i2c-mxs.c 18.3 KB
Newer Older
1 2 3
/*
 * Freescale MXS I2C bus driver
 *
4
 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * based on a (non-working) driver which was:
 *
 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/jiffies.h>
#include <linux/io.h>
S
Shawn Guo 已提交
27
#include <linux/pinctrl/consumer.h>
28
#include <linux/stmp_device.h>
29 30 31
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_i2c.h>
32 33 34
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/fsl/mxs-dma.h>
35 36 37 38 39 40 41

#define DRIVER_NAME "mxs-i2c"

#define MXS_I2C_CTRL0		(0x00)
#define MXS_I2C_CTRL0_SET	(0x04)

#define MXS_I2C_CTRL0_SFTRST			0x80000000
42
#define MXS_I2C_CTRL0_RUN			0x20000000
43 44 45 46 47 48 49 50
#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
#define MXS_I2C_CTRL0_DIRECTION			0x00010000
#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)

51 52 53 54
#define MXS_I2C_TIMING0		(0x10)
#define MXS_I2C_TIMING1		(0x20)
#define MXS_I2C_TIMING2		(0x30)

55 56 57 58 59 60 61 62 63 64 65 66 67
#define MXS_I2C_CTRL1		(0x40)
#define MXS_I2C_CTRL1_SET	(0x44)
#define MXS_I2C_CTRL1_CLR	(0x48)

#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01

68 69 70 71 72 73 74
#define MXS_I2C_DATA		(0xa0)

#define MXS_I2C_DEBUG0		(0xb0)
#define MXS_I2C_DEBUG0_CLR	(0xb8)

#define MXS_I2C_DEBUG0_DMAREQ	0x80000000

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_IRQ)


#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
				 MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION |	\
				 MXS_I2C_CTRL0_XFER_COUNT(1))

#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION)

#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
				 MXS_I2C_CTRL0_MASTER_MODE)

/**
 * struct mxs_i2c_dev - per device, private MXS-I2C data
 *
 * @dev: driver model device node
 * @regs: IO registers pointer
 * @cmd_complete: completion object for transaction wait
 * @cmd_err: error code for last transaction
 * @adapter: i2c subsystem adapter node
 */
struct mxs_i2c_dev {
	struct device *dev;
	void __iomem *regs;
	struct completion cmd_complete;
F
Fabio Estevam 已提交
109
	int cmd_err;
110
	struct i2c_adapter adapter;
111 112 113

	uint32_t timing0;
	uint32_t timing1;
114 115 116 117 118 119 120 121 122

	/* DMA support components */
	int				dma_channel;
	struct dma_chan         	*dmach;
	struct mxs_dma_data		dma_data;
	uint32_t			pio_data[2];
	uint32_t			addr_data;
	struct scatterlist		sg_io[2];
	bool				dma_read;
123 124 125 126
};

static void mxs_i2c_reset(struct mxs_i2c_dev *i2c)
{
127
	stmp_reset_block(i2c->regs);
128

129 130 131 132 133 134 135 136 137 138
	/*
	 * Configure timing for the I2C block. The I2C TIMING2 register has to
	 * be programmed with this particular magic number. The rest is derived
	 * from the XTAL speed and requested I2C speed.
	 *
	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
	 */
	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
	writel(0x00300030, i2c->regs + MXS_I2C_TIMING2);
139

140 141 142
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
{
	if (i2c->dma_read) {
		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
	} else {
		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
	}
}

static void mxs_i2c_dma_irq_callback(void *param)
{
	struct mxs_i2c_dev *i2c = param;

	complete(&i2c->cmd_complete);
	mxs_i2c_dma_finish(i2c);
}

static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct dma_async_tx_descriptor *desc;
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);

	if (msg->flags & I2C_M_RD) {
		i2c->dma_read = 1;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;

		/*
		 * SELECT command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto select_init_dma_fail;
		}

		/*
		 * READ command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[1],
					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_dma_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
					DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto read_init_dma_fail;
		}
	} else {
		i2c->dma_read = 0;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;

		/*
		 * WRITE command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto write_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_table(i2c->sg_io, 2);
		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto write_init_dma_fail;
		}
	}

	/*
	 * The last descriptor must have this callback,
	 * to finish the DMA transaction.
	 */
	desc->callback = mxs_i2c_dma_irq_callback;
	desc->callback_param = i2c;

