rtc-rs5c372.c 18.4 KB
Newer Older
1
/*
2
 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
3 4 5
 *
 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
 * Copyright (C) 2006 Tower Technologies
6
 * Copyright (C) 2008 Paul Mundt
7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/i2c.h>
#include <linux/rtc.h>
#include <linux/bcd.h>

17
#define DRV_VERSION "0.6"
18

19 20 21 22 23 24 25

/*
 * Ricoh has a family of I2C based RTCs, which differ only slightly from
 * each other.  Differences center on pinout (e.g. how many interrupts,
 * output clock, etc) and how the control registers are used.  The '372
 * is significant only because that's the one this driver first supported.
 */
26 27 28 29 30 31 32 33
#define RS5C372_REG_SECS	0
#define RS5C372_REG_MINS	1
#define RS5C372_REG_HOURS	2
#define RS5C372_REG_WDAY	3
#define RS5C372_REG_DAY		4
#define RS5C372_REG_MONTH	5
#define RS5C372_REG_YEAR	6
#define RS5C372_REG_TRIM	7
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#	define RS5C372_TRIM_XSL		0x80
#	define RS5C372_TRIM_MASK	0x7F

#define RS5C_REG_ALARM_A_MIN	8			/* or ALARM_W */
#define RS5C_REG_ALARM_A_HOURS	9
#define RS5C_REG_ALARM_A_WDAY	10

#define RS5C_REG_ALARM_B_MIN	11			/* or ALARM_D */
#define RS5C_REG_ALARM_B_HOURS	12
#define RS5C_REG_ALARM_B_WDAY	13			/* (ALARM_B only) */

#define RS5C_REG_CTRL1		14
#	define RS5C_CTRL1_AALE		(1 << 7)	/* or WALE */
#	define RS5C_CTRL1_BALE		(1 << 6)	/* or DALE */
#	define RV5C387_CTRL1_24		(1 << 5)
#	define RS5C372A_CTRL1_SL1	(1 << 5)
#	define RS5C_CTRL1_CT_MASK	(7 << 0)
#	define RS5C_CTRL1_CT0		(0 << 0)	/* no periodic irq */
#	define RS5C_CTRL1_CT4		(4 << 0)	/* 1 Hz level irq */
#define RS5C_REG_CTRL2		15
#	define RS5C372_CTRL2_24		(1 << 5)
55 56
#	define R2025_CTRL2_XST		(1 << 5)
#	define RS5C_CTRL2_XSTP		(1 << 4)	/* only if !R2025S/D */
57 58 59 60 61 62 63 64 65 66 67
#	define RS5C_CTRL2_CTFG		(1 << 2)
#	define RS5C_CTRL2_AAFG		(1 << 1)	/* or WAFG */
#	define RS5C_CTRL2_BAFG		(1 << 0)	/* or DAFG */


/* to read (style 1) or write registers starting at R */
#define RS5C_ADDR(R)		(((R) << 4) | 0)


enum rtc_type {
	rtc_undef = 0,
68
	rtc_r2025sd,
69 70 71 72 73
	rtc_rs5c372a,
	rtc_rs5c372b,
	rtc_rv5c386,
	rtc_rv5c387a,
};
74

75
static const struct i2c_device_id rs5c372_id[] = {
76
	{ "r2025sd", rtc_r2025sd },
77 78 79 80 81 82 83 84
	{ "rs5c372a", rtc_rs5c372a },
	{ "rs5c372b", rtc_rs5c372b },
	{ "rv5c386", rtc_rv5c386 },
	{ "rv5c387a", rtc_rv5c387a },
	{ }
};
MODULE_DEVICE_TABLE(i2c, rs5c372_id);

85 86 87 88 89 90 91 92 93 94 95
/* REVISIT:  this assumes that:
 *  - we're in the 21st century, so it's safe to ignore the century
 *    bit for rv5c38[67] (REG_MONTH bit 7);
 *  - we should use ALARM_A not ALARM_B (may be wrong on some boards)
 */
struct rs5c372 {
	struct i2c_client	*client;
	struct rtc_device	*rtc;
	enum rtc_type		type;
	unsigned		time24:1;
	unsigned		has_irq:1;
96
	unsigned		smbus:1;
97 98 99
	char			buf[17];
	char			*regs;
};
100

