sockmap.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */

/* A BPF sock_map is used to store sock objects. This is primarly used
 * for doing socket redirect with BPF helper routines.
 *
16 17 18 19 20 21 22 23 24 25
 * A sock map may have BPF programs attached to it, currently a program
 * used to parse packets and a program to provide a verdict and redirect
 * decision on the packet are supported. Any programs attached to a sock
 * map are inherited by sock objects when they are added to the map. If
 * no BPF programs are attached the sock object may only be used for sock
 * redirect.
 *
 * A sock object may be in multiple maps, but can only inherit a single
 * parse or verdict program. If adding a sock object to a map would result
 * in having multiple parsing programs the update will return an EBUSY error.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 *
 * For reference this program is similar to devmap used in XDP context
 * reviewing these together may be useful. For an example please review
 * ./samples/bpf/sockmap/.
 */
#include <linux/bpf.h>
#include <net/sock.h>
#include <linux/filter.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <net/strparser.h>

struct bpf_stab {
	struct bpf_map map;
	struct sock **sock_map;
	struct bpf_prog *bpf_parse;
	struct bpf_prog *bpf_verdict;
};

enum smap_psock_state {
	SMAP_TX_RUNNING,
};

54 55 56 57 58
struct smap_psock_map_entry {
	struct list_head list;
	struct sock **entry;
};

59 60
struct smap_psock {
	struct rcu_head	rcu;
61 62
	/* refcnt is used inside sk_callback_lock */
	u32 refcnt;
63 64 65 66 67 68 69 70 71 72 73 74 75

	/* datapath variables */
	struct sk_buff_head rxqueue;
	bool strp_enabled;

	/* datapath error path cache across tx work invocations */
	int save_rem;
	int save_off;
	struct sk_buff *save_skb;

	struct strparser strp;
	struct bpf_prog *bpf_parse;
	struct bpf_prog *bpf_verdict;
76
	struct list_head maps;
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

	/* Back reference used when sock callback trigger sockmap operations */
	struct sock *sock;
	unsigned long state;

	struct work_struct tx_work;
	struct work_struct gc_work;

	void (*save_data_ready)(struct sock *sk);
	void (*save_write_space)(struct sock *sk);
	void (*save_state_change)(struct sock *sk);
};

static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
{
92
	return rcu_dereference_sk_user_data(sk);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
}

static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
{
	struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
	int rc;

	if (unlikely(!prog))
		return SK_DROP;

	skb_orphan(skb);
	skb->sk = psock->sock;
	bpf_compute_data_end(skb);
	rc = (*prog->bpf_func)(skb, prog->insnsi);
	skb->sk = NULL;

	return rc;
}

static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
{
114
	struct sock *sk;
115 116 117 118 119 120 121 122 123 124 125
	int rc;

	/* Because we use per cpu values to feed input from sock redirect
	 * in BPF program to do_sk_redirect_map() call we need to ensure we
	 * are not preempted. RCU read lock is not sufficient in this case
	 * with CONFIG_PREEMPT_RCU enabled so we must be explicit here.
	 */
	preempt_disable();
	rc = smap_verdict_func(psock, skb);
	switch (rc) {
	case SK_REDIRECT:
126
		sk = do_sk_redirect_map();
127
		preempt_enable();
128 129
		if (likely(sk)) {
			struct smap_psock *peer = smap_psock_sk(sk);
130 131 132

			if (likely(peer &&
				   test_bit(SMAP_TX_RUNNING, &peer->state) &&
133 134 135
				   !sock_flag(sk, SOCK_DEAD) &&
				   sock_writeable(sk))) {
				skb_set_owner_w(skb, sk);
136 137 138 139 140 141 142 143
				skb_queue_tail(&peer->rxqueue, skb);
				schedule_work(&peer->tx_work);
				break;
			}
		}
	/* Fall through and free skb otherwise */
	case SK_DROP:
	default:
144 145
		if (rc != SK_REDIRECT)
			preempt_enable();
146 147 148 149 150 151 152 153 154 155 156 157
		kfree_skb(skb);
	}
}