	/* Start the transfer. */
	dmaengine_submit(desc);
	dma_async_issue_pending(i2c->dmach);
	return 0;

/* Read failpath. */
read_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
select_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
select_init_pio_fail:
278
	dmaengine_terminate_all(i2c->dmach);
279 280 281 282 283 284
	return -EINVAL;

/* Write failpath. */
write_init_dma_fail:
	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
write_init_pio_fail:
285
	dmaengine_terminate_all(i2c->dmach);
286 287 288
	return -EINVAL;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
static int mxs_i2c_pio_wait_dmareq(struct mxs_i2c_dev *i2c)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);

	while (!(readl(i2c->regs + MXS_I2C_DEBUG0) &
		MXS_I2C_DEBUG0_DMAREQ)) {
		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;
		cond_resched();
	}

	writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR);

	return 0;
}

static int mxs_i2c_pio_wait_cplt(struct mxs_i2c_dev *i2c)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);

	/*
	 * We do not use interrupts in the PIO mode. Due to the
	 * maximum transfer length being 8 bytes in PIO mode, the
	 * overhead of interrupt would be too large and this would
	 * neglect the gain from using the PIO mode.
	 */

	while (!(readl(i2c->regs + MXS_I2C_CTRL1) &
		MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)) {
		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;
		cond_resched();
	}

	writel(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ,
		i2c->regs + MXS_I2C_CTRL1_CLR);

	return 0;
}

static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
	uint32_t addr_data = msg->addr << 1;
	uint32_t data = 0;
	int i, shifts_left, ret;

	/* Mute IRQs coming from this block. */
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);

	if (msg->flags & I2C_M_RD) {
		addr_data |= I2C_SMBUS_READ;

		/* SELECT command. */
		writel(MXS_I2C_CTRL0_RUN | MXS_CMD_I2C_SELECT,
			i2c->regs + MXS_I2C_CTRL0);

		ret = mxs_i2c_pio_wait_dmareq(i2c);
		if (ret)
			return ret;

		writel(addr_data, i2c->regs + MXS_I2C_DATA);

		ret = mxs_i2c_pio_wait_cplt(i2c);
		if (ret)
			return ret;

		/* READ command. */
		writel(MXS_I2C_CTRL0_RUN | MXS_CMD_I2C_READ | flags |
			MXS_I2C_CTRL0_XFER_COUNT(msg->len),
			i2c->regs + MXS_I2C_CTRL0);

		for (i = 0; i < msg->len; i++) {
			if ((i & 3) == 0) {
				ret = mxs_i2c_pio_wait_dmareq(i2c);
				if (ret)
					return ret;
				data = readl(i2c->regs + MXS_I2C_DATA);
			}
			msg->buf[i] = data & 0xff;
			data >>= 8;
		}
	} else {
		addr_data |= I2C_SMBUS_WRITE;

		/* WRITE command. */
		writel(MXS_I2C_CTRL0_RUN | MXS_CMD_I2C_WRITE | flags |
			MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1),
			i2c->regs + MXS_I2C_CTRL0);

		/*
		 * The LSB of data buffer is the first byte blasted across
		 * the bus. Higher order bytes follow. Thus the following
		 * filling schematic.
		 */
		data = addr_data << 24;
		for (i = 0; i < msg->len; i++) {
			data >>= 8;
			data |= (msg->buf[i] << 24);
			if ((i & 3) == 2) {
				ret = mxs_i2c_pio_wait_dmareq(i2c);
				if (ret)
					return ret;
				writel(data, i2c->regs + MXS_I2C_DATA);
			}
		}

		shifts_left = 24 - (i & 3) * 8;
		if (shifts_left) {
			data >>= shifts_left;
			ret = mxs_i2c_pio_wait_dmareq(i2c);
			if (ret)
				return ret;
			writel(data, i2c->regs + MXS_I2C_DATA);
		}
	}

	ret = mxs_i2c_pio_wait_cplt(i2c);
	if (ret)
		return ret;

	/* Clear any dangling IRQs and re-enable interrupts. */
	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);

	return 0;
}

418 419 420 421 422 423 424 425 426 427
/*
 * Low level master read/write transaction.
 */
static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
				int stop)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
	int ret;
	int flags;