101 102 103 104 105 106 107 108 109 110 111 112 113
static int rs5c_get_regs(struct rs5c372 *rs5c)
{
	struct i2c_client	*client = rs5c->client;
	struct i2c_msg		msgs[] = {
		{ client->addr, I2C_M_RD, sizeof rs5c->buf, rs5c->buf },
	};

	/* This implements the third reading method from the datasheet, using
	 * an internal address that's reset after each transaction (by STOP)
	 * to 0x0f ... so we read extra registers, and skip the first one.
	 *
	 * The first method doesn't work with the iop3xx adapter driver, on at
	 * least 80219 chips; this works around that bug.
114 115 116 117
	 *
	 * The third method on the other hand doesn't work for the SMBus-only
	 * configurations, so we use the the first method there, stripping off
	 * the extra register in the process.
118
	 */
119 120 121 122 123 124 125 126 127 128 129 130 131 132
	if (rs5c->smbus) {
		int addr = RS5C_ADDR(RS5C372_REG_SECS);
		int size = sizeof(rs5c->buf) - 1;

		if (i2c_smbus_read_i2c_block_data(client, addr, size,
						  rs5c->buf + 1) != size) {
			dev_warn(&client->dev, "can't read registers\n");
			return -EIO;
		}
	} else {
		if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
			dev_warn(&client->dev, "can't read registers\n");
			return -EIO;
		}
133
	}
134

135 136 137 138 139 140 141
	dev_dbg(&client->dev,
		"%02x %02x %02x (%02x) %02x %02x %02x (%02x), "
		"%02x %02x %02x, %02x %02x %02x; %02x %02x\n",
		rs5c->regs[0],  rs5c->regs[1],  rs5c->regs[2],  rs5c->regs[3],
		rs5c->regs[4],  rs5c->regs[5],  rs5c->regs[6],  rs5c->regs[7],
		rs5c->regs[8],  rs5c->regs[9],  rs5c->regs[10], rs5c->regs[11],
		rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]);
142

143 144
	return 0;
}
145

146 147 148
static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
{
	unsigned	hour;
149

150 151 152 153 154 155 156 157 158 159 160 161
	if (rs5c->time24)
		return BCD2BIN(reg & 0x3f);

	hour = BCD2BIN(reg & 0x1f);
	if (hour == 12)
		hour = 0;
	if (reg & 0x20)
		hour += 12;
	return hour;
}

static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
162
{
163 164 165 166 167 168 169 170 171 172 173
	if (rs5c->time24)
		return BIN2BCD(hour);

	if (hour > 12)
		return 0x20 | BIN2BCD(hour - 12);
	if (hour == 12)
		return 0x20 | BIN2BCD(12);
	if (hour == 0)
		return BIN2BCD(12);
	return BIN2BCD(hour);
}
174

175 176 177 178
static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
{
	struct rs5c372	*rs5c = i2c_get_clientdata(client);
	int		status = rs5c_get_regs(rs5c);
179

180 181
	if (status < 0)
		return status;
182

183 184 185
	tm->tm_sec = BCD2BIN(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
	tm->tm_min = BCD2BIN(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
	tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
186

187 188
	tm->tm_wday = BCD2BIN(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
	tm->tm_mday = BCD2BIN(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
189 190

	/* tm->tm_mon is zero-based */
191
	tm->tm_mon = BCD2BIN(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
192 193

	/* year is 1900 + tm->tm_year */
194
	tm->tm_year = BCD2BIN(rs5c->regs[RS5C372_REG_YEAR]) + 100;
195 196 197

	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
		"mday=%d, mon=%d, year=%d, wday=%d\n",
198
		__func__,
199 200 201
		tm->tm_sec, tm->tm_min, tm->tm_hour,
		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

