ks8851.c 40.3 KB
Newer Older
1
/* drivers/net/ethernet/micrel/ks8851.c
2 3 4 5 6 7 8 9 10 11
 *
 * Copyright 2009 Simtec Electronics
 *	http://www.simtec.co.uk/
 *	Ben Dooks <ben@simtec.co.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

14 15
#define DEBUG

16
#include <linux/interrupt.h>
17 18 19 20 21 22 23 24
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
25
#include <linux/eeprom_93cx6.h>
26
#include <linux/regulator/consumer.h>
27 28

#include <linux/spi/spi.h>
29 30
#include <linux/gpio.h>
#include <linux/of_gpio.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

#include "ks8851.h"

/**
 * struct ks8851_rxctrl - KS8851 driver rx control
 * @mchash: Multicast hash-table data.
 * @rxcr1: KS_RXCR1 register setting
 * @rxcr2: KS_RXCR2 register setting
 *
 * Representation of the settings needs to control the receive filtering
 * such as the multicast hash-filter and the receive register settings. This
 * is used to make the job of working out if the receive settings change and
 * then issuing the new settings to the worker that will send the necessary
 * commands.
 */
struct ks8851_rxctrl {
	u16	mchash[4];
	u16	rxcr1;
	u16	rxcr2;
};

/**
 * union ks8851_tx_hdr - tx header data
 * @txb: The header as bytes
 * @txw: The header as 16bit, little-endian words
 *
 * A dual representation of the tx header data to allow
 * access to individual bytes, and to allow 16bit accesses
 * with 16bit alignment.
 */
union ks8851_tx_hdr {
	u8	txb[6];
	__le16	txw[3];
};

/**
 * struct ks8851_net - KS8851 driver private data
 * @netdev: The network device we're bound to
 * @spidev: The spi device we're bound to.
 * @lock: Lock to ensure that the device is not accessed when busy.
 * @statelock: Lock on this structure for tx list.
 * @mii: The MII state information for the mii calls.
 * @rxctrl: RX settings for @rxctrl_work.
 * @tx_work: Work queue for tx packets
 * @rxctrl_work: Work queue for updating RX mode and multicast lists
 * @txq: Queue of packets for transmission.
 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
 * @txh: Space for generating packet TX header in DMA-able data
 * @rxd: Space for receiving SPI data, in DMA-able space.
 * @txd: Space for transmitting SPI data, in DMA-able space.
 * @msg_enable: The message flags controlling driver output (see ethtool).
 * @fid: Incrementing frame id tag.
 * @rc_ier: Cached copy of KS_IER.
85
 * @rc_ccr: Cached copy of KS_CCR.
86
 * @rc_rxqcr: Cached copy of KS_RXQCR.
87
 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
88
 * @vdd_reg:	Optional regulator supplying the chip
89 90
 * @vdd_io: Optional digital power supply for IO
 * @gpio: Optional reset_n gpio
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 *
 * The @lock ensures that the chip is protected when certain operations are
 * in progress. When the read or write packet transfer is in progress, most
 * of the chip registers are not ccessible until the transfer is finished and
 * the DMA has been de-asserted.
 *
 * The @statelock is used to protect information in the structure which may
 * need to be accessed via several sources, such as the network driver layer
 * or one of the work queues.
 *
 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 * wants to DMA map them, it will not have any problems with data the driver
 * modifies.
 */
struct ks8851_net {
	struct net_device	*netdev;
	struct spi_device	*spidev;
	struct mutex		lock;
	spinlock_t		statelock;

	union ks8851_tx_hdr	txh ____cacheline_aligned;
	u8			rxd[8];
	u8			txd[8];

	u32			msg_enable ____cacheline_aligned;
	u16			tx_space;
	u8			fid;

	u16			rc_ier;
	u16			rc_rxqcr;
121
	u16			rc_ccr;
122 123 124 125 126 127 128 129 130 131 132 133 134

	struct mii_if_info	mii;
	struct ks8851_rxctrl	rxctrl;

	struct work_struct	tx_work;
	struct work_struct	rxctrl_work;

	struct sk_buff_head	txq;

	struct spi_message	spi_msg1;
	struct spi_message	spi_msg2;
	struct spi_transfer	spi_xfer1;
	struct spi_transfer	spi_xfer2[2];
135 136

	struct eeprom_93cx6	eeprom;
137
	struct regulator	*vdd_reg;
138 139
	struct regulator	*vdd_io;
	int			gpio;
140 141 142 143 144 145 146 147 148 149 150 151 152 153
};

static int msg_enable;

/* shift for byte-enable data */
#define BYTE_EN(_x)	((_x) << 2)

/* turn register number and byte-enable mask into data for start of packet */
#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)

/* SPI register read/write calls.
 *
 * All these calls issue SPI transactions to access the chip's registers. They
 * all require that the necessary lock is held to prevent accesses when the
L
Lucas De Marchi 已提交
154
 * chip is busy transferring packet data (RX/TX FIFO accesses).
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 */

/**
 * ks8851_wrreg16 - write 16bit register value to chip
 * @ks: The chip state
 * @reg: The register address
 * @val: The value to write
 *
 * Issue a write to put the value @val into the register specified in @reg.
 */
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
{
	struct spi_transfer *xfer = &ks->spi_xfer1;
	struct spi_message *msg = &ks->spi_msg1;
	__le16 txb[2];
	int ret;

	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
	txb[1] = cpu_to_le16(val);

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 4;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
181
		netdev_err(ks->netdev, "spi_sync() failed\n");
182 183
}