static void smap_report_sk_error(struct smap_psock *psock, int err)
{
	struct sock *sk = psock->sock;

	sk->sk_err = err;
	sk->sk_error_report(sk);
}

158
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
159 160 161 162

/* Called with lock_sock(sk) held */
static void smap_state_change(struct sock *sk)
{
163
	struct smap_psock_map_entry *e, *tmp;
164
	struct smap_psock *psock;
165
	struct socket_wq *wq;
166 167 168 169 170 171 172 173 174
	struct sock *osk;

	rcu_read_lock();

	/* Allowing transitions into an established syn_recv states allows
	 * for early binding sockets to a smap object before the connection
	 * is established.
	 */
	switch (sk->sk_state) {
175
	case TCP_SYN_SENT:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	case TCP_SYN_RECV:
	case TCP_ESTABLISHED:
		break;
	case TCP_CLOSE_WAIT:
	case TCP_CLOSING:
	case TCP_LAST_ACK:
	case TCP_FIN_WAIT1:
	case TCP_FIN_WAIT2:
	case TCP_LISTEN:
		break;
	case TCP_CLOSE:
		/* Only release if the map entry is in fact the sock in
		 * question. There is a case where the operator deletes
		 * the sock from the map, but the TCP sock is closed before
		 * the psock is detached. Use cmpxchg to verify correct
		 * sock is removed.
		 */
		psock = smap_psock_sk(sk);
		if (unlikely(!psock))
			break;
196 197 198 199 200 201 202 203 204
		write_lock_bh(&sk->sk_callback_lock);
		list_for_each_entry_safe(e, tmp, &psock->maps, list) {
			osk = cmpxchg(e->entry, sk, NULL);
			if (osk == sk) {
				list_del(&e->list);
				smap_release_sock(psock, sk);
			}
		}
		write_unlock_bh(&sk->sk_callback_lock);
205 206
		break;
	default:
207 208 209
		psock = smap_psock_sk(sk);
		if (unlikely(!psock))
			break;
210 211 212
		smap_report_sk_error(psock, EPIPE);
		break;
	}
213 214 215 216

	wq = rcu_dereference(sk->sk_wq);
	if (skwq_has_sleeper(wq))
		wake_up_interruptible_all(&wq->wait);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	rcu_read_unlock();
}

static void smap_read_sock_strparser(struct strparser *strp,
				     struct sk_buff *skb)
{
	struct smap_psock *psock;

	rcu_read_lock();
	psock = container_of(strp, struct smap_psock, strp);
	smap_do_verdict(psock, skb);
	rcu_read_unlock();
}

/* Called with lock held on socket */
static void smap_data_ready(struct sock *sk)
{
	struct smap_psock *psock;

236
	rcu_read_lock();
237
	psock = smap_psock_sk(sk);
238 239
	if (likely(psock)) {
		write_lock_bh(&sk->sk_callback_lock);
240
		strp_data_ready(&psock->strp);
241 242 243
		write_unlock_bh(&sk->sk_callback_lock);
	}
	rcu_read_unlock();
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static void smap_tx_work(struct work_struct *w)
{
	struct smap_psock *psock;
	struct sk_buff *skb;
	int rem, off, n;

	psock = container_of(w, struct smap_psock, tx_work);