202 203
	/* rtc might need initialization */
	return rtc_valid_tm(tm);
204 205 206 207
}

static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
{
208 209
	struct rs5c372	*rs5c = i2c_get_clientdata(client);
	unsigned char	buf[8];
210
	int		addr;
211

212
	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
213
		"mday=%d, mon=%d, year=%d, wday=%d\n",
214
		__func__,
215
		tm->tm_sec, tm->tm_min, tm->tm_hour,
216 217
		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

218 219 220 221 222 223 224 225
	addr   = RS5C_ADDR(RS5C372_REG_SECS);
	buf[0] = BIN2BCD(tm->tm_sec);
	buf[1] = BIN2BCD(tm->tm_min);
	buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
	buf[3] = BIN2BCD(tm->tm_wday);
	buf[4] = BIN2BCD(tm->tm_mday);
	buf[5] = BIN2BCD(tm->tm_mon + 1);
	buf[6] = BIN2BCD(tm->tm_year - 100);
226

227
	if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
228
		dev_err(&client->dev, "%s: write error\n", __func__);
229 230 231 232 233 234
		return -EIO;
	}

	return 0;
}

235 236 237 238 239 240 241 242 243
#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
#define	NEED_TRIM
#endif

#if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
#define	NEED_TRIM
#endif

#ifdef	NEED_TRIM
244 245
static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
{
246
	struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
247
	u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
248 249

	if (osc)
250
		*osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
251

252
	if (trim) {
253
		dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
254 255 256 257 258 259 260 261 262 263 264 265 266
		tmp &= RS5C372_TRIM_MASK;
		if (tmp & 0x3e) {
			int t = tmp & 0x3f;

			if (tmp & 0x40)
				t = (~t | (s8)0xc0) + 1;
			else
				t = t - 1;

			tmp = t * 2;
		} else
			tmp = 0;
		*trim = tmp;
267
	}
268 269 270

	return 0;
}
271
#endif
272 273 274 275 276 277 278 279 280 281 282

static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	return rs5c372_get_datetime(to_i2c_client(dev), tm);
}

static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	return rs5c372_set_datetime(to_i2c_client(dev), tm);
}

283 284 285 286 287 288 289
#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)

static int
rs5c_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct i2c_client	*client = to_i2c_client(dev);
	struct rs5c372		*rs5c = i2c_get_clientdata(client);
290 291
	unsigned char		buf;
	int			status, addr;
292

293
	buf = rs5c->regs[RS5C_REG_CTRL1];
294 295 296 297 298
	switch (cmd) {
	case RTC_UIE_OFF:
	case RTC_UIE_ON:
		/* some 327a modes use a different IRQ pin for 1Hz irqs */
		if (rs5c->type == rtc_rs5c372a
299
				&& (buf & RS5C372A_CTRL1_SL1))
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
			return -ENOIOCTLCMD;
	case RTC_AIE_OFF:
	case RTC_AIE_ON:
		/* these irq management calls only make sense for chips
		 * which are wired up to an IRQ.
		 */
		if (!rs5c->has_irq)
			return -ENOIOCTLCMD;
		break;
	default:
		return -ENOIOCTLCMD;
	}

	status = rs5c_get_regs(rs5c);
	if (status < 0)
		return status;

317
	addr = RS5C_ADDR(RS5C_REG_CTRL1);
318 319
	switch (cmd) {
	case RTC_AIE_OFF:	/* alarm off */
320
		buf &= ~RS5C_CTRL1_AALE;
321 322
		break;
	case RTC_AIE_ON:	/* alarm on */
323
		buf |= RS5C_CTRL1_AALE;
324 325
		break;
	case RTC_UIE_OFF:	/* update off */
326
		buf &= ~RS5C_CTRL1_CT_MASK;
327 328
		break;
	case RTC_UIE_ON:	/* update on */
329 330
		buf &= ~RS5C_CTRL1_CT_MASK;
		buf |= RS5C_CTRL1_CT4;
331 332
		break;
	}
333 334

	if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
335 336 337 338
		printk(KERN_WARNING "%s: can't update alarm\n",
			rs5c->rtc->name);
		status = -EIO;
	} else
339 340
		rs5c->regs[RS5C_REG_CTRL1] = buf;

