igb_ptp.c 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

/*
30 31 32
 * The 82580 timesync updates the system timer every 8ns by 8ns,
 * and this update value cannot be reprogrammed.
 *
33 34 35 36 37 38 39 40 41 42 43
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
44 45 46 47 48 49 50 51
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

72
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
73
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
74 75 76 77
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40
78 79 80 81 82

/*
 * SYSTIM read access for the 82576
 */

83
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
84 85 86
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
87 88
	u64 val;
	u32 lo, hi;
89 90 91 92 93 94 95 96 97 98 99 100 101 102

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

/*
 * SYSTIM read access for the 82580
 */

103
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
104 105 106
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
107 108
	u64 val;
	u32 lo, hi, jk;
109

110 111 112 113 114
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
115 116 117 118 119 120 121 122 123 124
	jk = rd32(E1000_SYSTIMR);
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * SYSTIM read access for I210/I211
 */

static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 sec, nsec, jk;

	/*
	 * The timestamp latches on lowest register read. For I210/I211, the
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
	jk = rd32(E1000_SYSTIMR);
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * Writing the SYSTIMR register is not necessary as it only provides
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
185 186 187 188 189 190 191 192 193 194 195 196
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
197 198
	case e1000_i210:
	case e1000_i211:
199 200 201 202
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
203 204
		break;
	default:
205
		break;
206 207 208
	}
}

209 210 211 212
/*
 * PTP clock operations
 */

213
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
214
{
215 216 217 218
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

242
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
243
{
244 245 246 247
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

268
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
269
{
270 271
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
272
	unsigned long flags;
273
	s64 now;
274 275 276 277 278 279 280 281 282 283 284 285

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	now = timecounter_read(&igb->tc);
	now += delta;
	timecounter_init(&igb->tc, &igb->cc, now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
306
{
307 308 309
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
343
{
344 345
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
346
	unsigned long flags;
347
	u64 ns;
348 349 350 351 352 353 354 355 356 357 358 359 360

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

377 378
static int igb_ptp_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *rq, int on)
379 380 381 382
{
	return -EOPNOTSUPP;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
 */
void igb_ptp_tx_work(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

400 401 402 403 404 405 406 407 408
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		adapter->tx_hwtstamp_timeouts++;
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
		return;
	}

409 410 411 412 413 414 415 416
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

417
static void igb_ptp_overflow_check(struct work_struct *work)
418
{
419 420 421 422
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

423
	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
424 425 426 427 428

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
429 430
}

431 432
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
433
 * @adapter: Board private structure.
434 435 436 437 438
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
439
void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
440
{
441 442 443
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
444

445 446
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
447

448
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
449 450 451
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
 */
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
468
	__le64 *regval = (__le64 *)va;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	/*
	 * The timestamp is recorded in little endian format.
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
 */
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
505 506 507 508 509
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}

/**
 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
 **/
int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
			   struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct hwtstamp_config config;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
576 577 578 579
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
580 581
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
582
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
583 584 585 586 587 588 589
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
590 591 592 593 594 595 596 597 598 599 600
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			break;
		}
		/* fall through */
601
	default:
M
Matthew Vick 已提交
602
		config.rx_filter = HWTSTAMP_FILTER_NONE;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
M
Matthew Vick 已提交
620 621 622
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		is_l2 = true;
		is_l4 = true;
623 624 625 626 627 628 629

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
680
	regval = rd32(E1000_TXSTMPL);
681
	regval = rd32(E1000_TXSTMPH);
682
	regval = rd32(E1000_RXSTMPL);
683 684 685 686
	regval = rd32(E1000_RXSTMPH);

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
687 688 689 690 691
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
692
	struct net_device *netdev = adapter->netdev;
693 694

	switch (hw->mac.type) {
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 1000000000;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
713
	case e1000_82580:
714
	case e1000_i350:
715
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
716 717 718 719 720
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
721 722 723
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
724 725 726 727 728
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
729 730 731
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
732 733
	case e1000_i210:
	case e1000_i211:
734
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
735
		adapter->ptp_caps.owner = THIS_MODULE;
736
		adapter->ptp_caps.max_adj = 62499999;
737 738
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
739 740 741 742
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
743
		adapter->ptp_caps.enable = igb_ptp_enable;
744 745
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
746 747 748 749 750 751 752 753
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

754 755
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
756

757 758 759
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());
760

761 762 763 764
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
765

766 767
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
768

769 770 771
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
772

773 774 775 776 777 778
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		wr32(E1000_TSIM, E1000_TSIM_TXTS);
		wr32(E1000_IMS, E1000_IMS_TS);
	}

779 780
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
781 782 783
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
784
	} else {
785 786
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
787 788
		adapter->flags |= IGB_FLAG_PTP;
	}
789 790
}

791 792 793 794 795 796 797
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
798
{
799 800
	switch (adapter->hw.mac.type) {
	case e1000_82576:
801 802
	case e1000_82580:
	case e1000_i350:
803
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
804
		break;
805 806 807 808
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
809 810 811
	default:
		return;
	}
812

813 814
	cancel_work_sync(&adapter->ptp_tx_work);

815 816 817 818
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
819
		adapter->flags &= ~IGB_FLAG_PTP;
820 821
	}
}
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		/* Enable the timer functions and interrupts. */
		wr32(E1000_TSAUXC, 0x0);
		wr32(E1000_TSIM, E1000_TSIM_TXTS);
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		return;
	}

855 856 857 858 859 860 861 862 863
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
864
}