ordered-data.c 18.6 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/gfp.h>
#include <linux/slab.h>
21
#include <linux/blkdev.h>
22 23
#include <linux/writeback.h>
#include <linux/pagevec.h>
C
Chris Mason 已提交
24 25 26
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
27
#include "extent_io.h"
C
Chris Mason 已提交
28 29


30
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
31
{
32 33 34
	if (entry->file_offset + entry->len < entry->file_offset)
		return (u64)-1;
	return entry->file_offset + entry->len;
C
Chris Mason 已提交
35 36
}

37 38
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
39 40 41
{
	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
42
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
43 44 45

	while(*p) {
		parent = *p;
46
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
47

48
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
49
			p = &(*p)->rb_left;
50
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
51 52 53 54 55 56 57 58 59 60
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

61 62
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
63 64 65
{
	struct rb_node * n = root->rb_node;
	struct rb_node *prev = NULL;
66 67 68
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
69 70

	while(n) {
71
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
72 73 74
		prev = n;
		prev_entry = entry;

75
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
76
			n = n->rb_left;
77
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
78 79 80 81 82 83 84
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	while(prev && file_offset >= entry_end(prev_entry)) {
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
	while(prev && file_offset < entry_end(prev_entry)) {
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
106 107 108 109 110
	}
	*prev_ret = prev;
	return NULL;
}

111 112 113 114 115 116 117 118 119 120
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
	if (file_offset < entry->file_offset ||
	    entry->file_offset + entry->len <= file_offset)
		return 0;
	return 1;
}

static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
121
{
122
	struct rb_root *root = &tree->tree;
C
Chris Mason 已提交
123 124
	struct rb_node *prev;
	struct rb_node *ret;
125 126 127 128 129 130 131 132 133
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
		if (offset_in_entry(entry, file_offset))
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
134
	if (!ret)
135 136 137
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
138 139 140
	return ret;
}

141 142 143 144 145 146 147 148 149 150 151 152 153
/* allocate and add a new ordered_extent into the per-inode tree.
 * file_offset is the logical offset in the file
 *
 * start is the disk block number of an extent already reserved in the
 * extent allocation tree
 *
 * len is the length of the extent
 *
 * This also sets the EXTENT_ORDERED bit on the range in the inode.
 *
 * The tree is given a single reference on the ordered extent that was
 * inserted.
 */
154 155
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
			     u64 start, u64 len)
C
Chris Mason 已提交
156 157
{
	struct btrfs_ordered_inode_tree *tree;
158 159
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
160

161 162
	tree = &BTRFS_I(inode)->ordered_tree;
	entry = kzalloc(sizeof(*entry), GFP_NOFS);
C
Chris Mason 已提交
163 164 165
	if (!entry)
		return -ENOMEM;

166 167 168 169
	mutex_lock(&tree->mutex);
	entry->file_offset = file_offset;
	entry->start = start;
	entry->len = len;
170 171
	entry->inode = inode;

172 173 174 175
	/* one ref for the tree */
	atomic_set(&entry->refs, 1);
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
176
	INIT_LIST_HEAD(&entry->root_extent_list);
C
Chris Mason 已提交
177

178 179 180
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
	if (node) {
181 182
		printk("warning dup entry from add_ordered_extent\n");
		BUG();
183 184 185
	}
	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
			   entry_end(entry) - 1, GFP_NOFS);
186

187 188 189 190 191
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_add_tail(&entry->root_extent_list,
		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

192 193
	mutex_unlock(&tree->mutex);
	BUG_ON(node);
C
Chris Mason 已提交
194 195 196
	return 0;
}

197 198
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
199 200
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
201
 */
202 203 204
int btrfs_add_ordered_sum(struct inode *inode,
			  struct btrfs_ordered_extent *entry,
			  struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
205
{
206
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
207

208 209 210 211 212
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	list_add_tail(&sum->list, &entry->list);
	mutex_unlock(&tree->mutex);
	return 0;
C
Chris Mason 已提交
213 214
}

215 216 217 218 219 220 221 222 223
/*
 * this is used to account for finished IO across a given range
 * of the file.  The IO should not span ordered extents.  If
 * a given ordered_extent is completely done, 1 is returned, otherwise
 * 0.
 *
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 * to make sure this function only returns 1 once for a given ordered extent.
 */
224 225
int btrfs_dec_test_ordered_pending(struct inode *inode,
				   u64 file_offset, u64 io_size)
C
Chris Mason 已提交
226
{
227
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
228
	struct rb_node *node;
229 230 231 232 233 234 235 236 237
	struct btrfs_ordered_extent *entry;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	int ret;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
			     GFP_NOFS);
	node = tree_search(tree, file_offset);
C
Chris Mason 已提交
238
	if (!node) {
239 240
		ret = 1;
		goto out;
C
Chris Mason 已提交
241 242
	}

243 244 245 246
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset)) {
		ret = 1;
		goto out;
C
Chris Mason 已提交
247
	}
248 249 250 251 252 253 254 255 256 257

	ret = test_range_bit(io_tree, entry->file_offset,
			     entry->file_offset + entry->len - 1,
			     EXTENT_ORDERED, 0);
	if (ret == 0)
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
out:
	mutex_unlock(&tree->mutex);
	return ret == 0;
}
C
Chris Mason 已提交
258