	/* lock sock to avoid losing sk_socket at some point during loop */
	lock_sock(psock->sock);
	if (psock->save_skb) {
		skb = psock->save_skb;
		rem = psock->save_rem;
		off = psock->save_off;
		psock->save_skb = NULL;
		goto start;
	}

	while ((skb = skb_dequeue(&psock->rxqueue))) {
		rem = skb->len;
		off = 0;
start:
		do {
			if (likely(psock->sock->sk_socket))
				n = skb_send_sock_locked(psock->sock,
							 skb, off, rem);
			else
				n = -EINVAL;
			if (n <= 0) {
				if (n == -EAGAIN) {
					/* Retry when space is available */
					psock->save_skb = skb;
					psock->save_rem = rem;
					psock->save_off = off;
					goto out;
				}
				/* Hard errors break pipe and stop xmit */
				smap_report_sk_error(psock, n ? -n : EPIPE);
				clear_bit(SMAP_TX_RUNNING, &psock->state);
				kfree_skb(skb);
				goto out;
			}
			rem -= n;
			off += n;
		} while (rem);
		kfree_skb(skb);
	}
out:
	release_sock(psock->sock);
}

static void smap_write_space(struct sock *sk)
{
	struct smap_psock *psock;

	rcu_read_lock();
	psock = smap_psock_sk(sk);
	if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
		schedule_work(&psock->tx_work);
	rcu_read_unlock();
}

static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
{
	if (!psock->strp_enabled)
311
		return;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	sk->sk_data_ready = psock->save_data_ready;
	sk->sk_write_space = psock->save_write_space;
	sk->sk_state_change = psock->save_state_change;
	psock->save_data_ready = NULL;
	psock->save_write_space = NULL;
	psock->save_state_change = NULL;
	strp_stop(&psock->strp);
	psock->strp_enabled = false;
}

static void smap_destroy_psock(struct rcu_head *rcu)
{
	struct smap_psock *psock = container_of(rcu,
						  struct smap_psock, rcu);

	/* Now that a grace period has passed there is no longer
	 * any reference to this sock in the sockmap so we can
	 * destroy the psock, strparser, and bpf programs. But,
	 * because we use workqueue sync operations we can not
	 * do it in rcu context
	 */
	schedule_work(&psock->gc_work);
}

336
static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
337
{
338 339 340
	psock->refcnt--;
	if (psock->refcnt)
		return;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	smap_stop_sock(psock, sock);
	clear_bit(SMAP_TX_RUNNING, &psock->state);
	rcu_assign_sk_user_data(sock, NULL);
	call_rcu_sched(&psock->rcu, smap_destroy_psock);
}

static int smap_parse_func_strparser(struct strparser *strp,
				       struct sk_buff *skb)
{
	struct smap_psock *psock;
	struct bpf_prog *prog;
	int rc;

	rcu_read_lock();
	psock = container_of(strp, struct smap_psock, strp);
	prog = READ_ONCE(psock->bpf_parse);

	if (unlikely(!prog)) {
		rcu_read_unlock();
		return skb->len;
	}

	/* Attach socket for bpf program to use if needed we can do this
	 * because strparser clones the skb before handing it to a upper
	 * layer, meaning skb_orphan has been called. We NULL sk on the
	 * way out to ensure we don't trigger a BUG_ON in skb/sk operations
	 * later and because we are not charging the memory of this skb to
	 * any socket yet.
	 */
	skb->sk = psock->sock;
	bpf_compute_data_end(skb);
	rc = (*prog->bpf_func)(skb, prog->insnsi);
	skb->sk = NULL;
	rcu_read_unlock();
	return rc;
}


static int smap_read_sock_done(struct strparser *strp, int err)
{
	return err;
}

static int smap_init_sock(struct smap_psock *psock,
			  struct sock *sk)
{
388 389 390 391 392
	static const struct strp_callbacks cb = {
		.rcv_msg = smap_read_sock_strparser,
		.parse_msg = smap_parse_func_strparser,
		.read_sock_done = smap_read_sock_done,
	};
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

	return strp_init(&psock->strp, sk, &cb);
}

static void smap_init_progs(struct smap_psock *psock,
			    struct bpf_stab *stab,
			    struct bpf_prog *verdict,
			    struct bpf_prog *parse)
{
	struct bpf_prog *orig_parse, *orig_verdict;

