m25p80.c 27.4 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

56 57 58 59
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

60 61 62
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

63 64 65
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
66
/* meaning of other SR_* bits may differ between vendors */
67 68 69 70 71 72
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
73
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74
#define	MAX_CMD_SIZE		5
75

76 77 78 79 80 81 82
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ 	OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ 	OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
83

84 85
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

86 87 88 89
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
90
	struct mutex		lock;
91
	struct mtd_info		mtd;
92 93
	u16			page_size;
	u16			addr_width;
94
	u8			erase_opcode;
95
	u8			*command;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

131 132 133 134 135 136 137 138 139 140 141
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
142 143 144 145 146 147 148 149 150

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

151
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 153
}

154 155 156 157 158 159 160 161 162
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
163

164 165 166
/*
 * Enable/disable 4-byte addressing mode.
 */
167
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168
{
169 170 171 172 173 174 175 176 177 178
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
179 180
}

181 182 183 184 185 186
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
187
	unsigned long deadline;
188 189
	int sr;

P
Peter Horton 已提交
190 191 192
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
193 194 195 196 197
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
198 199 200
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
201 202 203 204

	return 1;
}

C
Chen Gong 已提交
205 206 207 208 209
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
210
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
211
{
212 213
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
214 215 216 217 218 219 220 221 222

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
223
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
224 225 226 227 228

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
229

230 231 232 233 234 235
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
236
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
237 238 239 240 241 242 243
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

244 245 246 247 248 249 250 251
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
252 253
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
254 255 256 257 258 259 260 261 262

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
263
	flash->command[0] = flash->erase_opcode;
264
	m25p_addr2cmd(flash, offset, flash->command);
265

266
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
285
	uint32_t rem;
286

287 288 289
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
290 291 292 293

	/* sanity checks */
	if (instr->addr + instr->len > flash->mtd.size)
		return -EINVAL;
294 295
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
296 297 298 299 300
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
301
	mutex_lock(&flash->lock);
302

303
	/* whole-chip erase? */
304 305 306 307 308 309
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
310 311 312 313 314 315 316

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
317 318 319 320 321 322 323 324 325 326
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
327 328 329
		}
	}

D
David Brownell 已提交
330
	mutex_unlock(&flash->lock);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;

349 350
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
351 352 353 354 355 356 357 358

	/* sanity checks */
	if (!len)
		return 0;

	if (from + len > flash->mtd.size)
		return -EINVAL;

359 360 361
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

362 363 364 365
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
366
	t[0].tx_buf = flash->command;
367
	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
368 369 370 371 372 373 374
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

	/* Byte count starts at zero. */
D
Dan Carpenter 已提交
375
	*retlen = 0;
376

D
David Brownell 已提交
377
	mutex_lock(&flash->lock);
378 379 380 381

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
382
		mutex_unlock(&flash->lock);
383 384 385
		return 1;
	}

386 387 388 389
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
390 391 392

	/* Set up the write data buffer. */
	flash->command[0] = OPCODE_READ;
393
	m25p_addr2cmd(flash, from, flash->command);
394 395 396

	spi_sync(flash->spi, &m);

397
	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
398

D
David Brownell 已提交
399
	mutex_unlock(&flash->lock);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

417 418
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
419

D
Dan Carpenter 已提交
420
	*retlen = 0;
421 422 423 424 425 426 427 428

	/* sanity checks */
	if (!len)
		return(0);

	if (to + len > flash->mtd.size)
		return -EINVAL;

429 430 431 432
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
433
	t[0].len = m25p_cmdsz(flash);
434 435 436 437 438
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
439
	mutex_lock(&flash->lock);
440 441

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
442 443
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
444
		return 1;
C
Chen Gong 已提交
445
	}
446 447 448 449 450

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
451
	m25p_addr2cmd(flash, to, flash->command);
452

453
	page_offset = to & (flash->page_size - 1);
454 455

	/* do all the bytes fit onto one page? */
456
	if (page_offset + len <= flash->page_size) {
457 458 459 460
		t[1].len = len;

		spi_sync(flash->spi, &m);

461
		*retlen = m.actual_length - m25p_cmdsz(flash);
462 463 464 465
	} else {
		u32 i;

		/* the size of data remaining on the first page */
466
		page_size = flash->page_size - page_offset;
467 468 469 470

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

471
		*retlen = m.actual_length - m25p_cmdsz(flash);
472

473
		/* write everything in flash->page_size chunks */
474 475
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
476 477
			if (page_size > flash->page_size)
				page_size = flash->page_size;
478 479

			/* write the next page to flash */
480
			m25p_addr2cmd(flash, to + i, flash->command);
481 482 483 484 485 486 487 488 489 490

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
491
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
492 493
		}
	}
494

D
David Brownell 已提交
495
	mutex_unlock(&flash->lock);
496 497 498 499

	return 0;
}

500 501 502 503 504 505 506 507 508
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