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	return status;
}

#else
#define	rs5c_rtc_ioctl	NULL
#endif


/* NOTE:  Since RTC_WKALM_{RD,SET} were originally defined for EFI,
 * which only exposes a polled programming interface; and since
 * these calls map directly to those EFI requests; we don't demand
 * we have an IRQ for this chip when we go through this API.
 *
 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
 * though, managed through RTC_AIE_{ON,OFF} requests.
 */

static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct i2c_client	*client = to_i2c_client(dev);
	struct rs5c372		*rs5c = i2c_get_clientdata(client);
	int			status;

	status = rs5c_get_regs(rs5c);
	if (status < 0)
		return status;

	/* report alarm time */
	t->time.tm_sec = 0;
	t->time.tm_min = BCD2BIN(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
	t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
	t->time.tm_mday = -1;
	t->time.tm_mon = -1;
	t->time.tm_year = -1;
	t->time.tm_wday = -1;
	t->time.tm_yday = -1;
	t->time.tm_isdst = -1;

	/* ... and status */
	t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
	t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);

	return 0;
}

static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
	struct i2c_client	*client = to_i2c_client(dev);
	struct rs5c372		*rs5c = i2c_get_clientdata(client);
390 391
	int			status, addr, i;
	unsigned char		buf[3];
392 393 394 395 396 397 398 399 400 401 402 403 404 405

	/* only handle up to 24 hours in the future, like RTC_ALM_SET */
	if (t->time.tm_mday != -1
			|| t->time.tm_mon != -1
			|| t->time.tm_year != -1)
		return -EINVAL;

	/* REVISIT: round up tm_sec */

	/* if needed, disable irq (clears pending status) */
	status = rs5c_get_regs(rs5c);
	if (status < 0)
		return status;
	if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
406 407 408
		addr = RS5C_ADDR(RS5C_REG_CTRL1);
		buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
409 410 411
			pr_debug("%s: can't disable alarm\n", rs5c->rtc->name);
			return -EIO;
		}
412
		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
413 414 415
	}

	/* set alarm */
416 417 418 419 420 421 422 423 424 425
	buf[0] = BIN2BCD(t->time.tm_min);
	buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
	buf[2] = 0x7f;	/* any/all days */

	for (i = 0; i < sizeof(buf); i++) {
		addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
		if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
			pr_debug("%s: can't set alarm time\n", rs5c->rtc->name);
			return -EIO;
		}
426 427 428 429
	}

	/* ... and maybe enable its irq */
	if (t->enabled) {
430 431 432
		addr = RS5C_ADDR(RS5C_REG_CTRL1);
		buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
		if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
433 434
			printk(KERN_WARNING "%s: can't enable alarm\n",
				rs5c->rtc->name);
435
		rs5c->regs[RS5C_REG_CTRL1] = buf[0];
436 437 438 439 440 441 442
	}

	return 0;
}

#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)

443 444 445 446
static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
{
	int err, osc, trim;

447 448
	err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
	if (err == 0) {
449 450 451
		seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
				osc / 1000, osc % 1000);
		seq_printf(seq, "trim\t\t: %d\n", trim);
452 453 454 455 456
	}

	return 0;
}

457 458 459 460
#else
#define	rs5c372_rtc_proc	NULL
#endif

461
static const struct rtc_class_ops rs5c372_rtc_ops = {
462
	.proc		= rs5c372_rtc_proc,
463
	.ioctl		= rs5c_rtc_ioctl,
464 465
	.read_time	= rs5c372_rtc_read_time,
	.set_time	= rs5c372_rtc_set_time,
466 467
	.read_alarm	= rs5c_read_alarm,
	.set_alarm	= rs5c_set_alarm,
468 469
};