428 429
	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;

430 431 432 433 434 435
	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
		msg->addr, msg->len, msg->flags, stop);

	if (msg->len == 0)
		return -EINVAL;

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	/*
	 * The current boundary to select between PIO/DMA transfer method
	 * is set to 8 bytes, transfers shorter than 8 bytes are transfered
	 * using PIO mode while longer transfers use DMA. The 8 byte border is
	 * based on this empirical measurement and a lot of previous frobbing.
	 */
	if (msg->len < 8) {
		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
		if (ret)
			mxs_i2c_reset(i2c);
	} else {
		i2c->cmd_err = 0;
		INIT_COMPLETION(i2c->cmd_complete);
		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
		if (ret)
			return ret;
452

453
		ret = wait_for_completion_timeout(&i2c->cmd_complete,
454
						msecs_to_jiffies(1000));
455 456 457 458 459
		if (ret == 0)
			goto timeout;

		if (i2c->cmd_err == -ENXIO)
			mxs_i2c_reset(i2c);
460

461 462
		ret = i2c->cmd_err;
	}
463

464
	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
465

466
	return ret;
467 468 469

timeout:
	dev_dbg(i2c->dev, "Timeout!\n");
470
	mxs_i2c_dma_finish(i2c);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	mxs_i2c_reset(i2c);
	return -ETIMEDOUT;
}

static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
			int num)
{
	int i;
	int err;

	for (i = 0; i < num; i++) {
		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
		if (err)
			return err;
	}

	return num;
}

static u32 mxs_i2c_func(struct i2c_adapter *adap)
{
492
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
{
	struct mxs_i2c_dev *i2c = dev_id;
	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;

	if (!stat)
		return IRQ_NONE;

	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
		i2c->cmd_err = -ENXIO;
	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
		i2c->cmd_err = -EIO;

	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
512

513 514 515 516 517 518 519 520
	return IRQ_HANDLED;
}

static const struct i2c_algorithm mxs_i2c_algo = {
	.master_xfer = mxs_i2c_xfer,
	.functionality = mxs_i2c_func,
};

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static bool mxs_i2c_dma_filter(struct dma_chan *chan, void *param)
{
	struct mxs_i2c_dev *i2c = param;

	if (!mxs_dma_is_apbx(chan))
		return false;

	if (chan->chan_id != i2c->dma_channel)
		return false;

	chan->private = &i2c->dma_data;

	return true;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, int speed)
{
	/* The I2C block clock run at 24MHz */
	const uint32_t clk = 24000000;
	uint32_t base;
	uint16_t high_count, low_count, rcv_count, xmit_count;
	struct device *dev = i2c->dev;

	if (speed > 540000) {
		dev_warn(dev, "Speed too high (%d Hz), using 540 kHz\n", speed);
		speed = 540000;
	} else if (speed < 12000) {
		dev_warn(dev, "Speed too low (%d Hz), using 12 kHz\n", speed);
		speed = 12000;
	}

	/*
	 * The timing derivation algorithm. There is no documentation for this
	 * algorithm available, it was derived by using the scope and fiddling
	 * with constants until the result observed on the scope was good enough
	 * for 20kHz, 50kHz, 100kHz, 200kHz, 300kHz and 400kHz. It should be
	 * possible to assume the algorithm works for other frequencies as well.
	 *
	 * Note it was necessary to cap the frequency on both ends as it's not
	 * possible to configure completely arbitrary frequency for the I2C bus
	 * clock.
	 */
	base = ((clk / speed) - 38) / 2;
	high_count = base + 3;
	low_count = base - 3;
	rcv_count = (high_count * 3) / 4;
	xmit_count = low_count / 4;

	i2c->timing0 = (high_count << 16) | rcv_count;
	i2c->timing1 = (low_count << 16) | xmit_count;
}

573 574 575 576 577 578 579
static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
{
	uint32_t speed;
	struct device *dev = i2c->dev;
	struct device_node *node = dev->of_node;
	int ret;

580 581 582 583 584 585 586
	/*
	 * TODO: This is a temporary solution and should be changed
	 * to use generic DMA binding later when the helpers get in.
	 */
	ret = of_property_read_u32(node, "fsl,i2c-dma-channel",
				   &i2c->dma_channel);
	if (ret) {
587 588
		dev_err(dev, "Failed to get DMA channel!\n");
		return -ENODEV;
589 590
	}