	orig_parse = xchg(&psock->bpf_parse, parse);
	orig_verdict = xchg(&psock->bpf_verdict, verdict);

	if (orig_verdict)
		bpf_prog_put(orig_verdict);
	if (orig_parse)
		bpf_prog_put(orig_parse);
}

static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
{
	if (sk->sk_data_ready == smap_data_ready)
		return;
	psock->save_data_ready = sk->sk_data_ready;
	psock->save_write_space = sk->sk_write_space;
	psock->save_state_change = sk->sk_state_change;
	sk->sk_data_ready = smap_data_ready;
	sk->sk_write_space = smap_write_space;
	sk->sk_state_change = smap_state_change;
	psock->strp_enabled = true;
}

static void sock_map_remove_complete(struct bpf_stab *stab)
{
	bpf_map_area_free(stab->sock_map);
	kfree(stab);
}

static void smap_gc_work(struct work_struct *w)
{
434
	struct smap_psock_map_entry *e, *tmp;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	struct smap_psock *psock;

	psock = container_of(w, struct smap_psock, gc_work);

	/* no callback lock needed because we already detached sockmap ops */
	if (psock->strp_enabled)
		strp_done(&psock->strp);

	cancel_work_sync(&psock->tx_work);
	__skb_queue_purge(&psock->rxqueue);

	/* At this point all strparser and xmit work must be complete */
	if (psock->bpf_parse)
		bpf_prog_put(psock->bpf_parse);
	if (psock->bpf_verdict)
		bpf_prog_put(psock->bpf_verdict);

452 453 454 455
	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
		list_del(&e->list);
		kfree(e);
	}
456 457 458 459 460 461 462 463 464 465

	sock_put(psock->sock);
	kfree(psock);
}

static struct smap_psock *smap_init_psock(struct sock *sock,
					  struct bpf_stab *stab)
{
	struct smap_psock *psock;

466 467 468
	psock = kzalloc_node(sizeof(struct smap_psock),
			     GFP_ATOMIC | __GFP_NOWARN,
			     stab->map.numa_node);
469 470 471 472 473 474 475
	if (!psock)
		return ERR_PTR(-ENOMEM);

	psock->sock = sock;
	skb_queue_head_init(&psock->rxqueue);
	INIT_WORK(&psock->tx_work, smap_tx_work);
	INIT_WORK(&psock->gc_work, smap_gc_work);
476 477
	INIT_LIST_HEAD(&psock->maps);
	psock->refcnt = 1;
478 479 480 481 482 483 484 485 486 487 488 489 490 491

	rcu_assign_sk_user_data(sock, psock);
	sock_hold(sock);
	return psock;
}

static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
{
	struct bpf_stab *stab;
	int err = -EINVAL;
	u64 cost;

	/* check sanity of attributes */
	if (attr->max_entries == 0 || attr->key_size != 4 ||
492
	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		return ERR_PTR(-EINVAL);

	if (attr->value_size > KMALLOC_MAX_SIZE)
		return ERR_PTR(-E2BIG);

	stab = kzalloc(sizeof(*stab), GFP_USER);
	if (!stab)
		return ERR_PTR(-ENOMEM);

	/* mandatory map attributes */
	stab->map.map_type = attr->map_type;
	stab->map.key_size = attr->key_size;
	stab->map.value_size = attr->value_size;
	stab->map.max_entries = attr->max_entries;
	stab->map.map_flags = attr->map_flags;
508
	stab->map.numa_node = bpf_map_attr_numa_node(attr);
509 510 511 512 513 514 515 516 517 518 519 520 521

	/* make sure page count doesn't overflow */
	cost = (u64) stab->map.max_entries * sizeof(struct sock *);
	if (cost >= U32_MAX - PAGE_SIZE)
		goto free_stab;

	stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;

	/* if map size is larger than memlock limit, reject it early */
	err = bpf_map_precharge_memlock(stab->map.pages);
	if (err)
		goto free_stab;