B
Ben Dooks 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/**
 * ks8851_wrreg8 - write 8bit register value to chip
 * @ks: The chip state
 * @reg: The register address
 * @val: The value to write
 *
 * Issue a write to put the value @val into the register specified in @reg.
 */
static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
{
	struct spi_transfer *xfer = &ks->spi_xfer1;
	struct spi_message *msg = &ks->spi_msg1;
	__le16 txb[2];
	int ret;
	int bit;

	bit = 1 << (reg & 3);

	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
	txb[1] = val;

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 3;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
211
		netdev_err(ks->netdev, "spi_sync() failed\n");
B
Ben Dooks 已提交
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/**
 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 * @ks: The device structure
 *
 * Return whether to generate a single message with a tx and rx buffer
 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 * as separate messages.
 *
 * Depending on the hardware in use, a single message may be more efficient
 * on interrupts or work done by the driver.
 *
 * This currently always returns true until we add some per-device data passed
 * from the platform code to specify which mode is better.
 */
static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
{
	return true;
}

/**
 * ks8851_rdreg - issue read register command and return the data
 * @ks: The device state
 * @op: The register address and byte enables in message format.
 * @rxb: The RX buffer to return the result into
 * @rxl: The length of data expected.
 *
 * This is the low level read call that issues the necessary spi message(s)
 * to read data from the register specified in @op.
 */
static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
			 u8 *rxb, unsigned rxl)
{
	struct spi_transfer *xfer;
	struct spi_message *msg;
	__le16 *txb = (__le16 *)ks->txd;
	u8 *trx = ks->rxd;
	int ret;

	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);

	if (ks8851_rx_1msg(ks)) {
		msg = &ks->spi_msg1;
		xfer = &ks->spi_xfer1;

		xfer->tx_buf = txb;
		xfer->rx_buf = trx;
		xfer->len = rxl + 2;
	} else {
		msg = &ks->spi_msg2;
		xfer = ks->spi_xfer2;

		xfer->tx_buf = txb;
		xfer->rx_buf = NULL;
		xfer->len = 2;

		xfer++;
		xfer->tx_buf = NULL;
		xfer->rx_buf = trx;
		xfer->len = rxl;
	}

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
277
		netdev_err(ks->netdev, "read: spi_sync() failed\n");
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	else if (ks8851_rx_1msg(ks))
		memcpy(rxb, trx + 2, rxl);
	else
		memcpy(rxb, trx, rxl);
}

/**
 * ks8851_rdreg8 - read 8 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 8bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
{
	u8 rxb[1];

	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
	return rxb[0];
}

/**
 * ks8851_rdreg16 - read 16 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 16bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
{
	__le16 rx = 0;

	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
	return le16_to_cpu(rx);
}

/**
 * ks8851_rdreg32 - read 32 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 32bit register from the chip.
 *
 * Note, this read requires the address be aligned to 4 bytes.
*/
static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
{
	__le32 rx = 0;

	WARN_ON(reg & 3);

	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
	return le32_to_cpu(rx);
}

/**
 * ks8851_soft_reset - issue one of the soft reset to the device
 * @ks: The device state.
 * @op: The bit(s) to set in the GRR
 *
 * Issue the relevant soft-reset command to the device's GRR register
 * specified by @op.
 *
 * Note, the delays are in there as a caution to ensure that the reset
 * has time to take effect and then complete. Since the datasheet does
 * not currently specify the exact sequence, we have chosen something
 * that seems to work with our device.
 */
static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
{
	ks8851_wrreg16(ks, KS_GRR, op);
	mdelay(1);	/* wait a short time to effect reset */
	ks8851_wrreg16(ks, KS_GRR, 0);
	mdelay(1);	/* wait for condition to clear */
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/**
 * ks8851_set_powermode - set power mode of the device
 * @ks: The device state
 * @pwrmode: The power mode value to write to KS_PMECR.
 *
 * Change the power mode of the chip.
 */
static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
{
	unsigned pmecr;

	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);

	pmecr = ks8851_rdreg16(ks, KS_PMECR);
	pmecr &= ~PMECR_PM_MASK;
	pmecr |= pwrmode;

	ks8851_wrreg16(ks, KS_PMECR, pmecr);
}

374 375 376 377 378 379 380 381 382 383 384 385
/**
 * ks8851_write_mac_addr - write mac address to device registers
 * @dev: The network device
 *
 * Update the KS8851 MAC address registers from the address in @dev.
 *
 * This call assumes that the chip is not running, so there is no need to
 * shutdown the RXQ process whilst setting this.
*/
static int ks8851_write_mac_addr(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
B
Ben Dooks 已提交
386
	int i;
387 388 389

	mutex_lock(&ks->lock);

390 391 392 393 394
	/*
	 * Wake up chip in case it was powered off when stopped; otherwise,
	 * the first write to the MAC address does not take effect.
	 */
	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
B
Ben Dooks 已提交
395 396
	for (i = 0; i < ETH_ALEN; i++)
		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
397 398
	if (!netif_running(dev))
		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
399 400 401 402 403 404

	mutex_unlock(&ks->lock);

	return 0;
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * ks8851_read_mac_addr - read mac address from device registers
 * @dev: The network device
 *
 * Update our copy of the KS8851 MAC address from the registers of @dev.
*/
static void ks8851_read_mac_addr(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int i;

	mutex_lock(&ks->lock);

	for (i = 0; i < ETH_ALEN; i++)
		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));

	mutex_unlock(&ks->lock);
}

424 425 426 427 428
/**
 * ks8851_init_mac - initialise the mac address
 * @ks: The device structure
 *
 * Get or create the initial mac address for the device and then set that
429
 * into the station address register. If there is an EEPROM present, then
J
Joe Perches 已提交
430
 * we try that. If no valid mac address is found we use eth_random_addr()
431 432 433 434 435 436
 * to create a new one.
 */
static void ks8851_init_mac(struct ks8851_net *ks)
{
	struct net_device *dev = ks->netdev;

