fault.c 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/i386/mm/fault.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Modified by Cort Dougan and Paul Mackerras.
 *
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/kprobes.h>
31
#include <linux/kdebug.h>
32
#include <linux/perf_event.h>
33
#include <linux/magic.h>
34
#include <linux/ratelimit.h>
35

36
#include <asm/firmware.h>
37 38 39 40 41 42 43
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
44
#include <asm/debug.h>
45
#include <mm/mmu_decl.h>
46

47 48
#include "icswx.h"

49 50
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs)
51
{
52 53 54 55 56 57 58 59 60
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
			ret = 1;
		preempt_enable();
	}
61

62
	return ret;
63 64
}
#else
65
static inline int notify_page_fault(struct pt_regs *regs)
66
{
67
	return 0;
68 69 70
}
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Check whether the instruction at regs->nip is a store using
 * an update addressing form which will update r1.
 */
static int store_updates_sp(struct pt_regs *regs)
{
	unsigned int inst;

	if (get_user(inst, (unsigned int __user *)regs->nip))
		return 0;
	/* check for 1 in the rA field */
	if (((inst >> 16) & 0x1f) != 1)
		return 0;
	/* check major opcode */
	switch (inst >> 26) {
	case 37:	/* stwu */
	case 39:	/* stbu */
	case 45:	/* sthu */
	case 53:	/* stfsu */
	case 55:	/* stfdu */
		return 1;
	case 62:	/* std or stdu */
		return (inst & 3) == 1;
	case 31:
		/* check minor opcode */
		switch ((inst >> 1) & 0x3ff) {
		case 181:	/* stdux */
		case 183:	/* stwux */
		case 247:	/* stbux */
		case 439:	/* sthux */
		case 695:	/* stfsux */
		case 759:	/* stfdux */
			return 1;
		}
	}
	return 0;
}
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * do_page_fault error handling helpers
 */

#define MM_FAULT_RETURN		0
#define MM_FAULT_CONTINUE	-1
#define MM_FAULT_ERR(sig)	(sig)

static int out_of_memory(struct pt_regs *regs)
{
	/*
	 * We ran out of memory, or some other thing happened to us that made
	 * us unable to handle the page fault gracefully.
	 */
	up_read(&current->mm->mmap_sem);
	if (!user_mode(regs))
		return MM_FAULT_ERR(SIGKILL);
	pagefault_out_of_memory();
	return MM_FAULT_RETURN;
}

static int do_sigbus(struct pt_regs *regs, unsigned long address)
{
	siginfo_t info;

	up_read(&current->mm->mmap_sem);

	if (user_mode(regs)) {
136
		current->thread.trap_nr = BUS_ADRERR;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		info.si_signo = SIGBUS;
		info.si_errno = 0;
		info.si_code = BUS_ADRERR;
		info.si_addr = (void __user *)address;
		force_sig_info(SIGBUS, &info, current);
		return MM_FAULT_RETURN;
	}
	return MM_FAULT_ERR(SIGBUS);
}

static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
	/*
	 * Pagefault was interrupted by SIGKILL. We have no reason to
	 * continue the pagefault.
	 */
	if (fatal_signal_pending(current)) {
		/*
		 * If we have retry set, the mmap semaphore will have
		 * alrady been released in __lock_page_or_retry(). Else
		 * we release it now.
		 */
		if (!(fault & VM_FAULT_RETRY))
			up_read(&current->mm->mmap_sem);
		/* Coming from kernel, we need to deal with uaccess fixups */
		if (user_mode(regs))
			return MM_FAULT_RETURN;
		return MM_FAULT_ERR(SIGKILL);
	}

	/* No fault: be happy */
	if (!(fault & VM_FAULT_ERROR))
		return MM_FAULT_CONTINUE;

	/* Out of memory */
	if (fault & VM_FAULT_OOM)
		return out_of_memory(regs);

	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
	 * we support the feature in HW
	 */
	if (fault & VM_FAULT_SIGBUS)
		return do_sigbus(regs, addr);

	/* We don't understand the fault code, this is fatal */
	BUG();
	return MM_FAULT_CONTINUE;
}
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

