rt2x00dev.c 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
	Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2x00lib
	Abstract: rt2x00 generic device routines.
 */

/*
 * Set enviroment defines for rt2x00.h
 */
#define DRV_NAME "rt2x00lib"

#include <linux/kernel.h>
#include <linux/module.h>

#include "rt2x00.h"
#include "rt2x00lib.h"

/*
 * Ring handler.
 */
struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
				     const unsigned int queue)
{
43
	int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

	/*
	 * Check if we are requesting a reqular TX ring,
	 * or if we are requesting a Beacon or Atim ring.
	 * For Atim rings, we should check if it is supported.
	 */
	if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
		return &rt2x00dev->tx[queue];

	if (!rt2x00dev->bcn || !beacon)
		return NULL;

	if (queue == IEEE80211_TX_QUEUE_BEACON)
		return &rt2x00dev->bcn[0];
	else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
		return &rt2x00dev->bcn[1];

	return NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);

/*
 * Link tuning handlers
 */
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	rt2x00_clear_link(&rt2x00dev->link);

	/*
	 * Reset the link tuner.
	 */
	rt2x00dev->ops->lib->reset_tuner(rt2x00dev);

	queue_delayed_work(rt2x00dev->hw->workqueue,
			   &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}

static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
83
	cancel_delayed_work_sync(&rt2x00dev->link.work);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
}

void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	rt2x00lib_stop_link_tuner(rt2x00dev);
	rt2x00lib_start_link_tuner(rt2x00dev);
}

/*
 * Radio control handlers.
 */
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	int status;

	/*
	 * Don't enable the radio twice.
	 * And check if the hardware button has been disabled.
	 */
	if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
104
	    (test_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags) &&
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	     !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags)))
		return 0;

	/*
	 * Enable radio.
	 */
	status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
						       STATE_RADIO_ON);
	if (status)
		return status;

	__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);

	/*
	 * Enable RX.
	 */
	rt2x00lib_toggle_rx(rt2x00dev, 1);

	/*
	 * Start the TX queues.
	 */
	ieee80211_start_queues(rt2x00dev->hw);

	return 0;
}

void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

	/*
137
	 * Stop all scheduled work.
138 139 140
	 */
	if (work_pending(&rt2x00dev->beacon_work))
		cancel_work_sync(&rt2x00dev->beacon_work);
141 142
	if (work_pending(&rt2x00dev->filter_work))
		cancel_work_sync(&rt2x00dev->filter_work);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	/*
	 * Stop the TX queues.
	 */
	ieee80211_stop_queues(rt2x00dev->hw);

	/*
	 * Disable RX.
	 */
	rt2x00lib_toggle_rx(rt2x00dev, 0);

	/*
	 * Disable radio.
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}

void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
{
	enum dev_state state = enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF;

164 165 166
	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	/*
	 * When we are disabling the RX, we should also stop the link tuner.
	 */
	if (!enable)
		rt2x00lib_stop_link_tuner(rt2x00dev);

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);

	/*
	 * When we are enabling the RX, we should also start the link tuner.
	 */
	if (enable && is_interface_present(&rt2x00dev->interface))
		rt2x00lib_start_link_tuner(rt2x00dev);
}

static void rt2x00lib_precalculate_link_signal(struct link *link)
{
	if (link->rx_failed || link->rx_success)
		link->rx_percentage =
		    (link->rx_success * 100) /
		    (link->rx_failed + link->rx_success);
	else
		link->rx_percentage = 50;

	if (link->tx_failed || link->tx_success)
		link->tx_percentage =
		    (link->tx_success * 100) /
		    (link->tx_failed + link->tx_success);
	else
		link->tx_percentage = 50;

	link->rx_success = 0;
	link->rx_failed = 0;
	link->tx_success = 0;
	link->tx_failed = 0;
}

static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
					   int rssi)
{
	int rssi_percentage = 0;
	int signal;

	/*
	 * We need a positive value for the RSSI.
	 */
	if (rssi < 0)
		rssi += rt2x00dev->rssi_offset;

	/*
	 * Calculate the different percentages,
	 * which will be used for the signal.
	 */
	if (rt2x00dev->rssi_offset)
		rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;