437 438 439 440 441 442 443 444 445 446
	/* first, try reading what we've got already */
	if (ks->rc_ccr & CCR_EEPROM) {
		ks8851_read_mac_addr(dev);
		if (is_valid_ether_addr(dev->dev_addr))
			return;

		netdev_err(ks->netdev, "invalid mac address read %pM\n",
				dev->dev_addr);
	}

447
	eth_hw_addr_random(dev);
448 449 450 451 452 453 454 455 456
	ks8851_write_mac_addr(dev);
}

/**
 * ks8851_rdfifo - read data from the receive fifo
 * @ks: The device state.
 * @buff: The buffer address
 * @len: The length of the data to read
 *
457
 * Issue an RXQ FIFO read command and read the @len amount of data from
458 459 460 461 462 463 464 465 466
 * the FIFO into the buffer specified by @buff.
 */
static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
{
	struct spi_transfer *xfer = ks->spi_xfer2;
	struct spi_message *msg = &ks->spi_msg2;
	u8 txb[1];
	int ret;

467 468
	netif_dbg(ks, rx_status, ks->netdev,
		  "%s: %d@%p\n", __func__, len, buff);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	/* set the operation we're issuing */
	txb[0] = KS_SPIOP_RXFIFO;

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 1;

	xfer++;
	xfer->rx_buf = buff;
	xfer->tx_buf = NULL;
	xfer->len = len;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
484
		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
485 486 487 488 489 490 491 492 493 494 495
}

/**
 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 * @ks: The device state
 * @rxpkt: The data for the received packet
 *
 * Dump the initial data from the packet to dev_dbg().
*/
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
{
496 497 498 499 500
	netdev_dbg(ks->netdev,
		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

/**
 * ks8851_rx_pkts - receive packets from the host
 * @ks: The device information.
 *
 * This is called from the IRQ work queue when the system detects that there
 * are packets in the receive queue. Find out how many packets there are and
 * read them from the FIFO.
 */
static void ks8851_rx_pkts(struct ks8851_net *ks)
{
	struct sk_buff *skb;
	unsigned rxfc;
	unsigned rxlen;
	unsigned rxstat;
	u32 rxh;
	u8 *rxpkt;

	rxfc = ks8851_rdreg8(ks, KS_RXFC);

522 523
	netif_dbg(ks, rx_status, ks->netdev,
		  "%s: %d packets\n", __func__, rxfc);
524 525 526 527 528 529 530 531

	/* Currently we're issuing a read per packet, but we could possibly
	 * improve the code by issuing a single read, getting the receive
	 * header, allocating the packet and then reading the packet data
	 * out in one go.
	 *
	 * This form of operation would require us to hold the SPI bus'
	 * chipselect low during the entie transaction to avoid any
L
Lucas De Marchi 已提交
532
	 * reset to the data stream coming from the chip.
533 534 535 536 537
	 */

	for (; rxfc != 0; rxfc--) {
		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
		rxstat = rxh & 0xffff;
538
		rxlen = (rxh >> 16) & 0xfff;
539

540 541
		netif_dbg(ks, rx_status, ks->netdev,
			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
542 543 544 545 546 547 548 549 550 551

		/* the length of the packet includes the 32bit CRC */

		/* set dma read address */
		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);

		/* start the packet dma process, and set auto-dequeue rx */
		ks8851_wrreg16(ks, KS_RXQCR,
			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);

552 553 554 555 556 557 558
		if (rxlen > 4) {
			unsigned int rxalign;

			rxlen -= 4;
			rxalign = ALIGN(rxlen, 4);
			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
			if (skb) {
559

560 561 562 563 564
				/* 4 bytes of status header + 4 bytes of
				 * garbage: we put them before ethernet
				 * header, so that they are copied,
				 * but ignored.
				 */
565

566
				rxpkt = skb_put(skb, rxlen) - 8;
567

568
				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
569

570 571
				if (netif_msg_pktdata(ks))
					ks8851_dbg_dumpkkt(ks, rxpkt);
572

573
				skb->protocol = eth_type_trans(skb, ks->netdev);
574
				netif_rx_ni(skb);
575

576 577 578
				ks->netdev->stats.rx_packets++;
				ks->netdev->stats.rx_bytes += rxlen;
			}
579 580 581 582 583 584 585
		}

		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
	}
}

/**
586 587 588
 * ks8851_irq - IRQ handler for dealing with interrupt requests
 * @irq: IRQ number
 * @_ks: cookie
589
 *
590 591 592
 * This handler is invoked when the IRQ line asserts to find out what happened.
 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 * in thread context.
593 594 595 596
 *
 * Read the interrupt status, work out what needs to be done and then clear
 * any of the interrupts that are not needed.
 */
597
static irqreturn_t ks8851_irq(int irq, void *_ks)
598
{
599
	struct ks8851_net *ks = _ks;
600 601 602 603 604 605 606
	unsigned status;
	unsigned handled = 0;

	mutex_lock(&ks->lock);

	status = ks8851_rdreg16(ks, KS_ISR);

607 608
	netif_dbg(ks, intr, ks->netdev,
		  "%s: status 0x%04x\n", __func__, status);
609