/*
 * For 600- and 800-family processors, the error_code parameter is DSISR
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 * fault.
 * For 64-bit processors, the error_code parameter is
 *  - DSISR for a non-SLB data access fault,
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 *  - 0 any SLB fault.
 *
 * The return value is 0 if the fault was handled, or the signal
 * number if this is a kernel fault that can't be handled here.
 */
int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
			    unsigned long error_code)
{
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;
204
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
205
	int code = SEGV_MAPERR;
206
	int is_write = 0;
207 208
	int trap = TRAP(regs);
 	int is_exec = trap == 0x400;
209
	int fault;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
	/*
	 * Fortunately the bit assignments in SRR1 for an instruction
	 * fault and DSISR for a data fault are mostly the same for the
	 * bits we are interested in.  But there are some bits which
	 * indicate errors in DSISR but can validly be set in SRR1.
	 */
	if (trap == 0x400)
		error_code &= 0x48200000;
	else
		is_write = error_code & DSISR_ISSTORE;
#else
	is_write = error_code & ESR_DST;
#endif /* CONFIG_4xx || CONFIG_BOOKE */

226 227 228
	if (is_write)
		flags |= FAULT_FLAG_WRITE;

229 230 231 232 233 234 235
#ifdef CONFIG_PPC_ICSWX
	/*
	 * we need to do this early because this "data storage
	 * interrupt" does not update the DAR/DEAR so we don't want to
	 * look at it
	 */
	if (error_code & ICSWX_DSI_UCT) {
236 237 238
		int rc = acop_handle_fault(regs, address, error_code);
		if (rc)
			return rc;
239
	}
240
#endif /* CONFIG_PPC_ICSWX */
241

242
	if (notify_page_fault(regs))
243 244
		return 0;

245 246
	if (unlikely(debugger_fault_handler(regs)))
		return 0;
247 248 249 250 251

	/* On a kernel SLB miss we can only check for a valid exception entry */
	if (!user_mode(regs) && (address >= TASK_SIZE))
		return SIGSEGV;

252 253
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
			     defined(CONFIG_PPC_BOOK3S_64))
254 255
  	if (error_code & DSISR_DABRMATCH) {
		/* DABR match */
256
		do_dabr(regs, address, error_code);
257 258
		return 0;
	}
259
#endif
260

261 262 263 264
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

265 266 267 268 269
	if (in_atomic() || mm == NULL) {
		if (!user_mode(regs))
			return SIGSEGV;
		/* in_atomic() in user mode is really bad,
		   as is current->mm == NULL. */
270
		printk(KERN_EMERG "Page fault in user mode with "
271 272 273 274 275 276
		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
		       regs->nip, regs->msr);
		die("Weird page fault", regs, SIGSEGV);
	}

277
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
278

279 280
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
281 282
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
283 284 285 286 287 288
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
289
	 * the source reference check when there is a possibility of a deadlock.
290 291 292 293 294 295 296 297
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->nip))
			goto bad_area_nosemaphore;

298
retry:
299
		down_read(&mm->mmap_sem);
300 301 302 303 304 305 306
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
		 */
		might_sleep();
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;

	/*
	 * N.B. The POWER/Open ABI allows programs to access up to
	 * 288 bytes below the stack pointer.
	 * The kernel signal delivery code writes up to about 1.5kB
	 * below the stack pointer (r1) before decrementing it.
	 * The exec code can write slightly over 640kB to the stack
	 * before setting the user r1.  Thus we allow the stack to
	 * expand to 1MB without further checks.
	 */
	if (address + 0x100000 < vma->vm_end) {
		/* get user regs even if this fault is in kernel mode */
		struct pt_regs *uregs = current->thread.regs;
		if (uregs == NULL)
			goto bad_area;

		/*
		 * A user-mode access to an address a long way below
		 * the stack pointer is only valid if the instruction
		 * is one which would update the stack pointer to the
		 * address accessed if the instruction completed,
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
		 * (or the byte, halfword, float or double forms).
		 *
		 * If we don't check this then any write to the area
		 * between the last mapped region and the stack will
		 * expand the stack rather than segfaulting.
		 */
		if (address + 2048 < uregs->gpr[1]
		    && (!user_mode(regs) || !store_updates_sp(regs)))
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;

good_area:
	code = SEGV_ACCERR;
#if defined(CONFIG_6xx)
	if (error_code & 0x95700000)
		/* an error such as lwarx to I/O controller space,
		   address matching DABR, eciwx, etc. */
		goto bad_area;
#endif /* CONFIG_6xx */
#if defined(CONFIG_8xx)
360 361 362 363 364 365
	/* 8xx sometimes need to load a invalid/non-present TLBs.
	 * These must be invalidated separately as linux mm don't.
	 */
	if (error_code & 0x40000000) /* no translation? */
		_tlbil_va(address, 0, 0, 0);