259 260 261 262
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
263 264
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
{
265 266 267 268 269 270 271 272 273 274
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

	if (atomic_dec_and_test(&entry->refs)) {
		while(!list_empty(&entry->list)) {
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
			kfree(sum);
		}
275
		kfree(entry);
276
	}
277
	return 0;
C
Chris Mason 已提交
278
}
279

280 281 282 283
/*
 * remove an ordered extent from the tree.  No references are dropped
 * but, anyone waiting on this extent is woken up.
 */
284 285
int btrfs_remove_ordered_extent(struct inode *inode,
				struct btrfs_ordered_extent *entry)
286
{
287
	struct btrfs_ordered_inode_tree *tree;
288 289
	struct rb_node *node;

290 291 292
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = &entry->rb_node;
293
	rb_erase(node, &tree->tree);
294 295
	tree->last = NULL;
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
296 297 298 299 300

	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_del_init(&entry->root_extent_list);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

301 302 303
	mutex_unlock(&tree->mutex);
	wake_up(&entry->wait);
	return 0;
304 305
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
int btrfs_wait_ordered_extents(struct btrfs_root *root)
{
	struct list_head splice;
	struct list_head *cur;
	struct btrfs_ordered_extent *ordered;
	struct inode *inode;

	INIT_LIST_HEAD(&splice);

	spin_lock(&root->fs_info->ordered_extent_lock);
	list_splice_init(&root->fs_info->ordered_extents, &splice);
	while(!list_empty(&splice)) {
		cur = splice.next;
		ordered = list_entry(cur, struct btrfs_ordered_extent,
				     root_extent_list);
		list_del_init(&ordered->root_extent_list);
		atomic_inc(&ordered->refs);
		inode = ordered->inode;

		/*
		 * the inode can't go away until all the pages are gone
		 * and the pages won't go away while there is still
		 * an ordered extent and the ordered extent won't go
		 * away until it is off this list.  So, we can safely
		 * increment i_count here and call iput later
		 */
		atomic_inc(&inode->i_count);
		spin_unlock(&root->fs_info->ordered_extent_lock);

		btrfs_start_ordered_extent(inode, ordered, 1);
		btrfs_put_ordered_extent(ordered);
		iput(inode);

		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);
	return 0;
}

345 346 347 348 349 350 351 352 353 354
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
void btrfs_start_ordered_extent(struct inode *inode,
				       struct btrfs_ordered_extent *entry,
				       int wait)
355 356 357
{
	u64 start = entry->file_offset;
	u64 end = start + entry->len - 1;
358

359 360 361 362 363
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
	 * for pdflush to find them
	 */
364
	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
365 366 367 368
	if (wait)
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
}
369

370 371 372
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
373 374 375
void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
{
	u64 end;
376 377
	u64 orig_end;
	u64 wait_end;
378
	struct btrfs_ordered_extent *ordered;
379 380

	if (start + len < start) {
381
		orig_end = INT_LIMIT(loff_t);
382 383
	} else {
		orig_end = start + len - 1;
384 385
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
386
	}
387
	wait_end = orig_end;
C
Chris Mason 已提交
388
again:
389 390 391
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
392 393 394 395 396
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);

	btrfs_wait_on_page_writeback_range(inode->i_mapping,
					   start >> PAGE_CACHE_SHIFT,
					   orig_end >> PAGE_CACHE_SHIFT);
397

398
	end = orig_end;
399 400 401 402 403
	while(1) {
		ordered = btrfs_lookup_first_ordered_extent(inode, end);
		if (!ordered) {
			break;
		}
404
		if (ordered->file_offset > orig_end) {
405 406 407 408 409 410 411
			btrfs_put_ordered_extent(ordered);
			break;
		}
		if (ordered->file_offset + ordered->len < start) {
			btrfs_put_ordered_extent(ordered);
			break;
		}
412
		btrfs_start_ordered_extent(inode, ordered, 1);
413 414
		end = ordered->file_offset;
		btrfs_put_ordered_extent(ordered);
415
		if (end == 0 || end == start)
416 417 418
			break;
		end--;
	}
C
Chris Mason 已提交
419 420 421 422 423 424 425 426
	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
		printk("inode %lu still ordered or delalloc after wait "
		       "%llu %llu\n", inode->i_ino,
		       (unsigned long long)start,
		       (unsigned long long)orig_end);
		goto again;
	}
427 428
}

429 430 431 432
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset))
		entry = NULL;
	if (entry)
		atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
}

456 457 458 459
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
478
}
479

480 481 482 483
/*
 * After an extent is done, call this to conditionally update the on disk
 * i_size.  i_size is updated to cover any fully written part of the file.
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
int btrfs_ordered_update_i_size(struct inode *inode,
				struct btrfs_ordered_extent *ordered)
{
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	u64 disk_i_size;
	u64 new_i_size;
	u64 i_size_test;
	struct rb_node *node;
	struct btrfs_ordered_extent *test;

	mutex_lock(&tree->mutex);
	disk_i_size = BTRFS_I(inode)->disk_i_size;

