass in hints to the
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 * are used to select a priority ordered list of memory zones which
249
 * match the requested limits. See gfp_zone() in include/linux/gfp.h
L
Linus Torvalds 已提交
250
 */
251

C
Christoph Lameter 已提交
252
#if MAX_NR_ZONES < 2
253
#define ZONES_SHIFT 0
C
Christoph Lameter 已提交
254
#elif MAX_NR_ZONES <= 2
255
#define ZONES_SHIFT 1
C
Christoph Lameter 已提交
256
#elif MAX_NR_ZONES <= 4
257
#define ZONES_SHIFT 2
258 259
#else
#error ZONES_SHIFT -- too many zones configured adjust calculation
260
#endif
L
Linus Torvalds 已提交
261

262 263 264 265 266 267 268 269 270 271 272
struct zone_reclaim_stat {
	/*
	 * The pageout code in vmscan.c keeps track of how many of the
	 * mem/swap backed and file backed pages are refeferenced.
	 * The higher the rotated/scanned ratio, the more valuable
	 * that cache is.
	 *
	 * The anon LRU stats live in [0], file LRU stats in [1]
	 */
	unsigned long		recent_rotated[2];
	unsigned long		recent_scanned[2];
273 274 275 276 277

	/*
	 * accumulated for batching
	 */
	unsigned long		nr_saved_scan[NR_LRU_LISTS];
278 279
};

L
Linus Torvalds 已提交
280 281
struct zone {
	/* Fields commonly accessed by the page allocator */
282 283 284 285

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

296
#ifdef CONFIG_NUMA
297
	int node;
298 299 300
	/*
	 * zone reclaim becomes active if more unmapped pages exist.
	 */
301
	unsigned long		min_unmapped_pages;
302
	unsigned long		min_slab_pages;
303
#endif
304
	struct per_cpu_pageset __percpu *pageset;
L
Linus Torvalds 已提交
305 306 307 308
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
309 310 311 312
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif
L
Linus Torvalds 已提交
313 314
	struct free_area	free_area[MAX_ORDER];

315 316
#ifndef CONFIG_SPARSEMEM
	/*
317
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
318 319 320 321 322
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

L
Linus Torvalds 已提交
323 324 325 326 327

	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
	spinlock_t		lru_lock;	
328
	struct zone_lru {
329 330
		struct list_head list;
	} lru[NR_LRU_LISTS];
331

332
	struct zone_reclaim_stat reclaim_stat;
333

L
Linus Torvalds 已提交
334
	unsigned long		pages_scanned;	   /* since last reclaim */
335
	unsigned long		flags;		   /* zone flags, see below */
M
Martin Hicks 已提交
336

337 338
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
339

L
Linus Torvalds 已提交
340 341 342 343 344 345 346 347 348 349
	/*
	 * prev_priority holds the scanning priority for this zone.  It is
	 * defined as the scanning priority at which we achieved our reclaim
	 * target at the previous try_to_free_pages() or balance_pgdat()
	 * invokation.
	 *
	 * We use prev_priority as a measure of how much stress page reclaim is
	 * under - it drives the swappiness decision: whether to unmap mapped
	 * pages.
	 *
350
	 * Access to both this field is quite racy even on uniprocessor.  But
L
Linus Torvalds 已提交
351 352 353 354
	 * it is expected to average out OK.
	 */
	int prev_priority;

355 356 357 358 359 360
	/*
	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
	 * this zone's LRU.  Maintained by the pageout code.
	 */
	unsigned int inactive_ratio;

L
Linus Torvalds 已提交
361 362 363 364 365 366

	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
367
	 * wait_table_hash_nr_entries	-- the size of the hash table array
L
Linus Torvalds 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
390
	unsigned long		wait_table_hash_nr_entries;
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398 399
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

400 401 402 403 404 405 406 407 408 409
	/*
	 * zone_start_pfn, spanned_pages and present_pages are all
	 * protected by span_seqlock.  It is a seqlock because it has
	 * to be read outside of zone->lock, and it is done in the main
	 * allocator path.  But, it is written quite infrequently.
	 *
	 * The lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 */
L
Linus Torvalds 已提交
410 411 412 413 414 415
	unsigned long		spanned_pages;	/* total size, including holes */
	unsigned long		present_pages;	/* amount of memory (excluding holes) */