610
	if (status & IRQ_LCI)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		handled |= IRQ_LCI;

	if (status & IRQ_LDI) {
		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
		pmecr &= ~PMECR_WKEVT_MASK;
		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);

		handled |= IRQ_LDI;
	}

	if (status & IRQ_RXPSI)
		handled |= IRQ_RXPSI;

	if (status & IRQ_TXI) {
		handled |= IRQ_TXI;

		/* no lock here, tx queue should have been stopped */

		/* update our idea of how much tx space is available to the
		 * system */
		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);

633 634
		netif_dbg(ks, intr, ks->netdev,
			  "%s: txspace %d\n", __func__, ks->tx_space);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	}

	if (status & IRQ_RXI)
		handled |= IRQ_RXI;

	if (status & IRQ_SPIBEI) {
		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
		handled |= IRQ_SPIBEI;
	}

	ks8851_wrreg16(ks, KS_ISR, handled);

	if (status & IRQ_RXI) {
		/* the datasheet says to disable the rx interrupt during
		 * packet read-out, however we're masking the interrupt
		 * from the device so do not bother masking just the RX
		 * from the device. */

		ks8851_rx_pkts(ks);
	}

	/* if something stopped the rx process, probably due to wanting
	 * to change the rx settings, then do something about restarting
	 * it. */
	if (status & IRQ_RXPSI) {
		struct ks8851_rxctrl *rxc = &ks->rxctrl;

		/* update the multicast hash table */
		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);

		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
	}

	mutex_unlock(&ks->lock);

674 675 676
	if (status & IRQ_LCI)
		mii_check_link(&ks->mii);

677 678 679
	if (status & IRQ_TXI)
		netif_wake_queue(ks->netdev);

680
	return IRQ_HANDLED;
681 682 683 684
}

/**
 * calc_txlen - calculate size of message to send packet
L
Lucas De Marchi 已提交
685
 * @len: Length of data
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
 *
 * Returns the size of the TXFIFO message needed to send
 * this packet.
 */
static inline unsigned calc_txlen(unsigned len)
{
	return ALIGN(len + 4, 4);
}

/**
 * ks8851_wrpkt - write packet to TX FIFO
 * @ks: The device state.
 * @txp: The sk_buff to transmit.
 * @irq: IRQ on completion of the packet.
 *
 * Send the @txp to the chip. This means creating the relevant packet header
 * specifying the length of the packet and the other information the chip
 * needs, such as IRQ on completion. Send the header and the packet data to
 * the device.
 */
static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
{
	struct spi_transfer *xfer = ks->spi_xfer2;
	struct spi_message *msg = &ks->spi_msg2;
	unsigned fid = 0;
	int ret;

713 714
	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
		  __func__, txp, txp->len, txp->data, irq);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	fid = ks->fid++;
	fid &= TXFR_TXFID_MASK;

	if (irq)
		fid |= TXFR_TXIC;	/* irq on completion */

	/* start header at txb[1] to align txw entries */
	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
	ks->txh.txw[1] = cpu_to_le16(fid);
	ks->txh.txw[2] = cpu_to_le16(txp->len);

	xfer->tx_buf = &ks->txh.txb[1];
	xfer->rx_buf = NULL;
	xfer->len = 5;

	xfer++;
	xfer->tx_buf = txp->data;
	xfer->rx_buf = NULL;
	xfer->len = ALIGN(txp->len, 4);

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
738
		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

/**
 * ks8851_done_tx - update and then free skbuff after transmitting
 * @ks: The device state
 * @txb: The buffer transmitted
 */
static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
{
	struct net_device *dev = ks->netdev;

	dev->stats.tx_bytes += txb->len;
	dev->stats.tx_packets++;

	dev_kfree_skb(txb);
}

/**
 * ks8851_tx_work - process tx packet(s)
 * @work: The work strucutre what was scheduled.
 *
 * This is called when a number of packets have been scheduled for
 * transmission and need to be sent to the device.
 */
static void ks8851_tx_work(struct work_struct *work)
{
	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
	struct sk_buff *txb;
767
	bool last = skb_queue_empty(&ks->txq);
768 769 770 771 772 773 774

	mutex_lock(&ks->lock);

	while (!last) {
		txb = skb_dequeue(&ks->txq);
		last = skb_queue_empty(&ks->txq);

775 776 777 778 779
		if (txb != NULL) {
			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
			ks8851_wrpkt(ks, txb, last);
			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
780

781 782
			ks8851_done_tx(ks, txb);
		}
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	}

	mutex_unlock(&ks->lock);
}

/**
 * ks8851_net_open - open network device
 * @dev: The network device being opened.
 *
 * Called when the network device is marked active, such as a user executing
 * 'ifconfig up' on the device.
 */
static int ks8851_net_open(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);

	/* lock the card, even if we may not actually be doing anything
	 * else at the moment */
	mutex_lock(&ks->lock);

803
	netif_dbg(ks, ifup, ks->netdev, "opening\n");
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

	/* bring chip out of any power saving mode it was in */
	ks8851_set_powermode(ks, PMECR_PM_NORMAL);

	/* issue a soft reset to the RX/TX QMU to put it into a known
	 * state. */
	ks8851_soft_reset(ks, GRR_QMU);

	/* setup transmission parameters */

	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
				     TXCR_TXPE | /* pad to min length */
				     TXCR_TXCRC | /* add CRC */
				     TXCR_TXFCE)); /* enable flow control */

	/* auto-increment tx data, reset tx pointer */
	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);

	/* setup receiver control */

	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
				      RXCR1_RXFCE | /* enable flow control */
				      RXCR1_RXBE | /* broadcast enable */
				      RXCR1_RXUE | /* unicast enable */
				      RXCR1_RXE)); /* enable rx block */

	/* transfer entire frames out in one go */
	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);