	/*
	 * Add the individual percentages and use the WEIGHT
	 * defines to calculate the current link signal.
	 */
	signal = ((WEIGHT_RSSI * rssi_percentage) +
		  (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
		  (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;

	return (signal > 100) ? 100 : signal;
}

static void rt2x00lib_link_tuner(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, link.work.work);

	/*
	 * Update statistics.
	 */
	rt2x00dev->ops->lib->link_stats(rt2x00dev);

	rt2x00dev->low_level_stats.dot11FCSErrorCount +=
	    rt2x00dev->link.rx_failed;

	/*
	 * Only perform the link tuning when Link tuning
	 * has been enabled (This could have been disabled from the EEPROM).
	 */
	if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
		rt2x00dev->ops->lib->link_tuner(rt2x00dev);

254 255 256 257 258 259
	/*
	 * Precalculate a portion of the link signal which is
	 * in based on the tx/rx success/failure counters.
	 */
	rt2x00lib_precalculate_link_signal(&rt2x00dev->link);

260 261 262 263 264 265 266 267
	/*
	 * Increase tuner counter, and reschedule the next link tuner run.
	 */
	rt2x00dev->link.count++;
	queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
			   LINK_TUNE_INTERVAL);
}

268 269 270 271 272 273 274 275 276 277 278
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, filter_work);

	rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
					     rt2x00dev->interface.filter,
					     &rt2x00dev->interface.filter,
					     0, NULL);
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Interrupt context handlers.
 */
static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, beacon_work);
	struct data_ring *ring =
	    rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
	struct data_entry *entry = rt2x00_get_data_entry(ring);
	struct sk_buff *skb;

	skb = ieee80211_beacon_get(rt2x00dev->hw,
				   rt2x00dev->interface.id,
				   &entry->tx_status.control);
	if (!skb)
		return;

	rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
					  &entry->tx_status.control);

	dev_kfree_skb(skb);
}

void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

	queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);

void rt2x00lib_txdone(struct data_entry *entry,
		      const int status, const int retry)
{
	struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
	struct ieee80211_tx_status *tx_status = &entry->tx_status;
	struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
	int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
	int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
		      status == TX_FAIL_OTHER);

	/*
	 * Update TX statistics.
	 */
	tx_status->flags = 0;
	tx_status->ack_signal = 0;
	tx_status->excessive_retries = (status == TX_FAIL_RETRY);
	tx_status->retry_count = retry;
	rt2x00dev->link.tx_success += success;
	rt2x00dev->link.tx_failed += retry + fail;

	if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
		if (success)
			tx_status->flags |= IEEE80211_TX_STATUS_ACK;
		else
			stats->dot11ACKFailureCount++;
	}

	tx_status->queue_length = entry->ring->stats.limit;
	tx_status->queue_number = tx_status->control.queue;

	if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
		if (success)
			stats->dot11RTSSuccessCount++;
		else
			stats->dot11RTSFailureCount++;
	}

	/*
	 * Send the tx_status to mac80211,
	 * that method also cleans up the skb structure.
	 */
	ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
	entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);

void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
359
		      struct rxdata_entry_desc *desc)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
	struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
	struct ieee80211_hw_mode *mode;
	struct ieee80211_rate *rate;
	unsigned int i;
	int val = 0;

	/*
	 * Update RX statistics.
	 */
	mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
	for (i = 0; i < mode->num_rates; i++) {
		rate = &mode->rates[i];

		/*
		 * When frame was received with an OFDM bitrate,
		 * the signal is the PLCP value. If it was received with
		 * a CCK bitrate the signal is the rate in 0.5kbit/s.
		 */
380
		if (!desc->ofdm)
381 382 383 384
			val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
		else
			val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);

385
		if (val == desc->signal) {
386 387 388 389 390
			val = rate->val;
			break;
		}
	}

391
	rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
392 393
	rt2x00dev->link.rx_success++;
	rx_status->rate = val;
394 395 396 397
	rx_status->signal =
	    rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
	rx_status->ssi = desc->rssi;
	rx_status->flag = desc->flags;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	/*
	 * Send frame to mac80211
	 */
	ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);