470 471
#if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)

472 473 474
static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
				struct device_attribute *attr, char *buf)
{
475
	int err, trim;
476

477 478 479
	err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
	if (err)
		return err;
480

481
	return sprintf(buf, "%d\n", trim);
482 483 484 485 486 487
}
static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);

static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
				struct device_attribute *attr, char *buf)
{
488
	int err, osc;
489

490 491 492
	err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
	if (err)
		return err;
493

494
	return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
495 496 497
}
static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);

498
static int rs5c_sysfs_register(struct device *dev)
499
{
500 501 502 503 504 505 506 507 508 509 510 511
	int err;

	err = device_create_file(dev, &dev_attr_trim);
	if (err)
		return err;
	err = device_create_file(dev, &dev_attr_osc);
	if (err)
		device_remove_file(dev, &dev_attr_trim);

	return err;
}

512 513 514 515 516 517
static void rs5c_sysfs_unregister(struct device *dev)
{
	device_remove_file(dev, &dev_attr_trim);
	device_remove_file(dev, &dev_attr_osc);
}

518 519 520 521
#else
static int rs5c_sysfs_register(struct device *dev)
{
	return 0;
522
}
523 524 525 526 527

static void rs5c_sysfs_unregister(struct device *dev)
{
	/* nothing */
}
528 529 530
#endif	/* SYSFS */

static struct i2c_driver rs5c372_driver;
531

532 533 534 535 536
static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
{
	unsigned char buf[2];
	int addr, i, ret = 0;

537 538 539 540 541 542 543 544 545
	if (rs5c372->type == rtc_r2025sd) {
		if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST))
			return ret;
		rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST;
	} else {
		if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
			return ret;
		rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
	}
546 547 548 549 550 551 552 553 554 555 556 557

	addr   = RS5C_ADDR(RS5C_REG_CTRL1);
	buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
	buf[1] = rs5c372->regs[RS5C_REG_CTRL2];

	/* use 24hr mode */
	switch (rs5c372->type) {
	case rtc_rs5c372a:
	case rtc_rs5c372b:
		buf[1] |= RS5C372_CTRL2_24;
		rs5c372->time24 = 1;
		break;
558
	case rtc_r2025sd:
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	case rtc_rv5c386:
	case rtc_rv5c387a:
		buf[0] |= RV5C387_CTRL1_24;
		rs5c372->time24 = 1;
		break;
	default:
		/* impossible */
		break;
	}

	for (i = 0; i < sizeof(buf); i++) {
		addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
		ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
		if (unlikely(ret < 0))
			return ret;
	}

	rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
	rs5c372->regs[RS5C_REG_CTRL2] = buf[1];

	return 0;
}

582 583
static int rs5c372_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
584 585
{
	int err = 0;
586
	int smbus_mode = 0;
587
	struct rs5c372 *rs5c372;
588
	struct rtc_time tm;
589

590
	dev_dbg(&client->dev, "%s\n", __func__);
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
		/*
		 * If we don't have any master mode adapter, try breaking
		 * it down in to the barest of capabilities.
		 */
		if (i2c_check_functionality(client->adapter,
				I2C_FUNC_SMBUS_BYTE_DATA |
				I2C_FUNC_SMBUS_I2C_BLOCK))
			smbus_mode = 1;
		else {
			/* Still no good, give up */
			err = -ENODEV;
			goto exit;
		}
607 608
	}

609
	if (!(rs5c372 = kzalloc(sizeof(struct rs5c372), GFP_KERNEL))) {
610 611 612
		err = -ENOMEM;
		goto exit;
	}
613 614

	rs5c372->client = client;
615
	i2c_set_clientdata(client, rs5c372);
616
	rs5c372->type = id->driver_data;
617

618 619
	/* we read registers 0x0f then 0x00-0x0f; skip the first one */
	rs5c372->regs = &rs5c372->buf[1];
620
	rs5c372->smbus = smbus_mode;
621