	/* set receive counter timeouts */
	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */

	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
			RXQCR_RXDTTE);  /* IRQ on time exceeded */

	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);

	/* clear then enable interrupts */

#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
		 IRQ_TXI |	/* TX done */		\
		 IRQ_RXI |	/* RX done */		\
		 IRQ_SPIBEI |	/* SPI bus error */	\
		 IRQ_TXPSI |	/* TX process stop */	\
		 IRQ_RXPSI)	/* RX process stop */

	ks->rc_ier = STD_IRQ;
	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
	ks8851_wrreg16(ks, KS_IER, STD_IRQ);

	netif_start_queue(ks->netdev);

859
	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	mutex_unlock(&ks->lock);
	return 0;
}

/**
 * ks8851_net_stop - close network device
 * @dev: The device being closed.
 *
 * Called to close down a network device which has been active. Cancell any
 * work, shutdown the RX and TX process and then place the chip into a low
 * power state whilst it is not being used.
 */
static int ks8851_net_stop(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);

877
	netif_info(ks, ifdown, dev, "shutting down\n");
878 879 880 881

	netif_stop_queue(dev);

	mutex_lock(&ks->lock);
882 883 884 885
	/* turn off the IRQs and ack any outstanding */
	ks8851_wrreg16(ks, KS_IER, 0x0000);
	ks8851_wrreg16(ks, KS_ISR, 0xffff);
	mutex_unlock(&ks->lock);
886 887 888 889 890

	/* stop any outstanding work */
	flush_work(&ks->tx_work);
	flush_work(&ks->rxctrl_work);

891
	mutex_lock(&ks->lock);
892 893 894 895 896 897 898 899
	/* shutdown RX process */
	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);

	/* shutdown TX process */
	ks8851_wrreg16(ks, KS_TXCR, 0x0000);

	/* set powermode to soft power down to save power */
	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
900
	mutex_unlock(&ks->lock);
901 902 903 904 905

	/* ensure any queued tx buffers are dumped */
	while (!skb_queue_empty(&ks->txq)) {
		struct sk_buff *txb = skb_dequeue(&ks->txq);

906 907
		netif_dbg(ks, ifdown, ks->netdev,
			  "%s: freeing txb %p\n", __func__, txb);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

		dev_kfree_skb(txb);
	}

	return 0;
}

/**
 * ks8851_start_xmit - transmit packet
 * @skb: The buffer to transmit
 * @dev: The device used to transmit the packet.
 *
 * Called by the network layer to transmit the @skb. Queue the packet for
 * the device and schedule the necessary work to transmit the packet when
 * it is free.
 *
 * We do this to firstly avoid sleeping with the network device locked,
 * and secondly so we can round up more than one packet to transmit which
 * means we can try and avoid generating too many transmit done interrupts.
 */
928 929
static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
				     struct net_device *dev)
930 931 932
{
	struct ks8851_net *ks = netdev_priv(dev);
	unsigned needed = calc_txlen(skb->len);
933
	netdev_tx_t ret = NETDEV_TX_OK;
934

935 936
	netif_dbg(ks, tx_queued, ks->netdev,
		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	spin_lock(&ks->statelock);

	if (needed > ks->tx_space) {
		netif_stop_queue(dev);
		ret = NETDEV_TX_BUSY;
	} else {
		ks->tx_space -= needed;
		skb_queue_tail(&ks->txq, skb);
	}

	spin_unlock(&ks->statelock);
	schedule_work(&ks->tx_work);

	return ret;
}

/**
 * ks8851_rxctrl_work - work handler to change rx mode
 * @work: The work structure this belongs to.
 *
 * Lock the device and issue the necessary changes to the receive mode from
 * the network device layer. This is done so that we can do this without
 * having to sleep whilst holding the network device lock.
 *
 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 * receive parameters are programmed, we issue a write to disable the RXQ and
 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 * complete. The interrupt handler then writes the new values into the chip.
 */
static void ks8851_rxctrl_work(struct work_struct *work)
{
	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);

	mutex_lock(&ks->lock);

	/* need to shutdown RXQ before modifying filter parameters */
	ks8851_wrreg16(ks, KS_RXCR1, 0x00);

	mutex_unlock(&ks->lock);
}

static void ks8851_set_rx_mode(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	struct ks8851_rxctrl rxctrl;

	memset(&rxctrl, 0, sizeof(rxctrl));

	if (dev->flags & IFF_PROMISC) {
		/* interface to receive everything */

		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
	} else if (dev->flags & IFF_ALLMULTI) {
		/* accept all multicast packets */

		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
995
	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
996
		struct netdev_hw_addr *ha;
997 998 999 1000
		u32 crc;

		/* accept some multicast */

1001 1002
		netdev_for_each_mc_addr(ha, dev) {
			crc = ether_crc(ETH_ALEN, ha->addr);
1003 1004 1005 1006 1007
			crc >>= (32 - 6);  /* get top six bits */

			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
		}

1008
		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	} else {
		/* just accept broadcast / unicast */
		rxctrl.rxcr1 = RXCR1_RXPAFMA;
	}

	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
			 RXCR1_RXBE | /* broadcast enable */
			 RXCR1_RXE | /* RX process enable */
			 RXCR1_RXFCE); /* enable flow control */

	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;

	/* schedule work to do the actual set of the data if needed */

	spin_lock(&ks->statelock);