/*
 * TX descriptor initializer
 */
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
			     struct data_desc *txd,
			     struct ieee80211_hdr *ieee80211hdr,
			     unsigned int length,
			     struct ieee80211_tx_control *control)
{
415
	struct txdata_entry_desc desc;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	struct data_ring *ring;
	int tx_rate;
	int bitrate;
	int duration;
	int residual;
	u16 frame_control;
	u16 seq_ctrl;

	/*
	 * Make sure the descriptor is properly cleared.
	 */
	memset(&desc, 0x00, sizeof(desc));

	/*
	 * Get ring pointer, if we fail to obtain the
	 * correct ring, then use the first TX ring.
	 */
	ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
	if (!ring)
		ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);

	desc.cw_min = ring->tx_params.cw_min;
	desc.cw_max = ring->tx_params.cw_max;
	desc.aifs = ring->tx_params.aifs;

	/*
	 * Identify queue
	 */
	if (control->queue < rt2x00dev->hw->queues)
		desc.queue = control->queue;
	else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
		 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
		desc.queue = QUEUE_MGMT;
	else
		desc.queue = QUEUE_OTHER;

	/*
	 * Read required fields from ieee80211 header.
	 */
	frame_control = le16_to_cpu(ieee80211hdr->frame_control);
	seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);

	tx_rate = control->tx_rate;

	/*
	 * Check if this is a RTS/CTS frame
	 */
	if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
		__set_bit(ENTRY_TXD_BURST, &desc.flags);
		if (is_rts_frame(frame_control))
			__set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
		if (control->rts_cts_rate)
			tx_rate = control->rts_cts_rate;
	}

	/*
	 * Check for OFDM
	 */
	if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
		__set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);

	/*
	 * Check if more fragments are pending
	 */
	if (ieee80211_get_morefrag(ieee80211hdr)) {
		__set_bit(ENTRY_TXD_BURST, &desc.flags);
		__set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
	}

	/*
	 * Beacons and probe responses require the tsf timestamp
	 * to be inserted into the frame.
	 */
	if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
	    is_probe_resp(frame_control))
		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);

	/*
	 * Determine with what IFS priority this frame should be send.
	 * Set ifs to IFS_SIFS when the this is not the first fragment,
	 * or this fragment came after RTS/CTS.
	 */
	if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
	    test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
		desc.ifs = IFS_SIFS;
	else
		desc.ifs = IFS_BACKOFF;

	/*
	 * PLCP setup
	 * Length calculation depends on OFDM/CCK rate.
	 */
	desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
	desc.service = 0x04;

	if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
		desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
		desc.length_low = ((length + FCS_LEN) & 0x3f);
	} else {
		bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);

		/*
		 * Convert length to microseconds.
		 */
		residual = get_duration_res(length + FCS_LEN, bitrate);
		duration = get_duration(length + FCS_LEN, bitrate);

		if (residual != 0) {
			duration++;

			/*
			 * Check if we need to set the Length Extension
			 */
			if (bitrate == 110 && residual <= 3)
				desc.service |= 0x80;
		}

		desc.length_high = (duration >> 8) & 0xff;
		desc.length_low = duration & 0xff;

		/*
		 * When preamble is enabled we should set the
		 * preamble bit for the signal.
		 */
		if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
			desc.signal |= 0x08;
	}

	rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
					   ieee80211hdr, length, control);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);

/*
 * Driver initialization handlers.
 */
static void rt2x00lib_channel(struct ieee80211_channel *entry,
			      const int channel, const int tx_power,
			      const int value)
{
	entry->chan = channel;
	if (channel <= 14)
		entry->freq = 2407 + (5 * channel);
	else
		entry->freq = 5000 + (5 * channel);
	entry->val = value;
	entry->flag =
	    IEEE80211_CHAN_W_IBSS |
	    IEEE80211_CHAN_W_ACTIVE_SCAN |
	    IEEE80211_CHAN_W_SCAN;
	entry->power_level = tx_power;
	entry->antenna_max = 0xff;
}

static void rt2x00lib_rate(struct ieee80211_rate *entry,
			   const int rate, const int mask,
			   const int plcp, const int flags)
{
	entry->rate = rate;
	entry->val =
	    DEVICE_SET_RATE_FIELD(rate, RATE) |
	    DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
	    DEVICE_SET_RATE_FIELD(plcp, PLCP);
	entry->flags = flags;
	entry->val2 = entry->val;
	if (entry->flags & IEEE80211_RATE_PREAMBLE2)
		entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
	entry->min_rssi_ack = 0;
	entry->min_rssi_ack_delta = 0;
}

static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
				    struct hw_mode_spec *spec)
{
	struct ieee80211_hw *hw = rt2x00dev->hw;
	struct ieee80211_hw_mode *hwmodes;
	struct ieee80211_channel *channels;
	struct ieee80211_rate *rates;
	unsigned int i;
	unsigned char tx_power;

	hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
	if (!hwmodes)
		goto exit;