	/*
	 * rarely used fields:
	 */
416
	const char		*name;
417
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
418

419 420 421
typedef enum {
	ZONE_ALL_UNRECLAIMABLE,		/* all pages pinned */
	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
D
David Rientjes 已提交
422
	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
423 424 425 426 427 428
} zone_flags_t;

static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
{
	set_bit(flag, &zone->flags);
}
429 430 431 432 433 434

static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
{
	return test_and_set_bit(flag, &zone->flags);
}

435 436 437 438 439 440 441 442 443
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
{
	clear_bit(flag, &zone->flags);
}

static inline int zone_is_all_unreclaimable(const struct zone *zone)
{
	return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
}
444

445 446 447 448
static inline int zone_is_reclaim_locked(const struct zone *zone)
{
	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
}
449

D
David Rientjes 已提交
450 451 452 453
static inline int zone_is_oom_locked(const struct zone *zone)
{
	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
454

L
Linus Torvalds 已提交
455 456 457 458 459 460 461
/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

462 463 464 465
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
466 467 468 469 470

/*
 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
 * allocations to a single node for GFP_THISNODE.
 *
471 472
 * [0]	: Zonelist with fallback
 * [1]	: No fallback (GFP_THISNODE)
473
 */
474
#define MAX_ZONELISTS 2
475 476


477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
538
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
539 540 541
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
542
#define MAX_ZONELISTS 1
543 544 545
struct zonelist_cache;
#endif

546 547 548 549 550 551 552 553 554
/*
 * This struct contains information about a zone in a zonelist. It is stored
 * here to avoid dereferences into large structures and lookups of tables
 */
struct zoneref {
	struct zone *zone;	/* Pointer to actual zone */
	int zone_idx;		/* zone_idx(zoneref->zone) */
};

L
Linus Torvalds 已提交
555 556 557 558 559 560
/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
561 562
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
563 564 565 566 567 568 569 570
 * *
 * To speed the reading of the zonelist, the zonerefs contain the zone index
 * of the entry being read. Helper functions to access information given
 * a struct zoneref are
 *
 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 * zonelist_zone_idx()	- Return the index of the zone for an entry
 * zonelist_node_idx()	- Return the index of the node for an entry
L
Linus Torvalds 已提交
571 572
 */
struct zonelist {
573
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
574
	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
575 576 577
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
L
Linus Torvalds 已提交
578 579
};

580 581 582 583 584 585 586
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
L
Linus Torvalds 已提交
587

588 589 590 591 592
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

L
Linus Torvalds 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
607
	struct zonelist node_zonelists[MAX_ZONELISTS];
L
Linus Torvalds 已提交
608
	int nr_zones;
609
#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
L
Linus Torvalds 已提交
610
	struct page *node_mem_map;
611 612 613
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
	struct page_cgroup *node_page_cgroup;
#endif
A
Andy Whitcroft 已提交
614
#endif
L
Linus Torvalds 已提交
615
	struct bootmem_data *bdata;
616 617 618 619 620 621 622 623 624 625
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
	 * Nests above zone->lock and zone->size_seqlock.
	 */
	spinlock_t node_size_lock;
#endif
L
Linus Torvalds 已提交
626 627 628 629 630 631 632 633 634 635 636 637
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	wait_queue_head_t kswapd_wait;
	struct task_struct *kswapd;
	int kswapd_max_order;
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
A
Andy Whitcroft 已提交
638
#ifdef CONFIG_FLAT_NODE_MEM_MAP
639
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
A
Andy Whitcroft 已提交
640 641 642
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
643
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
L
Linus Torvalds 已提交
644

645 646
#include <linux/memory_hotplug.h>

L
Linus Torvalds 已提交
647 648 649 650 651
void get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
R
Rohit Seth 已提交
652
		int classzone_idx, int alloc_flags);
D
Dave Hansen 已提交
653 654 655 656
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
657
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
D
Dave Hansen 已提交
658 659
				     unsigned long size,
				     enum memmap_context context);
660