	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
		schedule_work(&ks->rxctrl_work);
	}

	spin_unlock(&ks->statelock);
}

static int ks8851_set_mac_address(struct net_device *dev, void *addr)
{
	struct sockaddr *sa = addr;

	if (netif_running(dev))
		return -EBUSY;

	if (!is_valid_ether_addr(sa->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
	return ks8851_write_mac_addr(dev);
}

static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}

static const struct net_device_ops ks8851_netdev_ops = {
	.ndo_open		= ks8851_net_open,
	.ndo_stop		= ks8851_net_stop,
	.ndo_do_ioctl		= ks8851_net_ioctl,
	.ndo_start_xmit		= ks8851_start_xmit,
	.ndo_set_mac_address	= ks8851_set_mac_address,
	.ndo_set_rx_mode	= ks8851_set_rx_mode,
	.ndo_validate_addr	= eth_validate_addr,
};

/* ethtool support */

static void ks8851_get_drvinfo(struct net_device *dev,
			       struct ethtool_drvinfo *di)
{
	strlcpy(di->driver, "KS8851", sizeof(di->driver));
	strlcpy(di->version, "1.00", sizeof(di->version));
	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
}

static u32 ks8851_get_msglevel(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return ks->msg_enable;
}

static void ks8851_set_msglevel(struct net_device *dev, u32 to)
{
	struct ks8851_net *ks = netdev_priv(dev);
	ks->msg_enable = to;
}

static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_ethtool_gset(&ks->mii, cmd);
}

static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_ethtool_sset(&ks->mii, cmd);
}

static u32 ks8851_get_link(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_link_ok(&ks->mii);
}

static int ks8851_nway_reset(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_nway_restart(&ks->mii);
}

1113
/* EEPROM support */
1114

1115
static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1116
{
1117 1118
	struct ks8851_net *ks = ee->data;
	unsigned val;
1119

1120
	val = ks8851_rdreg16(ks, KS_EEPCR);
1121

1122 1123 1124 1125
	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
{
	struct ks8851_net *ks = ee->data;
	unsigned val = EEPCR_EESA;	/* default - eeprom access on */

	if (ee->drive_data)
		val |= EEPCR_EESRWA;
	if (ee->reg_data_in)
		val |= EEPCR_EEDO;
	if (ee->reg_data_clock)
		val |= EEPCR_EESCK;
	if (ee->reg_chip_select)
		val |= EEPCR_EECS;

	ks8851_wrreg16(ks, KS_EEPCR, val);
}
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
 * @ks: The network device state.
 *
 * Check for the presence of an EEPROM, and then activate software access
 * to the device.
 */
static int ks8851_eeprom_claim(struct ks8851_net *ks)
{
	if (!(ks->rc_ccr & CCR_EEPROM))
		return -ENOENT;
1155

1156
	mutex_lock(&ks->lock);
1157

1158 1159 1160 1161
	/* start with clock low, cs high */
	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
	return 0;
}
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 * ks8851_eeprom_release - release the EEPROM interface
 * @ks: The device state
 *
 * Release the software access to the device EEPROM
 */
static void ks8851_eeprom_release(struct ks8851_net *ks)
{
	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1172

1173 1174
	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
	mutex_unlock(&ks->lock);
1175 1176
}

1177 1178
#define KS_EEPROM_MAGIC (0x00008851)

1179
static int ks8851_set_eeprom(struct net_device *dev,
1180
			     struct ethtool_eeprom *ee, u8 *data)
1181 1182
{
	struct ks8851_net *ks = netdev_priv(dev);
1183 1184 1185 1186 1187 1188
	int offset = ee->offset;
	int len = ee->len;
	u16 tmp;

	/* currently only support byte writing */
	if (len != 1)
1189 1190
		return -EINVAL;

1191 1192
	if (ee->magic != KS_EEPROM_MAGIC)
		return -EINVAL;
1193

1194 1195 1196 1197 1198 1199 1200
	if (ks8851_eeprom_claim(ks))
		return -ENOENT;

	eeprom_93cx6_wren(&ks->eeprom, true);

	/* ethtool currently only supports writing bytes, which means
	 * we have to read/modify/write our 16bit EEPROMs */
1201

1202
	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1203

1204 1205 1206 1207 1208 1209
	if (offset & 1) {
		tmp &= 0xff;
		tmp |= *data << 8;
	} else {
		tmp &= 0xff00;
		tmp |= *data;
1210 1211
	}

1212 1213 1214 1215 1216 1217 1218
	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
	eeprom_93cx6_wren(&ks->eeprom, false);

	ks8851_eeprom_release(ks);

	return 0;
}
1219

1220 1221 1222 1223 1224 1225
static int ks8851_get_eeprom(struct net_device *dev,
			     struct ethtool_eeprom *ee, u8 *data)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int offset = ee->offset;
	int len = ee->len;
1226

1227 1228 1229
	/* must be 2 byte aligned */
	if (len & 1 || offset & 1)
		return -EINVAL;
1230

1231 1232
	if (ks8851_eeprom_claim(ks))
		return -ENOENT;
1233

1234
	ee->magic = KS_EEPROM_MAGIC;
1235

1236 1237
	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
	ks8851_eeprom_release(ks);
1238

1239 1240
	return 0;
}
1241

1242 1243 1244 1245 1246 1247
static int ks8851_get_eeprom_len(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);

	/* currently, we assume it is an 93C46 attached, so return 128 */
	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257
static const struct ethtool_ops ks8851_ethtool_ops = {
	.get_drvinfo	= ks8851_get_drvinfo,
	.get_msglevel	= ks8851_get_msglevel,
	.set_msglevel	= ks8851_set_msglevel,
	.get_settings	= ks8851_get_settings,
	.set_settings	= ks8851_set_settings,
	.get_link	= ks8851_get_link,
	.nway_reset	= ks8851_nway_reset,
1258 1259 1260
	.get_eeprom_len	= ks8851_get_eeprom_len,
	.get_eeprom	= ks8851_get_eeprom,
	.set_eeprom	= ks8851_set_eeprom,
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
};