	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
	if (!channels)
		goto exit_free_modes;

	rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
	if (!rates)
		goto exit_free_channels;

	/*
	 * Initialize Rate list.
	 */
	rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
		       0x00, IEEE80211_RATE_CCK);
	rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
		       0x01, IEEE80211_RATE_CCK_2);
	rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
		       0x02, IEEE80211_RATE_CCK_2);
	rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
		       0x03, IEEE80211_RATE_CCK_2);

	if (spec->num_rates > 4) {
		rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
			       0x0b, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
			       0x0f, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
			       0x0a, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
			       0x0e, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
			       0x09, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
			       0x0d, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
			       0x08, IEEE80211_RATE_OFDM);
		rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
			       0x0c, IEEE80211_RATE_OFDM);
	}

	/*
	 * Initialize Channel list.
	 */
	for (i = 0; i < spec->num_channels; i++) {
		if (spec->channels[i].channel <= 14)
			tx_power = spec->tx_power_bg[i];
		else if (spec->tx_power_a)
			tx_power = spec->tx_power_a[i];
		else
			tx_power = spec->tx_power_default;

		rt2x00lib_channel(&channels[i],
				  spec->channels[i].channel, tx_power, i);
	}

	/*
	 * Intitialize 802.11b
	 * Rates: CCK.
	 * Channels: OFDM.
	 */
	if (spec->num_modes > HWMODE_B) {
		hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
		hwmodes[HWMODE_B].num_channels = 14;
		hwmodes[HWMODE_B].num_rates = 4;
		hwmodes[HWMODE_B].channels = channels;
		hwmodes[HWMODE_B].rates = rates;
	}

	/*
	 * Intitialize 802.11g
	 * Rates: CCK, OFDM.
	 * Channels: OFDM.
	 */
	if (spec->num_modes > HWMODE_G) {
		hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
		hwmodes[HWMODE_G].num_channels = 14;
		hwmodes[HWMODE_G].num_rates = spec->num_rates;
		hwmodes[HWMODE_G].channels = channels;
		hwmodes[HWMODE_G].rates = rates;
	}

	/*
	 * Intitialize 802.11a
	 * Rates: OFDM.
	 * Channels: OFDM, UNII, HiperLAN2.
	 */
	if (spec->num_modes > HWMODE_A) {
		hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
		hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
		hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
		hwmodes[HWMODE_A].channels = &channels[14];
		hwmodes[HWMODE_A].rates = &rates[4];
	}

	if (spec->num_modes > HWMODE_G &&
	    ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
		goto exit_free_rates;

	if (spec->num_modes > HWMODE_B &&
	    ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
		goto exit_free_rates;

	if (spec->num_modes > HWMODE_A &&
	    ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
		goto exit_free_rates;

	rt2x00dev->hwmodes = hwmodes;

	return 0;

exit_free_rates:
	kfree(rates);

exit_free_channels:
	kfree(channels);

exit_free_modes:
	kfree(hwmodes);

exit:
	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
	return -ENOMEM;
}

static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
726
	if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		ieee80211_unregister_hw(rt2x00dev->hw);

	if (likely(rt2x00dev->hwmodes)) {
		kfree(rt2x00dev->hwmodes->channels);
		kfree(rt2x00dev->hwmodes->rates);
		kfree(rt2x00dev->hwmodes);
		rt2x00dev->hwmodes = NULL;
	}
}

static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	int status;

	/*
	 * Initialize HW modes.
	 */
	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
	if (status)
		return status;

	/*
	 * Register HW.
	 */
	status = ieee80211_register_hw(rt2x00dev->hw);
	if (status) {
		rt2x00lib_remove_hw(rt2x00dev);
		return status;
	}