522
	err = -ENOMEM;
523
	stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
524 525
					    sizeof(struct sock *),
					    stab->map.numa_node);
526 527 528 529 530 531 532 533 534
	if (!stab->sock_map)
		goto free_stab;

	return &stab->map;
free_stab:
	kfree(stab);
	return ERR_PTR(err);
}

535 536 537 538 539 540 541 542 543 544 545 546
static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
{
	struct smap_psock_map_entry *e, *tmp;

	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
		if (e->entry == entry) {
			list_del(&e->list);
			break;
		}
	}
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static void sock_map_free(struct bpf_map *map)
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
	int i;

	synchronize_rcu();

	/* At this point no update, lookup or delete operations can happen.
	 * However, be aware we can still get a socket state event updates,
	 * and data ready callabacks that reference the psock from sk_user_data
	 * Also psock worker threads are still in-flight. So smap_release_sock
	 * will only free the psock after cancel_sync on the worker threads
	 * and a grace period expire to ensure psock is really safe to remove.
	 */
	rcu_read_lock();
	for (i = 0; i < stab->map.max_entries; i++) {
563
		struct smap_psock *psock;
564 565 566 567 568 569
		struct sock *sock;

		sock = xchg(&stab->sock_map[i], NULL);
		if (!sock)
			continue;

570 571 572 573 574
		write_lock_bh(&sock->sk_callback_lock);
		psock = smap_psock_sk(sock);
		smap_list_remove(psock, &stab->sock_map[i]);
		smap_release_sock(psock, sock);
		write_unlock_bh(&sock->sk_callback_lock);
575 576 577 578 579 580 581 582
	}
	rcu_read_unlock();

	if (stab->bpf_verdict)
		bpf_prog_put(stab->bpf_verdict);
	if (stab->bpf_parse)
		bpf_prog_put(stab->bpf_parse);

583
	sock_map_remove_complete(stab);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
}

static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
	u32 i = key ? *(u32 *)key : U32_MAX;
	u32 *next = (u32 *)next_key;

	if (i >= stab->map.max_entries) {
		*next = 0;
		return 0;
	}

	if (i == stab->map.max_entries - 1)
		return -ENOENT;

	*next = i + 1;
	return 0;
}

struct sock  *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);

	if (key >= map->max_entries)
		return NULL;

	return READ_ONCE(stab->sock_map[key]);
}

static int sock_map_delete_elem(struct bpf_map *map, void *key)
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
617
	struct smap_psock *psock;
618 619 620 621 622 623 624 625 626 627
	int k = *(u32 *)key;
	struct sock *sock;

	if (k >= map->max_entries)
		return -EINVAL;

	sock = xchg(&stab->sock_map[k], NULL);
	if (!sock)
		return -EINVAL;

628 629 630 631 632 633 634 635 636 637 638
	write_lock_bh(&sock->sk_callback_lock);
	psock = smap_psock_sk(sock);
	if (!psock)
		goto out;

	if (psock->bpf_parse)
		smap_stop_sock(psock, sock);
	smap_list_remove(psock, &stab->sock_map[k]);
	smap_release_sock(psock, sock);
out:
	write_unlock_bh(&sock->sk_callback_lock);
639 640 641 642 643 644 645 646 647 648 649 650 651 652
	return 0;
}