366 367 368 369 370 371 372 373 374 375
        /* The MPC8xx seems to always set 0x80000000, which is
         * "undefined".  Of those that can be set, this is the only
         * one which seems bad.
         */
	if (error_code & 0x10000000)
                /* Guarded storage error. */
		goto bad_area;
#endif /* CONFIG_8xx */

	if (is_exec) {
376 377 378 379 380 381 382 383 384
#ifdef CONFIG_PPC_STD_MMU
		/* Protection fault on exec go straight to failure on
		 * Hash based MMUs as they either don't support per-page
		 * execute permission, or if they do, it's handled already
		 * at the hash level. This test would probably have to
		 * be removed if we change the way this works to make hash
		 * processors use the same I/D cache coherency mechanism
		 * as embedded.
		 */
385 386
		if (error_code & DSISR_PROTFAULT)
			goto bad_area;
387 388
#endif /* CONFIG_PPC_STD_MMU */

389 390 391
		/*
		 * Allow execution from readable areas if the MMU does not
		 * provide separate controls over reading and executing.
392 393 394 395 396 397
		 *
		 * Note: That code used to not be enabled for 4xx/BookE.
		 * It is now as I/D cache coherency for these is done at
		 * set_pte_at() time and I see no reason why the test
		 * below wouldn't be valid on those processors. This -may-
		 * break programs compiled with a really old ABI though.
398 399 400 401
		 */
		if (!(vma->vm_flags & VM_EXEC) &&
		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
402 403 404 405 406 407 408 409 410 411
			goto bad_area;
	/* a write */
	} else if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
	/* a read */
	} else {
		/* protection fault */
		if (error_code & 0x08000000)
			goto bad_area;
412
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
413 414 415 416 417 418 419 420
			goto bad_area;
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
421 422 423 424 425
	fault = handle_mm_fault(mm, vma, address, flags);
	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
		int rc = mm_fault_error(regs, address, fault);
		if (rc >= MM_FAULT_RETURN)
			return rc;
426
	}
427 428 429 430 431 432 433 434 435 436 437

	/*
	 * Major/minor page fault accounting is only done on the
	 * initial attempt. If we go through a retry, it is extremely
	 * likely that the page will be found in page cache at that point.
	 */
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_MAJOR) {
			current->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
				      regs, address);
438
#ifdef CONFIG_PPC_SMLPAR
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
			if (firmware_has_feature(FW_FEATURE_CMO)) {
				preempt_disable();
				get_lppaca()->page_ins += (1 << PAGE_FACTOR);
				preempt_enable();
			}
#endif /* CONFIG_PPC_SMLPAR */
		} else {
			current->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
				      regs, address);
		}
		if (fault & VM_FAULT_RETRY) {
			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation. */
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			goto retry;
455
		}
456
	}
457

458 459 460 461 462 463 464 465 466 467 468 469 470
	up_read(&mm->mmap_sem);
	return 0;

bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses cause a SIGSEGV */
	if (user_mode(regs)) {
		_exception(SIGSEGV, regs, code, address);
		return 0;
	}

471 472 473 474
	if (is_exec && (error_code & DSISR_PROTFAULT))
		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
				   " page (%lx) - exploit attempt? (uid: %d)\n",
				   address, current_uid());
475 476 477 478 479 480 481 482 483 484 485 486 487

	return SIGSEGV;

}

/*
 * bad_page_fault is called when we have a bad access from the kernel.
 * It is called from the DSI and ISI handlers in head.S and from some
 * of the procedures in traps.c.
 */
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
	const struct exception_table_entry *entry;
488
	unsigned long *stackend;
489 490 491 492 493 494 495 496

	/* Are we prepared to handle this fault?  */
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
		regs->nip = entry->fixup;
		return;
	}

	/* kernel has accessed a bad area */
497 498

	switch (regs->trap) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512
	case 0x300:
	case 0x380:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"data at address 0x%08lx\n", regs->dar);
		break;
	case 0x400:
	case 0x480:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"instruction fetch\n");
		break;
	default:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unknown fault\n");
		break;
513 514 515 516
	}
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
		regs->nip);

517 518 519 520
	stackend = end_of_stack(current);
	if (current != &init_task && *stackend != STACK_END_MAGIC)
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");

521 522
	die("Kernel access of bad area", regs, sig);
}