758
	__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	return 0;
}

/*
 * Initialization/uninitialization handlers.
 */
static int rt2x00lib_alloc_entries(struct data_ring *ring,
				   const u16 max_entries, const u16 data_size,
				   const u16 desc_size)
{
	struct data_entry *entry;
	unsigned int i;

	ring->stats.limit = max_entries;
	ring->data_size = data_size;
	ring->desc_size = desc_size;

	/*
	 * Allocate all ring entries.
	 */
	entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return -ENOMEM;

	for (i = 0; i < ring->stats.limit; i++) {
		entry[i].flags = 0;
		entry[i].ring = ring;
		entry[i].skb = NULL;
	}

	ring->entry = entry;

	return 0;
}

static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
{
	struct data_ring *ring;

	/*
	 * Allocate the RX ring.
	 */
	if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
				    rt2x00dev->ops->rxd_size))
		return -ENOMEM;

	/*
	 * First allocate the TX rings.
	 */
	txring_for_each(rt2x00dev, ring) {
		if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
					    rt2x00dev->ops->txd_size))
			return -ENOMEM;
	}

815
	if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		return 0;

	/*
	 * Allocate the BEACON ring.
	 */
	if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
				    MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
		return -ENOMEM;

	/*
	 * Allocate the Atim ring.
	 */
	if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
				    DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
		return -ENOMEM;

	return 0;
}

static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
{
	struct data_ring *ring;

	ring_for_each(rt2x00dev, ring) {
		kfree(ring->entry);
		ring->entry = NULL;
	}
}

void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
	if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
		return;

	/*
	 * Unregister rfkill.
	 */
	rt2x00rfkill_unregister(rt2x00dev);

	/*
	 * Allow the HW to uninitialize.
	 */
	rt2x00dev->ops->lib->uninitialize(rt2x00dev);

	/*
	 * Free allocated ring entries.
	 */
	rt2x00lib_free_ring_entries(rt2x00dev);
}

int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
	int status;

	if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
		return 0;

	/*
	 * Allocate all ring entries.
	 */
	status = rt2x00lib_alloc_ring_entries(rt2x00dev);
	if (status) {
		ERROR(rt2x00dev, "Ring entries allocation failed.\n");
		return status;
	}

	/*
	 * Initialize the device.
	 */
	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
	if (status)
		goto exit;

	__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);

	/*
	 * Register the rfkill handler.
	 */
	status = rt2x00rfkill_register(rt2x00dev);
	if (status)
		goto exit_unitialize;

	return 0;

exit_unitialize:
	rt2x00lib_uninitialize(rt2x00dev);

exit:
	rt2x00lib_free_ring_entries(rt2x00dev);

	return status;
}

/*
 * driver allocation handlers.
 */
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
{
	struct data_ring *ring;

	/*
	 * We need the following rings:
	 * RX: 1
	 * TX: hw->queues
	 * Beacon: 1 (if required)
	 * Atim: 1 (if required)
	 */
	rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
924
	    (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
925 926 927 928 929 930 931 932 933 934 935 936

	ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
	if (!ring) {
		ERROR(rt2x00dev, "Ring allocation failed.\n");
		return -ENOMEM;
	}

	/*
	 * Initialize pointers
	 */
	rt2x00dev->rx = ring;
	rt2x00dev->tx = &rt2x00dev->rx[1];
937
	if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];

	/*
	 * Initialize ring parameters.
	 * cw_min: 2^5 = 32.
	 * cw_max: 2^10 = 1024.
	 */
	ring_for_each(rt2x00dev, ring) {
		ring->rt2x00dev = rt2x00dev;
		ring->tx_params.aifs = 2;
		ring->tx_params.cw_min = 5;
		ring->tx_params.cw_max = 10;
	}

	return 0;
}

static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
{
	kfree(rt2x00dev->rx);
	rt2x00dev->rx = NULL;
	rt2x00dev->tx = NULL;
	rt2x00dev->bcn = NULL;
}

int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
	int retval = -ENOMEM;

	/*
	 * Let the driver probe the device to detect the capabilities.
	 */
	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
	if (retval) {
		ERROR(rt2x00dev, "Failed to allocate device.\n");
		goto exit;
	}