/* MII interface controls */

/**
 * ks8851_phy_reg - convert MII register into a KS8851 register
 * @reg: MII register number.
 *
 * Return the KS8851 register number for the corresponding MII PHY register
 * if possible. Return zero if the MII register has no direct mapping to the
 * KS8851 register set.
 */
static int ks8851_phy_reg(int reg)
{
	switch (reg) {
	case MII_BMCR:
		return KS_P1MBCR;
	case MII_BMSR:
		return KS_P1MBSR;
	case MII_PHYSID1:
		return KS_PHY1ILR;
	case MII_PHYSID2:
		return KS_PHY1IHR;
	case MII_ADVERTISE:
		return KS_P1ANAR;
	case MII_LPA:
		return KS_P1ANLPR;
	}

	return 0x0;
}

/**
 * ks8851_phy_read - MII interface PHY register read.
 * @dev: The network device the PHY is on.
 * @phy_addr: Address of PHY (ignored as we only have one)
 * @reg: The register to read.
 *
 * This call reads data from the PHY register specified in @reg. Since the
L
Lucas De Marchi 已提交
1300
 * device does not support all the MII registers, the non-existent values
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
 * are always returned as zero.
 *
 * We return zero for unsupported registers as the MII code does not check
 * the value returned for any error status, and simply returns it to the
 * caller. The mii-tool that the driver was tested with takes any -ve error
 * as real PHY capabilities, thus displaying incorrect data to the user.
 */
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int ksreg;
	int result;

	ksreg = ks8851_phy_reg(reg);
	if (!ksreg)
		return 0x0;	/* no error return allowed, so use zero */

	mutex_lock(&ks->lock);
	result = ks8851_rdreg16(ks, ksreg);
	mutex_unlock(&ks->lock);

	return result;
}

static void ks8851_phy_write(struct net_device *dev,
			     int phy, int reg, int value)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int ksreg;

	ksreg = ks8851_phy_reg(reg);
	if (ksreg) {
		mutex_lock(&ks->lock);
		ks8851_wrreg16(ks, ksreg, value);
		mutex_unlock(&ks->lock);
	}
}

/**
 * ks8851_read_selftest - read the selftest memory info.
 * @ks: The device state
 *
 * Read and check the TX/RX memory selftest information.
 */
static int ks8851_read_selftest(struct ks8851_net *ks)
{
	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
	int ret = 0;
	unsigned rd;

	rd = ks8851_rdreg16(ks, KS_MBIR);

	if ((rd & both_done) != both_done) {
1354
		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1355 1356 1357 1358
		return 0;
	}

	if (rd & MBIR_TXMBFA) {
1359
		netdev_err(ks->netdev, "TX memory selftest fail\n");
1360 1361 1362 1363
		ret |= 1;
	}

	if (rd & MBIR_RXMBFA) {
1364
		netdev_err(ks->netdev, "RX memory selftest fail\n");
1365 1366 1367 1368 1369 1370 1371 1372
		ret |= 2;
	}

	return 0;
}

/* driver bus management functions */

L
Lars-Peter Clausen 已提交
1373 1374 1375
#ifdef CONFIG_PM_SLEEP

static int ks8851_suspend(struct device *dev)
A
Arce, Abraham 已提交
1376
{
L
Lars-Peter Clausen 已提交
1377 1378
	struct ks8851_net *ks = dev_get_drvdata(dev);
	struct net_device *netdev = ks->netdev;
A
Arce, Abraham 已提交
1379

L
Lars-Peter Clausen 已提交
1380 1381 1382
	if (netif_running(netdev)) {
		netif_device_detach(netdev);
		ks8851_net_stop(netdev);
A
Arce, Abraham 已提交
1383 1384 1385 1386 1387
	}

	return 0;
}

L
Lars-Peter Clausen 已提交
1388
static int ks8851_resume(struct device *dev)
A
Arce, Abraham 已提交
1389
{
L
Lars-Peter Clausen 已提交
1390 1391
	struct ks8851_net *ks = dev_get_drvdata(dev);
	struct net_device *netdev = ks->netdev;
A
Arce, Abraham 已提交
1392

L
Lars-Peter Clausen 已提交
1393 1394 1395
	if (netif_running(netdev)) {
		ks8851_net_open(netdev);
		netif_device_attach(netdev);
A
Arce, Abraham 已提交
1396 1397 1398 1399
	}

	return 0;
}
1400
#endif
L
Lars-Peter Clausen 已提交
1401 1402

static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
A
Arce, Abraham 已提交
1403

1404
static int ks8851_probe(struct spi_device *spi)
1405 1406 1407 1408
{
	struct net_device *ndev;
	struct ks8851_net *ks;
	int ret;
1409
	unsigned cider;
1410
	int gpio;
1411 1412

	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1413
	if (!ndev)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		return -ENOMEM;

	spi->bits_per_word = 8;

	ks = netdev_priv(ndev);

	ks->netdev = ndev;
	ks->spidev = spi;
	ks->tx_space = 6144;

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
				       0, NULL);
	if (gpio == -EPROBE_DEFER) {
		ret = gpio;
		goto err_gpio;
	}

	ks->gpio = gpio;
	if (gpio_is_valid(gpio)) {
		ret = devm_gpio_request_one(&spi->dev, gpio,
					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
		if (ret) {
			dev_err(&spi->dev, "reset gpio request failed\n");
			goto err_gpio;
		}
	}