622 623
	err = rs5c_get_regs(rs5c372);
	if (err < 0)
624
		goto exit_kfree;
625 626 627 628 629 630 631 632 633 634 635

	/* clock may be set for am/pm or 24 hr time */
	switch (rs5c372->type) {
	case rtc_rs5c372a:
	case rtc_rs5c372b:
		/* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
		 * so does periodic irq, except some 327a modes.
		 */
		if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
			rs5c372->time24 = 1;
		break;
636
	case rtc_r2025sd:
637 638 639 640 641 642 643 644 645 646
	case rtc_rv5c386:
	case rtc_rv5c387a:
		if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
			rs5c372->time24 = 1;
		/* alarm uses ALARM_W; and nINTRB for alarm and periodic
		 * irq, on both 386 and 387
		 */
		break;
	default:
		dev_err(&client->dev, "unknown RTC type\n");
647
		goto exit_kfree;
648 649 650 651
	}

	/* if the oscillator lost power and no other software (like
	 * the bootloader) set it up, do it here.
652 653 654
	 *
	 * The R2025S/D does this a little differently than the other
	 * parts, so we special case that..
655
	 */
656 657 658 659
	err = rs5c_oscillator_setup(rs5c372);
	if (unlikely(err < 0)) {
		dev_err(&client->dev, "setup error\n");
		goto exit_kfree;
660 661 662 663 664 665 666
	}

	if (rs5c372_get_datetime(client, &tm) < 0)
		dev_warn(&client->dev, "clock needs to be set\n");

	dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n",
			({ char *s; switch (rs5c372->type) {
667
			case rtc_r2025sd:	s = "r2025sd"; break;
668 669 670 671 672 673 674 675 676
			case rtc_rs5c372a:	s = "rs5c372a"; break;
			case rtc_rs5c372b:	s = "rs5c372b"; break;
			case rtc_rv5c386:	s = "rv5c386"; break;
			case rtc_rv5c387a:	s = "rv5c387a"; break;
			default:		s = "chip"; break;
			}; s;}),
			rs5c372->time24 ? "24hr" : "am/pm"
			);

677
	/* REVISIT use client->irq to register alarm irq ... */
678

679 680
	rs5c372->rtc = rtc_device_register(rs5c372_driver.driver.name,
				&client->dev, &rs5c372_rtc_ops, THIS_MODULE);
681

682 683
	if (IS_ERR(rs5c372->rtc)) {
		err = PTR_ERR(rs5c372->rtc);
684
		goto exit_kfree;
685 686
	}

687
	err = rs5c_sysfs_register(&client->dev);
688 689
	if (err)
		goto exit_devreg;
690 691 692

	return 0;

J
Jeff Garzik 已提交
693
exit_devreg:
694
	rtc_device_unregister(rs5c372->rtc);
J
Jeff Garzik 已提交
695

696
exit_kfree:
697
	kfree(rs5c372);
698 699 700 701 702

exit:
	return err;
}

703
static int rs5c372_remove(struct i2c_client *client)
704
{
705
	struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
706

707 708
	rtc_device_unregister(rs5c372->rtc);
	rs5c_sysfs_unregister(&client->dev);
709
	kfree(rs5c372);
710 711 712
	return 0;
}

713 714 715 716
static struct i2c_driver rs5c372_driver = {
	.driver		= {
		.name	= "rtc-rs5c372",
	},
717 718
	.probe		= rs5c372_probe,
	.remove		= rs5c372_remove,
719
	.id_table	= rs5c372_id,
720 721
};

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static __init int rs5c372_init(void)
{
	return i2c_add_driver(&rs5c372_driver);
}

static __exit void rs5c372_exit(void)
{
	i2c_del_driver(&rs5c372_driver);
}

module_init(rs5c372_init);
module_exit(rs5c372_exit);

MODULE_AUTHOR(
		"Pavel Mironchik <pmironchik@optifacio.net>, "
737 738
		"Alessandro Zummo <a.zummo@towertech.it>, "
		"Paul Mundt <lethal@linux-sh.org>");
739 740 741
MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);