	/*
	 * Initialize configuration work.
	 */
	INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
980
	INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);

	/*
	 * Reset current working type.
	 */
	rt2x00dev->interface.type = INVALID_INTERFACE;

	/*
	 * Allocate ring array.
	 */
	retval = rt2x00lib_alloc_rings(rt2x00dev);
	if (retval)
		goto exit;

	/*
	 * Initialize ieee80211 structure.
	 */
	retval = rt2x00lib_probe_hw(rt2x00dev);
	if (retval) {
		ERROR(rt2x00dev, "Failed to initialize hw.\n");
		goto exit;
	}

	/*
	 * Allocatie rfkill.
	 */
	retval = rt2x00rfkill_allocate(rt2x00dev);
	if (retval)
		goto exit;

	/*
	 * Open the debugfs entry.
	 */
	rt2x00debug_register(rt2x00dev);

1016 1017
	__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	return 0;

exit:
	rt2x00lib_remove_dev(rt2x00dev);

	return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);

void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
1029 1030
	__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * Disable radio.
	 */
	rt2x00lib_disable_radio(rt2x00dev);

	/*
	 * Uninitialize device.
	 */
	rt2x00lib_uninitialize(rt2x00dev);

	/*
	 * Close debugfs entry.
	 */
	rt2x00debug_deregister(rt2x00dev);

	/*
	 * Free rfkill
	 */
	rt2x00rfkill_free(rt2x00dev);

	/*
	 * Free ieee80211_hw memory.
	 */
	rt2x00lib_remove_hw(rt2x00dev);

	/*
	 * Free firmware image.
	 */
	rt2x00lib_free_firmware(rt2x00dev);

	/*
	 * Free ring structures.
	 */
	rt2x00lib_free_rings(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);

/*
 * Device state handlers
 */
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
	int retval;

	NOTICE(rt2x00dev, "Going to sleep.\n");
1077 1078 1079 1080 1081 1082 1083
	__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

	/*
	 * Only continue if mac80211 has open interfaces.
	 */
	if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
		goto exit;
1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Disable radio and unitialize all items
	 * that must be recreated on resume.
	 */
	rt2x00lib_disable_radio(rt2x00dev);
	rt2x00lib_uninitialize(rt2x00dev);
	rt2x00debug_deregister(rt2x00dev);

1093
exit:
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * Set device mode to sleep for power management.
	 */
	retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
	if (retval)
		return retval;

	return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);

int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
	struct interface *intf = &rt2x00dev->interface;
	int retval;

	NOTICE(rt2x00dev, "Waking up.\n");
1111
	__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1112 1113 1114 1115 1116 1117

	/*
	 * Open the debugfs entry.
	 */
	rt2x00debug_register(rt2x00dev);

1118 1119 1120 1121 1122 1123
	/*
	 * Only continue if mac80211 has open interfaces.
	 */
	if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
		return 0;

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/*
	 * Reinitialize device and all active interfaces.
	 */
	retval = rt2x00mac_start(rt2x00dev->hw);
	if (retval)
		goto exit;

	/*
	 * Reconfigure device.
	 */
1134 1135 1136
	rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
	if (!rt2x00dev->hw->conf.radio_enabled)
		rt2x00lib_disable_radio(rt2x00dev);
1137 1138 1139 1140 1141

	rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
	rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
	rt2x00lib_config_type(rt2x00dev, intf->type);

1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * It is possible that during that mac80211 has attempted
	 * to send frames while we were suspending or resuming.
	 * In that case we have disabled the TX queue and should
	 * now enable it again
	 */
	ieee80211_start_queues(rt2x00dev->hw);

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	/*
	 * When in Master or Ad-hoc mode,
	 * restart Beacon transmitting by faking a beacondone event.
	 */
	if (intf->type == IEEE80211_IF_TYPE_AP ||
	    intf->type == IEEE80211_IF_TYPE_IBSS)
		rt2x00lib_beacondone(rt2x00dev);

	return 0;

exit:
	rt2x00lib_disable_radio(rt2x00dev);
	rt2x00lib_uninitialize(rt2x00dev);
	rt2x00debug_deregister(rt2x00dev);

	return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */

/*
 * rt2x00lib module information.
 */
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");