/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
 * done inside rcu critical sections. This ensures on updates that the psock
 * will not be released via smap_release_sock() until concurrent updates/deletes
 * complete. All operations operate on sock_map using cmpxchg and xchg
 * operations to ensure we do not get stale references. Any reads into the
 * map must be done with READ_ONCE() because of this.
 *
 * A psock is destroyed via call_rcu and after any worker threads are cancelled
 * and syncd so we are certain all references from the update/lookup/delete
 * operations as well as references in the data path are no longer in use.
 *
653 654 655 656 657 658 659 660
 * Psocks may exist in multiple maps, but only a single set of parse/verdict
 * programs may be inherited from the maps it belongs to. A reference count
 * is kept with the total number of references to the psock from all maps. The
 * psock will not be released until this reaches zero. The psock and sock
 * user data data use the sk_callback_lock to protect critical data structures
 * from concurrent access. This allows us to avoid two updates from modifying
 * the user data in sock and the lock is required anyways for modifying
 * callbacks, we simply increase its scope slightly.
661
 *
662 663 664 665 666 667 668
 * Rules to follow,
 *  - psock must always be read inside RCU critical section
 *  - sk_user_data must only be modified inside sk_callback_lock and read
 *    inside RCU critical section.
 *  - psock->maps list must only be read & modified inside sk_callback_lock
 *  - sock_map must use READ_ONCE and (cmp)xchg operations
 *  - BPF verdict/parse programs must use READ_ONCE and xchg operations
669 670 671
 */
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
				    struct bpf_map *map,
672
				    void *key, u64 flags)
673 674
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
675
	struct smap_psock_map_entry *e = NULL;
676
	struct bpf_prog *verdict, *parse;
677 678
	struct sock *osock, *sock;
	struct smap_psock *psock;
679
	u32 i = *(u32 *)key;
680
	int err;
681 682 683 684 685 686 687 688

	if (unlikely(flags > BPF_EXIST))
		return -EINVAL;

	if (unlikely(i >= stab->map.max_entries))
		return -E2BIG;

	sock = READ_ONCE(stab->sock_map[i]);
689 690 691
	if (flags == BPF_EXIST && !sock)
		return -ENOENT;
	else if (flags == BPF_NOEXIST && sock)
692 693
		return -EEXIST;

694
	sock = skops->sk;
695

696 697 698 699 700 701
	/* 1. If sock map has BPF programs those will be inherited by the
	 * sock being added. If the sock is already attached to BPF programs
	 * this results in an error.
	 */
	verdict = READ_ONCE(stab->bpf_verdict);
	parse = READ_ONCE(stab->bpf_parse);
702

703
	if (parse && verdict) {
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		/* bpf prog refcnt may be zero if a concurrent attach operation
		 * removes the program after the above READ_ONCE() but before
		 * we increment the refcnt. If this is the case abort with an
		 * error.
		 */
		verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
		if (IS_ERR(verdict))
			return PTR_ERR(verdict);

		parse = bpf_prog_inc_not_zero(stab->bpf_parse);
		if (IS_ERR(parse)) {
			bpf_prog_put(verdict);
			return PTR_ERR(parse);
		}
	}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	write_lock_bh(&sock->sk_callback_lock);
	psock = smap_psock_sk(sock);

	/* 2. Do not allow inheriting programs if psock exists and has
	 * already inherited programs. This would create confusion on
	 * which parser/verdict program is running. If no psock exists
	 * create one. Inside sk_callback_lock to ensure concurrent create
	 * doesn't update user data.
	 */
	if (psock) {
		if (READ_ONCE(psock->bpf_parse) && parse) {
			err = -EBUSY;
			goto out_progs;
		}
		psock->refcnt++;
	} else {
736 737
		psock = smap_init_psock(sock, stab);
		if (IS_ERR(psock)) {
738 739
			err = PTR_ERR(psock);
			goto out_progs;
740
		}
741

742 743 744
		set_bit(SMAP_TX_RUNNING, &psock->state);
	}

745 746 747 748 749 750 751 752 753 754 755
	e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
	if (!e) {
		err = -ENOMEM;
		goto out_progs;
	}
	e->entry = &stab->sock_map[i];

	/* 3. At this point we have a reference to a valid psock that is
	 * running. Attach any BPF programs needed.
	 */
	if (parse && verdict && !psock->strp_enabled) {
756 757
		err = smap_init_sock(psock, sock);
		if (err)
758
			goto out_free;
759 760 761 762
		smap_init_progs(psock, stab, verdict, parse);
		smap_start_sock(psock, sock);
	}