L
Linus Torvalds 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

676 677 678 679 680
static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

M
Mel Gorman 已提交
681 682 683 684 685 686 687 688 689 690 691
extern int movable_zone;

static inline int zone_movable_is_highmem(void)
{
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
	return movable_zone == ZONE_HIGHMEM;
#else
	return 0;
#endif
}

692
static inline int is_highmem_idx(enum zone_type idx)
L
Linus Torvalds 已提交
693
{
694
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
695 696
	return (idx == ZONE_HIGHMEM ||
		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
697 698 699
#else
	return 0;
#endif
L
Linus Torvalds 已提交
700 701
}

702
static inline int is_normal_idx(enum zone_type idx)
L
Linus Torvalds 已提交
703 704 705
{
	return (idx == ZONE_NORMAL);
}
N
Nick Piggin 已提交
706

L
Linus Torvalds 已提交
707 708 709 710 711 712 713 714
/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
715
#ifdef CONFIG_HIGHMEM
716 717 718 719
	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
		zone_movable_is_highmem());
720 721 722
#else
	return 0;
#endif
L
Linus Torvalds 已提交
723 724 725 726 727 728 729
}

static inline int is_normal(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}

N
Nick Piggin 已提交
730 731
static inline int is_dma32(struct zone *zone)
{
732
#ifdef CONFIG_ZONE_DMA32
N
Nick Piggin 已提交
733
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
734 735 736
#else
	return 0;
#endif
N
Nick Piggin 已提交
737 738 739 740
}

static inline int is_dma(struct zone *zone)
{
741
#ifdef CONFIG_ZONE_DMA
N
Nick Piggin 已提交
742
	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
743 744 745
#else
	return 0;
#endif
N
Nick Piggin 已提交
746 747
}

L
Linus Torvalds 已提交
748 749
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
750
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
751 752
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
753
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
754
					void __user *, size_t *, loff_t *);
755
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
756
					void __user *, size_t *, loff_t *);
757
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
758
			void __user *, size_t *, loff_t *);
759
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
760
			void __user *, size_t *, loff_t *);
L
Linus Torvalds 已提交
761

762
extern int numa_zonelist_order_handler(struct ctl_table *, int,
763
			void __user *, size_t *, loff_t *);
764 765 766
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */

767
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
768 769 770 771 772

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map

773
#else /* CONFIG_NEED_MULTIPLE_NODES */
L
Linus Torvalds 已提交
774 775 776

#include <asm/mmzone.h>

777
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
778

779 780 781
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
782 783

/**
784
 * for_each_online_pgdat - helper macro to iterate over all online nodes
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

803 804 805 806 807 808 809 810
#define for_each_populated_zone(zone)		        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))			\
		if (!populated_zone(zone))		\
			; /* do nothing */		\
		else

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
	return zoneref->zone;
}

static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
	return zoneref->zone_idx;
}

static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
	/* zone_to_nid not available in this context */
	return zoneref->zone->node;
#else
	return 0;
#endif /* CONFIG_NUMA */
}

831 832 833 834 835 836 837 838 839
/**
 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 * @z - The cursor used as a starting point for the search
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the next zone at or below a given zone index that is
 * within the allowed nodemask using a cursor as the starting point for the
840 841 842
 * search. The zoneref returned is a cursor that represents the current zone
 * being examined. It should be advanced by one before calling
 * next_zones_zonelist again.
843 844 845 846 847
 */
struct zoneref *next_zones_zonelist(struct zoneref *z,
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone);
848

849 850 851 852 853 854 855 856 857
/**
 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 * @zonelist - The zonelist to search for a suitable zone
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the first zone at or below a given zone index that is
 * within the allowed nodemask. The zoneref returned is a cursor that can be
858 859
 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 * one before calling.
860
 */
861
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
862 863 864
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone)
865
{
866 867
	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
								zone);
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883
/**
 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 * @nodemask - Nodemask allowed by the allocator
 *
 * This iterator iterates though all zones at or below a given zone index and
 * within a given nodemask
 */
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
		zone;							\
884
		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
885 886 887 888 889 890 891 892 893 894 895

/**
 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 *
 * This iterator iterates though all zones at or below a given zone index.
 */
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
896
	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
897

A
Andy Whitcroft 已提交
898 899 900 901
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

902 903
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
904 905 906 907
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
908 909
#endif