591
	ret = of_property_read_u32(node, "clock-frequency", &speed);
592
	if (ret) {
593
		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
594 595 596 597
		speed = 100000;
	}

	mxs_i2c_derive_timing(i2c, speed);
598 599 600 601

	return 0;
}

602
static int mxs_i2c_probe(struct platform_device *pdev)
603 604 605 606
{
	struct device *dev = &pdev->dev;
	struct mxs_i2c_dev *i2c;
	struct i2c_adapter *adap;
S
Shawn Guo 已提交
607
	struct pinctrl *pinctrl;
608 609
	struct resource *res;
	resource_size_t res_size;
610 611
	int err, irq, dmairq;
	dma_cap_mask_t mask;
612

S
Shawn Guo 已提交
613 614 615 616
	pinctrl = devm_pinctrl_get_select_default(dev);
	if (IS_ERR(pinctrl))
		return PTR_ERR(pinctrl);

617 618 619 620 621
	i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
622 623 624 625
	irq = platform_get_irq(pdev, 0);
	dmairq = platform_get_irq(pdev, 1);

	if (!res || irq < 0 || dmairq < 0)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		return -ENOENT;

	res_size = resource_size(res);
	if (!devm_request_mem_region(dev, res->start, res_size, res->name))
		return -EBUSY;

	i2c->regs = devm_ioremap_nocache(dev, res->start, res_size);
	if (!i2c->regs)
		return -EBUSY;

	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
	if (err)
		return err;

	i2c->dev = dev;
641

642 643
	init_completion(&i2c->cmd_complete);

644 645 646 647 648
	if (dev->of_node) {
		err = mxs_i2c_get_ofdata(i2c);
		if (err)
			return err;
	}
649

650
	/* Setup the DMA */
651 652 653 654 655 656 657
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	i2c->dma_data.chan_irq = dmairq;
	i2c->dmach = dma_request_channel(mask, mxs_i2c_dma_filter, i2c);
	if (!i2c->dmach) {
		dev_err(dev, "Failed to request dma\n");
		return -ENODEV;
658 659
	}

660 661 662 663 664 665 666 667 668 669 670
	platform_set_drvdata(pdev, i2c);

	/* Do reset to enforce correct startup after pinmuxing */
	mxs_i2c_reset(i2c);

	adap = &i2c->adapter;
	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
	adap->owner = THIS_MODULE;
	adap->algo = &mxs_i2c_algo;
	adap->dev.parent = dev;
	adap->nr = pdev->id;
671
	adap->dev.of_node = pdev->dev.of_node;
672 673 674 675 676 677 678 679 680
	i2c_set_adapdata(adap, i2c);
	err = i2c_add_numbered_adapter(adap);
	if (err) {
		dev_err(dev, "Failed to add adapter (%d)\n", err);
		writel(MXS_I2C_CTRL0_SFTRST,
				i2c->regs + MXS_I2C_CTRL0_SET);
		return err;
	}

681 682
	of_i2c_register_devices(adap);

683 684 685
	return 0;
}

686
static int mxs_i2c_remove(struct platform_device *pdev)
687 688 689
{
	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);

690
	i2c_del_adapter(&i2c->adapter);
691

692 693 694
	if (i2c->dmach)
		dma_release_channel(i2c->dmach);

695 696 697 698 699
	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);

	return 0;
}

700 701 702 703 704 705
static const struct of_device_id mxs_i2c_dt_ids[] = {
	{ .compatible = "fsl,imx28-i2c", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);

706 707 708 709
static struct platform_driver mxs_i2c_driver = {
	.driver = {
		   .name = DRIVER_NAME,
		   .owner = THIS_MODULE,
710
		   .of_match_table = mxs_i2c_dt_ids,
711
		   },
712
	.remove = mxs_i2c_remove,
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
};

static int __init mxs_i2c_init(void)
{
	return platform_driver_probe(&mxs_i2c_driver, mxs_i2c_probe);
}
subsys_initcall(mxs_i2c_init);

static void __exit mxs_i2c_exit(void)
{
	platform_driver_unregister(&mxs_i2c_driver);
}
module_exit(mxs_i2c_exit);

MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
MODULE_DESCRIPTION("MXS I2C Bus Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);