	/*
	 * if the disk i_size is already at the inode->i_size, or
	 * this ordered extent is inside the disk i_size, we're done
	 */
	if (disk_i_size >= inode->i_size ||
	    ordered->file_offset + ordered->len <= disk_i_size) {
		goto out;
	}

	/*
	 * we can't update the disk_isize if there are delalloc bytes
	 * between disk_i_size and  this ordered extent
	 */
	if (test_range_bit(io_tree, disk_i_size,
			   ordered->file_offset + ordered->len - 1,
			   EXTENT_DELALLOC, 0)) {
		goto out;
	}
	/*
	 * walk backward from this ordered extent to disk_i_size.
	 * if we find an ordered extent then we can't update disk i_size
	 * yet
	 */
521
	node = &ordered->rb_node;
522
	while(1) {
523
		node = rb_prev(node);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		if (!node)
			break;
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (test->file_offset + test->len <= disk_i_size)
			break;
		if (test->file_offset >= inode->i_size)
			break;
		if (test->file_offset >= disk_i_size)
			goto out;
	}
	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));

	/*
	 * at this point, we know we can safely update i_size to at least
	 * the offset from this ordered extent.  But, we need to
	 * walk forward and see if ios from higher up in the file have
	 * finished.
	 */
	node = rb_next(&ordered->rb_node);
	i_size_test = 0;
	if (node) {
		/*
		 * do we have an area where IO might have finished
		 * between our ordered extent and the next one.
		 */
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (test->file_offset > entry_end(ordered)) {
			i_size_test = test->file_offset - 1;
		}
	} else {
		i_size_test = i_size_read(inode);
	}

	/*
	 * i_size_test is the end of a region after this ordered
	 * extent where there are no ordered extents.  As long as there
	 * are no delalloc bytes in this area, it is safe to update
	 * disk_i_size to the end of the region.
	 */
	if (i_size_test > entry_end(ordered) &&
	    !test_range_bit(io_tree, entry_end(ordered), i_size_test,
			   EXTENT_DELALLOC, 0)) {
		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
	}
	BTRFS_I(inode)->disk_i_size = new_i_size;
out:
	mutex_unlock(&tree->mutex);
	return 0;
}
573

574 575 576 577 578
/*
 * search the ordered extents for one corresponding to 'offset' and
 * try to find a checksum.  This is used because we allow pages to
 * be reclaimed before their checksum is actually put into the btree
 */
579 580 581 582 583 584 585
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
{
	struct btrfs_ordered_sum *ordered_sum;
	struct btrfs_sector_sum *sector_sums;
	struct btrfs_ordered_extent *ordered;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct list_head *cur;
586 587 588
	unsigned long num_sectors;
	unsigned long i;
	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
589 590 591 592 593 594 595 596 597
	int ret = 1;

	ordered = btrfs_lookup_ordered_extent(inode, offset);
	if (!ordered)
		return 1;

	mutex_lock(&tree->mutex);
	list_for_each_prev(cur, &ordered->list) {
		ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
598 599
		if (offset >= ordered_sum->file_offset) {
			num_sectors = ordered_sum->len / sectorsize;
600
			sector_sums = ordered_sum->sums;
601 602 603 604 605 606 607
			for (i = 0; i < num_sectors; i++) {
				if (sector_sums[i].offset == offset) {
					*sum = sector_sums[i].sum;
					ret = 0;
					goto out;
				}
			}
608 609 610 611
		}
	}
out:
	mutex_unlock(&tree->mutex);
612
	btrfs_put_ordered_extent(ordered);
613 614 615
	return ret;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
 * @end:	offset in bytes where the range ends (inclusive)
 * @sync_mode:	enable synchronous operation
 *
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 * opposed to a regular memory cleansing writeback.  The difference between
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
			   loff_t end, int sync_mode)
{
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
		.nr_to_write = mapping->nrpages * 2,
		.range_start = start,
		.range_end = end,
		.for_writepages = 1,
	};
	return btrfs_writepages(mapping, &wbc);
}

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * wait_on_page_writeback_range - wait for writeback to complete
 * @mapping:	target address_space
 * @start:	beginning page index
 * @end:	ending page index
 *
 * Wait for writeback to complete against pages indexed by start->end
 * inclusive
 */
int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
				       pgoff_t start, pgoff_t end)
{
	struct pagevec pvec;
	int nr_pages;
	int ret = 0;
	pgoff_t index;

	if (end < start)
		return 0;

	pagevec_init(&pvec, 0);
	index = start;
	while ((index <= end) &&
			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			PAGECACHE_TAG_WRITEBACK,
			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/* until radix tree lookup accepts end_index */
			if (page->index > end)
				continue;

			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		pagevec_release(&pvec);
		cond_resched();
	}

	/* Check for outstanding write errors */
	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
		ret = -ENOSPC;
	if (test_and_clear_bit(AS_EIO, &mapping->flags))
		ret = -EIO;

	return ret;
}