763 764 765 766 767 768 769
	/* 4. Place psock in sockmap for use and stop any programs on
	 * the old sock assuming its not the same sock we are replacing
	 * it with. Because we can only have a single set of programs if
	 * old_sock has a strp we can stop it.
	 */
	list_add_tail(&e->list, &psock->maps);
	write_unlock_bh(&sock->sk_callback_lock);
770

771 772 773 774 775 776 777 778 779 780 781
	osock = xchg(&stab->sock_map[i], sock);
	if (osock) {
		struct smap_psock *opsock = smap_psock_sk(osock);

		write_lock_bh(&osock->sk_callback_lock);
		if (osock != sock && parse)
			smap_stop_sock(opsock, osock);
		smap_list_remove(opsock, &stab->sock_map[i]);
		smap_release_sock(opsock, osock);
		write_unlock_bh(&osock->sk_callback_lock);
	}
782
	return 0;
783 784 785 786 787 788 789
out_free:
	smap_release_sock(psock, sock);
out_progs:
	if (verdict)
		bpf_prog_put(verdict);
	if (parse)
		bpf_prog_put(parse);
790
	write_unlock_bh(&sock->sk_callback_lock);
791
	kfree(e);
792 793 794
	return err;
}

795
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
796 797
{
	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
798
	struct bpf_prog *orig;
799

800 801 802
	if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
		return -EINVAL;

803 804 805 806 807 808 809 810 811 812
	switch (type) {
	case BPF_SK_SKB_STREAM_PARSER:
		orig = xchg(&stab->bpf_parse, prog);
		break;
	case BPF_SK_SKB_STREAM_VERDICT:
		orig = xchg(&stab->bpf_verdict, prog);
		break;
	default:
		return -EOPNOTSUPP;
	}
813

814 815
	if (orig)
		bpf_prog_put(orig);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	return 0;
}

static void *sock_map_lookup(struct bpf_map *map, void *key)
{
	return NULL;
}

static int sock_map_update_elem(struct bpf_map *map,
				void *key, void *value, u64 flags)
{
	struct bpf_sock_ops_kern skops;
	u32 fd = *(u32 *)value;
	struct socket *socket;
	int err;

	socket = sockfd_lookup(fd, &err);
	if (!socket)
		return err;

	skops.sk = socket->sk;
	if (!skops.sk) {
		fput(socket->file);
		return -EINVAL;
	}

843 844 845 846 847 848
	if (skops.sk->sk_type != SOCK_STREAM ||
	    skops.sk->sk_protocol != IPPROTO_TCP) {
		fput(socket->file);
		return -EOPNOTSUPP;
	}

849
	err = sock_map_ctx_update_elem(&skops, map, key, flags);
850 851 852 853 854 855 856 857 858 859 860 861 862
	fput(socket->file);
	return err;
}

const struct bpf_map_ops sock_map_ops = {
	.map_alloc = sock_map_alloc,
	.map_free = sock_map_free,
	.map_lookup_elem = sock_map_lookup,
	.map_get_next_key = sock_map_get_next_key,
	.map_update_elem = sock_map_update_elem,
	.map_delete_elem = sock_map_delete_elem,
};

863 864
BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
	   struct bpf_map *, map, void *, key, u64, flags)
865 866
{
	WARN_ON_ONCE(!rcu_read_lock_held());
867
	return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
868 869 870 871 872 873 874 875 876 877 878 879
}

const struct bpf_func_proto bpf_sock_map_update_proto = {
	.func		= bpf_sock_map_update,
	.gpl_only	= false,
	.pkt_access	= true,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_CONST_MAP_PTR,
	.arg3_type	= ARG_PTR_TO_MAP_KEY,
	.arg4_type	= ARG_ANYTHING,
};