1441
	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1442 1443
	if (IS_ERR(ks->vdd_io)) {
		ret = PTR_ERR(ks->vdd_io);
1444 1445 1446 1447 1448 1449 1450 1451
		goto err_reg_io;
	}

	ret = regulator_enable(ks->vdd_io);
	if (ret) {
		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
			ret);
		goto err_reg_io;
1452 1453
	}

1454
	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1455 1456
	if (IS_ERR(ks->vdd_reg)) {
		ret = PTR_ERR(ks->vdd_reg);
1457 1458 1459 1460 1461 1462 1463 1464
		goto err_reg;
	}

	ret = regulator_enable(ks->vdd_reg);
	if (ret) {
		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
			ret);
		goto err_reg;
1465 1466
	}

1467 1468 1469 1470
	if (gpio_is_valid(gpio)) {
		usleep_range(10000, 11000);
		gpio_set_value(gpio, 1);
	}
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	mutex_init(&ks->lock);
	spin_lock_init(&ks->statelock);

	INIT_WORK(&ks->tx_work, ks8851_tx_work);
	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);

	/* initialise pre-made spi transfer messages */

	spi_message_init(&ks->spi_msg1);
	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);

	spi_message_init(&ks->spi_msg2);
	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);

1487 1488 1489 1490 1491 1492 1493
	/* setup EEPROM state */

	ks->eeprom.data = ks;
	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
	ks->eeprom.register_read = ks8851_eeprom_regread;
	ks->eeprom.register_write = ks8851_eeprom_regwrite;

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/* setup mii state */
	ks->mii.dev		= ndev;
	ks->mii.phy_id		= 1,
	ks->mii.phy_id_mask	= 1;
	ks->mii.reg_num_mask	= 0xf;
	ks->mii.mdio_read	= ks8851_phy_read;
	ks->mii.mdio_write	= ks8851_phy_write;

	dev_info(&spi->dev, "message enable is %d\n", msg_enable);

	/* set the default message enable */
	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
						     NETIF_MSG_PROBE |
						     NETIF_MSG_LINK));

	skb_queue_head_init(&ks->txq);

1511
	ndev->ethtool_ops = &ks8851_ethtool_ops;
1512 1513
	SET_NETDEV_DEV(ndev, &spi->dev);

1514
	spi_set_drvdata(spi, ks);
1515 1516 1517 1518 1519

	ndev->if_port = IF_PORT_100BASET;
	ndev->netdev_ops = &ks8851_netdev_ops;
	ndev->irq = spi->irq;

B
Ben Dooks 已提交
1520 1521 1522
	/* issue a global soft reset to reset the device. */
	ks8851_soft_reset(ks, GRR_GSR);

1523
	/* simple check for a valid chip being connected to the bus */
1524 1525
	cider = ks8851_rdreg16(ks, KS_CIDER);
	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1526 1527 1528 1529 1530
		dev_err(&spi->dev, "failed to read device ID\n");
		ret = -ENODEV;
		goto err_id;
	}

1531 1532 1533
	/* cache the contents of the CCR register for EEPROM, etc. */
	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);

1534 1535 1536
	ks8851_read_selftest(ks);
	ks8851_init_mac(ks);

1537 1538 1539
	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
				   ndev->name, ks);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (ret < 0) {
		dev_err(&spi->dev, "failed to get irq\n");
		goto err_irq;
	}

	ret = register_netdev(ndev);
	if (ret) {
		dev_err(&spi->dev, "failed to register network device\n");
		goto err_netdev;
	}

1551
	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1552
		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1553
		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1554 1555 1556 1557 1558

	return 0;


err_netdev:
1559
	free_irq(ndev->irq, ks);
1560 1561

err_irq:
1562 1563
	if (gpio_is_valid(gpio))
		gpio_set_value(gpio, 0);
1564
err_id:
1565
	regulator_disable(ks->vdd_reg);
1566
err_reg:
1567
	regulator_disable(ks->vdd_io);
1568 1569
err_reg_io:
err_gpio:
1570 1571 1572 1573
	free_netdev(ndev);
	return ret;
}

1574
static int ks8851_remove(struct spi_device *spi)
1575
{
1576
	struct ks8851_net *priv = spi_get_drvdata(spi);
1577 1578

	if (netif_msg_drv(priv))
1579
		dev_info(&spi->dev, "remove\n");
1580 1581 1582

	unregister_netdev(priv->netdev);
	free_irq(spi->irq, priv);
1583 1584
	if (gpio_is_valid(priv->gpio))
		gpio_set_value(priv->gpio, 0);
1585 1586
	regulator_disable(priv->vdd_reg);
	regulator_disable(priv->vdd_io);
1587 1588 1589 1590 1591
	free_netdev(priv->netdev);

	return 0;
}

S
Stephen Boyd 已提交
1592 1593 1594 1595
static const struct of_device_id ks8851_match_table[] = {
	{ .compatible = "micrel,ks8851" },
	{ }
};
1596
MODULE_DEVICE_TABLE(of, ks8851_match_table);
S
Stephen Boyd 已提交
1597

1598 1599 1600
static struct spi_driver ks8851_driver = {
	.driver = {
		.name = "ks8851",
S
Stephen Boyd 已提交
1601
		.of_match_table = ks8851_match_table,
1602
		.pm = &ks8851_pm_ops,
1603 1604
	},
	.probe = ks8851_probe,
1605
	.remove = ks8851_remove,
1606
};
1607
module_spi_driver(ks8851_driver);
1608 1609 1610 1611 1612 1613 1614

MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");

module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1615
MODULE_ALIAS("spi:ks8851");