910 911 912 913
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

A
Andy Whitcroft 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)

#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

935
#define SECTION_BLOCKFLAGS_BITS \
936
	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
937

A
Andy Whitcroft 已提交
938 939 940 941 942
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

struct page;
943
struct page_cgroup;
A
Andy Whitcroft 已提交
944
struct mem_section {
A
Andy Whitcroft 已提交
945 946 947 948 949
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
950 951 952 953
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
A
Andy Whitcroft 已提交
954 955 956 957
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
958 959 960

	/* See declaration of similar field in struct zone */
	unsigned long *pageblock_flags;
961 962 963 964 965 966 967 968
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
	/*
	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
	 * section. (see memcontrol.h/page_cgroup.h about this.)
	 */
	struct page_cgroup *page_cgroup;
	unsigned long pad;
#endif
A
Andy Whitcroft 已提交
969 970
};

971 972 973 974 975
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif
B
Bob Picco 已提交
976

977 978 979
#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
#define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
B
Bob Picco 已提交
980

981 982
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
B
Bob Picco 已提交
983
#else
984 985
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
A
Andy Whitcroft 已提交
986

A
Andy Whitcroft 已提交
987 988
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
989 990 991
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
A
Andy Whitcroft 已提交
992
}
993
extern int __section_nr(struct mem_section* ms);
994
extern unsigned long usemap_size(void);
A
Andy Whitcroft 已提交
995 996 997 998 999 1000 1001 1002 1003 1004

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1005
#define SECTION_NID_SHIFT	2
A
Andy Whitcroft 已提交
1006 1007 1008 1009 1010 1011 1012 1013

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

1014
static inline int present_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1015
{
B
Bob Picco 已提交
1016
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
A
Andy Whitcroft 已提交
1017 1018
}

1019 1020 1021 1022 1023 1024
static inline int present_section_nr(unsigned long nr)
{
	return present_section(__nr_to_section(nr));
}

static inline int valid_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1025
{
B
Bob Picco 已提交
1026
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
A
Andy Whitcroft 已提交
1027 1028 1029 1030 1031 1032 1033
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

A
Andy Whitcroft 已提交
1034 1035
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
A
Andy Whitcroft 已提交
1036
	return __nr_to_section(pfn_to_section_nr(pfn));
A
Andy Whitcroft 已提交
1037 1038 1039 1040 1041 1042
}

static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
A
Andy Whitcroft 已提交
1043
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
A
Andy Whitcroft 已提交
1044 1045
}

1046 1047 1048 1049 1050 1051 1052
static inline int pfn_present(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

A
Andy Whitcroft 已提交
1053 1054 1055 1056 1057 1058
/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
1059 1060 1061 1062 1063
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
1064 1065
#else
#define pfn_to_nid(pfn)		(0)
A
Andy Whitcroft 已提交
1066 1067 1068 1069 1070 1071
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
1072
#define sparse_index_init(_sec, _nid)  do {} while (0)
A
Andy Whitcroft 已提交
1073 1074
#endif /* CONFIG_SPARSEMEM */

1075
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1076
bool early_pfn_in_nid(unsigned long pfn, int nid);
1077 1078 1079 1080
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

A
Andy Whitcroft 已提交
1081 1082 1083 1084 1085 1086 1087
#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 * pfn_valid_within() should be used in this case; we optimise this away
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 */
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
/*
 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
 * associated with it or not. In FLATMEM, it is expected that holes always
 * have valid memmap as long as there is valid PFNs either side of the hole.
 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
 * entire section.
 *
 * However, an ARM, and maybe other embedded architectures in the future
 * free memmap backing holes to save memory on the assumption the memmap is
 * never used. The page_zone linkages are then broken even though pfn_valid()
 * returns true. A walker of the full memmap must then do this additional
 * check to ensure the memmap they are looking at is sane by making sure
 * the zone and PFN linkages are still valid. This is expensive, but walkers
 * of the full memmap are extremely rare.
 */
int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone);
#else
static inline int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone)
{
	return 1;
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */

C
Christoph Lameter 已提交
1126
#endif /* !__GENERATING_BOUNDS.H */
L
Linus Torvalds 已提交
1127 1128
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */