compression.c 28.2 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/bit_spinlock.h>
34
#include <linux/slab.h>
C
Chris Mason 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

struct compressed_bio {
	/* number of bios pending for this compressed extent */
	atomic_t pending_bios;

	/* the pages with the compressed data on them */
	struct page **compressed_pages;

	/* inode that owns this data */
	struct inode *inode;

	/* starting offset in the inode for our pages */
	u64 start;

	/* number of bytes in the inode we're working on */
	unsigned long len;

	/* number of bytes on disk */
	unsigned long compressed_len;

64 65 66
	/* the compression algorithm for this bio */
	int compress_type;

C
Chris Mason 已提交
67 68 69 70 71
	/* number of compressed pages in the array */
	unsigned long nr_pages;

	/* IO errors */
	int errors;
72
	int mirror_num;
C
Chris Mason 已提交
73 74 75

	/* for reads, this is the bio we are copying the data into */
	struct bio *orig_bio;
76 77 78 79 80 81

	/*
	 * the start of a variable length array of checksums only
	 * used by reads
	 */
	u32 sums;
C
Chris Mason 已提交
82 83
};

84 85 86 87
static int btrfs_decompress_biovec(int type, struct page **pages_in,
				   u64 disk_start, struct bio_vec *bvec,
				   int vcnt, size_t srclen);

88 89 90
static inline int compressed_bio_size(struct btrfs_root *root,
				      unsigned long disk_size)
{
91 92
	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);

93
	return sizeof(struct compressed_bio) +
94
		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 96
}

C
Chris Mason 已提交
97 98 99 100 101 102
static struct bio *compressed_bio_alloc(struct block_device *bdev,
					u64 first_byte, gfp_t gfp_flags)
{
	int nr_vecs;

	nr_vecs = bio_get_nr_vecs(bdev);
103
	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
C
Chris Mason 已提交
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static int check_compressed_csum(struct inode *inode,
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

117
	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118 119 120 121 122 123
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

124
		kaddr = kmap_atomic(page);
125
		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126
		btrfs_csum_final(csum, (char *)&csum);
127
		kunmap_atomic(kaddr);
128 129

		if (csum != *cb_sum) {
130 131 132 133
			btrfs_info(BTRFS_I(inode)->root->fs_info,
			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
			   btrfs_ino(inode), disk_start, csum, *cb_sum,
			   cb->mirror_num);
134 135 136 137 138 139 140 141 142 143 144
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
145 146 147 148 149 150 151 152 153 154
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
155
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
156 157 158 159 160 161 162
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
	int ret;

163
	if (bio->bi_error)
C
Chris Mason 已提交
164 165 166 167 168 169 170 171
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
	if (!atomic_dec_and_test(&cb->pending_bios))
		goto out;

172
	inode = cb->inode;
173 174
	ret = check_compressed_csum(inode, cb,
				    (u64)bio->bi_iter.bi_sector << 9);
175 176 177
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
178 179 180
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
181 182 183 184 185 186
	ret = btrfs_decompress_biovec(cb->compress_type,
				      cb->compressed_pages,
				      cb->start,
				      cb->orig_bio->bi_io_vec,
				      cb->orig_bio->bi_vcnt,
				      cb->compressed_len);
187
csum_failed:
C
Chris Mason 已提交
188 189 190 191 192 193 194 195 196 197 198 199
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		page_cache_release(page);
	}

	/* do io completion on the original bio */
200
	if (cb->errors) {
C
Chris Mason 已提交
201
		bio_io_error(cb->orig_bio);
202
	} else {
203 204
		int i;
		struct bio_vec *bvec;
205 206 207 208 209

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
210
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
211
			SetPageChecked(bvec->bv_page);
212

213
		bio_endio(cb->orig_bio);
214
	}
C
Chris Mason 已提交
215 216 217 218 219 220 221 222 223 224 225 226

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
227 228
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
229
{
230 231
	unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
C
Chris Mason 已提交
232 233 234 235 236
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

237 238 239
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
240
	while (nr_pages > 0) {
C
Chris Mason 已提交
241
		ret = find_get_pages_contig(inode->i_mapping, index,
242 243
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
244 245 246 247 248 249
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
250 251
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
			end_page_writeback(pages[i]);
			page_cache_release(pages[i]);
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
269
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
270 271 272 273 274 275 276
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

277
	if (bio->bi_error)
C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
	if (!atomic_dec_and_test(&cb->pending_bios))
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
291
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
292 293 294
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
295
					 NULL,
296
					 bio->bi_error ? 0 : 1);
C
Chris Mason 已提交
297
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
298

299
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		page_cache_release(page);
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
int btrfs_submit_compressed_write(struct inode *inode, u64 start,
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
				 unsigned long nr_pages)
{
	struct bio *bio = NULL;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	struct compressed_bio *cb;
	unsigned long bytes_left;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
340
	int pg_index = 0;
C
Chris Mason 已提交
341 342 343 344
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
	int ret;
345
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
346 347

	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
348
	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
349 350
	if (!cb)
		return -ENOMEM;
C
Chris Mason 已提交
351 352 353 354 355
	atomic_set(&cb->pending_bios, 0);
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
356
	cb->mirror_num = 0;
C
Chris Mason 已提交
357 358 359 360 361 362 363 364
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;

	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
365
	if (!bio) {
366 367 368
		kfree(cb);
		return -ENOMEM;
	}
C
Chris Mason 已提交
369 370 371 372 373 374
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
	atomic_inc(&cb->pending_bios);

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
375 376
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
377
		page->mapping = inode->i_mapping;
378
		if (bio->bi_iter.bi_size)
379
			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
C
Chris Mason 已提交
380 381 382 383 384
							   PAGE_CACHE_SIZE,
							   bio, 0);
		else
			ret = 0;

C
Chris Mason 已提交
385
		page->mapping = NULL;
C
Chris Mason 已提交
386 387 388 389
		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
		    PAGE_CACHE_SIZE) {
			bio_get(bio);

390 391 392 393 394 395 396
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
			atomic_inc(&cb->pending_bios);
397 398
			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
					BTRFS_WQ_ENDIO_DATA);
399
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
400

401 402 403
			if (!skip_sum) {
				ret = btrfs_csum_one_bio(root, inode, bio,
							 start, 1);
404
				BUG_ON(ret); /* -ENOMEM */
405
			}
406

C
Chris Mason 已提交
407
			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
408
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
409 410 411 412

			bio_put(bio);

			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
413
			BUG_ON(!bio);
C
Chris Mason 已提交
414 415 416 417
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
		}
418
		if (bytes_left < PAGE_CACHE_SIZE) {
419 420
			btrfs_info(BTRFS_I(inode)->root->fs_info,
					"bytes left %lu compress len %lu nr %lu",
421 422
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
C
Chris Mason 已提交
423 424
		bytes_left -= PAGE_CACHE_SIZE;
		first_byte += PAGE_CACHE_SIZE;
425
		cond_resched();
C
Chris Mason 已提交
426 427 428
	}
	bio_get(bio);

429
	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
431

432 433
	if (!skip_sum) {
		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434
		BUG_ON(ret); /* -ENOMEM */
435
	}
436

C
Chris Mason 已提交
437
	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
439 440 441 442 443

	bio_put(bio);
	return 0;
}

444 445 446 447 448
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
449
	unsigned long pg_index;
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;

C
Chris Mason 已提交
472
	while (last_offset < compressed_end) {
473
		pg_index = last_offset >> PAGE_CACHE_SHIFT;
474

475
		if (pg_index > end_index)
476 477 478
			break;

		rcu_read_lock();
479
		page = radix_tree_lookup(&mapping->page_tree, pg_index);
480
		rcu_read_unlock();
481
		if (page && !radix_tree_exceptional_entry(page)) {
482 483 484 485 486 487
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

488 489
		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
								~__GFP_FS);
490 491 492
		if (!page)
			break;

493
		if (add_to_page_cache_lru(page, mapping, pg_index,
494
								GFP_NOFS)) {
495 496 497 498 499 500 501 502 503 504 505
			page_cache_release(page);
			goto next;
		}

		end = last_offset + PAGE_CACHE_SIZE - 1;
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
506
		lock_extent(tree, last_offset, end);
507
		read_lock(&em_tree->lock);
508 509
		em = lookup_extent_mapping(em_tree, last_offset,
					   PAGE_CACHE_SIZE);
510
		read_unlock(&em_tree->lock);
511 512 513

		if (!em || last_offset < em->start ||
		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
514
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
515
			free_extent_map(em);
516
			unlock_extent(tree, last_offset, end);
517 518 519 520 521 522 523 524 525 526 527 528 529
			unlock_page(page);
			page_cache_release(page);
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);

			if (zero_offset) {
				int zeros;
				zeros = PAGE_CACHE_SIZE - zero_offset;
530
				userpage = kmap_atomic(page);
531 532
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
533
				kunmap_atomic(userpage);
534 535 536 537 538 539 540 541 542 543
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
				   PAGE_CACHE_SIZE, 0);

		if (ret == PAGE_CACHE_SIZE) {
			nr_pages++;
			page_cache_release(page);
		} else {
544
			unlock_extent(tree, last_offset, end);
545 546 547 548 549 550 551 552 553 554
			unlock_page(page);
			page_cache_release(page);
			break;
		}
next:
		last_offset += PAGE_CACHE_SIZE;
	}
	return 0;
}

C
Chris Mason 已提交
555 556 557 558 559
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
560
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 * bio->bi_io_vec points to all of the inode pages
 * bio->bi_vcnt is a count of pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
				 int mirror_num, unsigned long bio_flags)
{
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	struct btrfs_root *root = BTRFS_I(inode)->root;
	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
	unsigned long compressed_len;
	unsigned long nr_pages;
577
	unsigned long pg_index;
C
Chris Mason 已提交
578 579 580
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
581
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
582 583
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
584
	struct extent_map *em;
585
	int ret = -ENOMEM;
586
	int faili = 0;
587
	u32 *sums;
C
Chris Mason 已提交
588 589 590 591 592

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
593
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
594 595 596
	em = lookup_extent_mapping(em_tree,
				   page_offset(bio->bi_io_vec->bv_page),
				   PAGE_CACHE_SIZE);
597
	read_unlock(&em_tree->lock);
598 599
	if (!em)
		return -EIO;
C
Chris Mason 已提交
600

601 602
	compressed_len = em->block_len;
	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
603 604 605
	if (!cb)
		goto out;

C
Chris Mason 已提交
606 607 608
	atomic_set(&cb->pending_bios, 0);
	cb->errors = 0;
	cb->inode = inode;
609 610
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
611

612
	cb->start = em->orig_start;
613 614
	em_len = em->len;
	em_start = em->start;
615

C
Chris Mason 已提交
616
	free_extent_map(em);
617
	em = NULL;
C
Chris Mason 已提交
618 619 620

	cb->len = uncompressed_len;
	cb->compressed_len = compressed_len;
621
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
622 623
	cb->orig_bio = bio;

624
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
625
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
626
				       GFP_NOFS);
627 628 629
	if (!cb->compressed_pages)
		goto fail1;

C
Chris Mason 已提交
630 631
	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;

632 633
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
634
							      __GFP_HIGHMEM);
635 636 637
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
			ret = -ENOMEM;
638
			goto fail2;
639
		}
C
Chris Mason 已提交
640
	}
641
	faili = nr_pages - 1;
C
Chris Mason 已提交
642 643
	cb->nr_pages = nr_pages;

644 645 646 647 648
	/* In the parent-locked case, we only locked the range we are
	 * interested in.  In all other cases, we can opportunistically
	 * cache decompressed data that goes beyond the requested range. */
	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
		add_ra_bio_pages(inode, em_start + em_len, cb);
649 650 651 652 653

	/* include any pages we added in add_ra-bio_pages */
	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
	cb->len = uncompressed_len;

C
Chris Mason 已提交
654
	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
655 656
	if (!comp_bio)
		goto fail2;
C
Chris Mason 已提交
657 658 659 660
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
	atomic_inc(&cb->pending_bios);

661 662
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
663
		page->mapping = inode->i_mapping;
664 665
		page->index = em_start >> PAGE_CACHE_SHIFT;

666
		if (comp_bio->bi_iter.bi_size)
667
			ret = tree->ops->merge_bio_hook(READ, page, 0,
C
Chris Mason 已提交
668 669 670 671 672
							PAGE_CACHE_SIZE,
							comp_bio, 0);
		else
			ret = 0;

C
Chris Mason 已提交
673
		page->mapping = NULL;
C
Chris Mason 已提交
674 675 676 677
		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
		    PAGE_CACHE_SIZE) {
			bio_get(comp_bio);

678 679
			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
					BTRFS_WQ_ENDIO_DATA);
680
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
681

682 683 684 685 686 687 688 689
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
			atomic_inc(&cb->pending_bios);

690
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 692
				ret = btrfs_lookup_bio_sums(root, inode,
							comp_bio, sums);
693
				BUG_ON(ret); /* -ENOMEM */
694
			}
695 696
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
					     root->sectorsize);
697 698 699

			ret = btrfs_map_bio(root, READ, comp_bio,
					    mirror_num, 0);
700 701 702 703
			if (ret) {
				bio->bi_error = ret;
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
704 705 706 707 708

			bio_put(comp_bio);

			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
							GFP_NOFS);
709
			BUG_ON(!comp_bio);
710 711 712 713
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
C
Chris Mason 已提交
714 715 716 717 718
		}
		cur_disk_byte += PAGE_CACHE_SIZE;
	}
	bio_get(comp_bio);

719 720
	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
			BTRFS_WQ_ENDIO_DATA);
721
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
722

723 724
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
725
		BUG_ON(ret); /* -ENOMEM */
726
	}
727 728

	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
729 730 731 732
	if (ret) {
		bio->bi_error = ret;
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
733 734 735

	bio_put(comp_bio);
	return 0;
736 737

fail2:
738 739 740 741
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
742 743 744 745 746 747 748

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
749
}
750 751 752 753 754 755 756

static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];

757
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
758
	&btrfs_zlib_compress,
L
Li Zefan 已提交
759
	&btrfs_lzo_compress,
760 761
};

762
void __init btrfs_init_compress(void)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
{
	int i;

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
		INIT_LIST_HEAD(&comp_idle_workspace[i]);
		spin_lock_init(&comp_workspace_lock[i]);
		atomic_set(&comp_alloc_workspace[i], 0);
		init_waitqueue_head(&comp_workspace_wait[i]);
	}
}

/*
 * this finds an available workspace or allocates a new one
 * ERR_PTR is returned if things go bad.
 */
static struct list_head *find_workspace(int type)
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;

	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
	int *num_workspace			= &comp_num_workspace[idx];
again:
	spin_lock(workspace_lock);
	if (!list_empty(idle_workspace)) {
		workspace = idle_workspace->next;
		list_del(workspace);
		(*num_workspace)--;
		spin_unlock(workspace_lock);
		return workspace;

	}
	if (atomic_read(alloc_workspace) > cpus) {
		DEFINE_WAIT(wait);

		spin_unlock(workspace_lock);
		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
			schedule();
		finish_wait(workspace_wait, &wait);
		goto again;
	}
	atomic_inc(alloc_workspace);
	spin_unlock(workspace_lock);

	workspace = btrfs_compress_op[idx]->alloc_workspace();
	if (IS_ERR(workspace)) {
		atomic_dec(alloc_workspace);
		wake_up(workspace_wait);
	}
	return workspace;
}

/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
static void free_workspace(int type, struct list_head *workspace)
{
	int idx = type - 1;
	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
	int *num_workspace			= &comp_num_workspace[idx];

	spin_lock(workspace_lock);
	if (*num_workspace < num_online_cpus()) {
835
		list_add(workspace, idle_workspace);
836 837 838 839 840 841 842 843 844
		(*num_workspace)++;
		spin_unlock(workspace_lock);
		goto wake;
	}
	spin_unlock(workspace_lock);

	btrfs_compress_op[idx]->free_workspace(workspace);
	atomic_dec(alloc_workspace);
wake:
845
	smp_mb();
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (waitqueue_active(workspace_wait))
		wake_up(workspace_wait);
}

/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
		while (!list_empty(&comp_idle_workspace[i])) {
			workspace = comp_idle_workspace[i].next;
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
			atomic_dec(&comp_alloc_workspace[i]);
		}
	}
}

/*
 * given an address space and start/len, compress the bytes.
 *
 * pages are allocated to hold the compressed result and stored
 * in 'pages'
 *
 * out_pages is used to return the number of pages allocated.  There
 * may be pages allocated even if we return an error
 *
 * total_in is used to return the number of bytes actually read.  It
 * may be smaller then len if we had to exit early because we
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
 * total_out is used to return the total number of compressed bytes
 *
 * max_out tells us the max number of bytes that we're allowed to
 * stuff into pages
 */
int btrfs_compress_pages(int type, struct address_space *mapping,
			 u64 start, unsigned long len,
			 struct page **pages,
			 unsigned long nr_dest_pages,
			 unsigned long *out_pages,
			 unsigned long *total_in,
			 unsigned long *total_out,
			 unsigned long max_out)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);
	if (IS_ERR(workspace))
901
		return PTR_ERR(workspace);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
						      start, len, pages,
						      nr_dest_pages, out_pages,
						      total_in, total_out,
						      max_out);
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
 * bvec is a bio_vec of pages from the file that we want to decompress into
 *
 * vcnt is the count of pages in the biovec
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
928 929 930
static int btrfs_decompress_biovec(int type, struct page **pages_in,
				   u64 disk_start, struct bio_vec *bvec,
				   int vcnt, size_t srclen)
931 932 933 934 935 936
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);
	if (IS_ERR(workspace))
937
		return PTR_ERR(workspace);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
							 disk_start,
							 bvec, vcnt, srclen);
	free_workspace(type, workspace);
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);
	if (IS_ERR(workspace))
959
		return PTR_ERR(workspace);
960 961 962 963 964 965 966 967 968

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

969
void btrfs_exit_compress(void)
970 971 972
{
	free_workspaces();
}
973 974 975 976 977 978 979 980 981 982 983

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
			      unsigned long total_out, u64 disk_start,
			      struct bio_vec *bvec, int vcnt,
984
			      unsigned long *pg_index,
985 986 987 988 989 990 991 992
			      unsigned long *pg_offset)
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
993
	struct page *page_out = bvec[*pg_index].bv_page;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
	start_byte = page_offset(page_out) - disk_start;

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
			    PAGE_CACHE_SIZE - buf_offset);
		bytes = min(bytes, working_bytes);
1022
		kaddr = kmap_atomic(page_out);
1023
		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1024
		kunmap_atomic(kaddr);
1025 1026 1027 1028 1029 1030 1031 1032 1033
		flush_dcache_page(page_out);

		*pg_offset += bytes;
		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
		if (*pg_offset == PAGE_CACHE_SIZE) {
1034 1035
			(*pg_index)++;
			if (*pg_index >= vcnt)
1036 1037
				return 0;

1038
			page_out = bvec[*pg_index].bv_page;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			*pg_offset = 0;
			start_byte = page_offset(page_out) - disk_start;

			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;

			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
		}
	}

	return 1;
}
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

/*
 * When uncompressing data, we need to make sure and zero any parts of
 * the biovec that were not filled in by the decompression code.  pg_index
 * and pg_offset indicate the last page and the last offset of that page
 * that have been filled in.  This will zero everything remaining in the
 * biovec.
 */
void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
				   unsigned long pg_index,
				   unsigned long pg_offset)
{
	while (pg_index < vcnt) {
		struct page *page = bvec[pg_index].bv_page;
		unsigned long off = bvec[pg_index].bv_offset;
		unsigned long len = bvec[pg_index].bv_len;

		if (pg_offset < off)
			pg_offset = off;
		if (pg_offset < off + len) {
			unsigned long bytes = off + len - pg_offset;
			char *kaddr;

			kaddr = kmap_atomic(page);
			memset(kaddr + pg_offset, 0, bytes);
			kunmap_atomic(kaddr);
		}
		pg_index++;
		pg_offset = 0;
	}
}