509 510
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
511

D
Dan Carpenter 已提交
512
	*retlen = 0;
513 514 515 516 517 518 519 520 521 522 523 524

	/* sanity checks */
	if (!len)
		return 0;

	if (to + len > flash->mtd.size)
		return -EINVAL;

	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
525
	t[0].len = m25p_cmdsz(flash);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
544
		m25p_addr2cmd(flash, to, flash->command);
545 546 547 548 549 550 551

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
552
		*retlen += m.actual_length - m25p_cmdsz(flash);
553 554 555 556
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
557
	m25p_addr2cmd(flash, to, flash->command);
558 559

	/* Write out most of the data here. */
560
	cmd_sz = m25p_cmdsz(flash);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
584 585
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
586 587 588 589 590 591 592
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
593
		*retlen += m.actual_length - m25p_cmdsz(flash);
594 595 596 597 598 599 600
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
601 602 603 604 605 606 607 608

/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
609 610 611 612 613
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
614
	u16             ext_id;
615 616 617 618

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
619
	unsigned	sector_size;
620 621
	u16		n_sectors;

622 623 624
	u16		page_size;
	u16		addr_width;

625 626
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
627
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
628 629
};

630 631 632 633 634 635
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
636
		.page_size = 256,					\
637 638
		.flags = (_flags),					\
	})
639

640 641 642 643 644 645 646 647
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
648 649 650 651 652

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
653
static const struct spi_device_id m25p_ids[] = {
654
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
655 656
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
657

658
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
659
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
660
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
661

662 663 664
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
665
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
666

667 668
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
669
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
670
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
671 672
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },

673 674 675 676 677
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

678
	/* Macronix */
679
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
680
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
681
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
682 683 684 685
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
686
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
687
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
688

689 690 691
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
692 693 694 695
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
696
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
697
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
698 699
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
700 701
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
702 703 704 705
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
706 707
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
708 709

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
710 711 712 713 714 715 716 717
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
718 719

	/* ST Microelectronics -- newer production may have feature updates */
720 721 722 723 724 725 726 727 728 729
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

730 731 732 733 734 735 736 737 738 739
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

740 741 742 743 744 745
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
746

747 748 749 750
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
751

752
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
753 754 755 756 757 758
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
759
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
760
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
761
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
762 763 764 765 766 767 768

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
769
	{ },
770
};
771
MODULE_DEVICE_TABLE(spi, m25p_ids);
772

773
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
774 775 776
{
	int			tmp;
	u8			code = OPCODE_RDID;
777
	u8			id[5];
778
	u32			jedec;
779
	u16                     ext_jedec;
780 781 782 783 784 785
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
786
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
787
	if (tmp < 0) {
788
		pr_debug("%s: error %d reading JEDEC ID\n",
789
				dev_name(&spi->dev), tmp);
790
		return ERR_PTR(tmp);
791 792 793 794 795 796 797
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

798 799
	ext_jedec = id[3] << 8 | id[4];

800 801
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
802
		if (info->jedec_id == jedec) {
803
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
804
				continue;
805
			return &m25p_ids[tmp];
806
		}
807
	}
808
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
809
	return ERR_PTR(-ENODEV);
810 811 812
}


813 814 815 816 817 818 819
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
static int __devinit m25p_probe(struct spi_device *spi)
{
820
	const struct spi_device_id	*id = spi_get_device_id(spi);
821 822 823 824
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
825
	struct mtd_part_parser_data	ppdata;
826

827 828 829 830 831
#ifdef CONFIG_MTD_OF_PARTS
	if (!of_device_is_available(spi->dev.of_node))
		return -ENODEV;
#endif

832
	/* Platform data helps sort out which chip type we have, as
833 834 835
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
836 837
	 */
	data = spi->dev.platform_data;
838
	if (data && data->type) {
839
		const struct spi_device_id *plat_id;
840

841
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
842 843
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
844 845
				continue;
			break;
846 847
		}

848
		if (i < ARRAY_SIZE(m25p_ids) - 1)
849 850 851
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
852
	}
853

854 855 856 857 858 859
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
860 861
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
862 863 864 865 866 867 868 869 870 871 872 873 874 875
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
876

877
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
878 879
	if (!flash)
		return -ENOMEM;
880
	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
881 882 883 884
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
885 886

	flash->spi = spi;
D
David Brownell 已提交
887
	mutex_init(&flash->lock);
888 889
	dev_set_drvdata(&spi->dev, flash);

890
	/*
891
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
892
	 * up with the software protection bits set
893 894
	 */

895 896 897
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
898 899 900 901
		write_enable(flash);
		write_sr(flash, 0);
	}

902
	if (data && data->name)
903 904
		flash->mtd.name = data->name;
	else
905
		flash->mtd.name = dev_name(&spi->dev);
906 907

	flash->mtd.type = MTD_NORFLASH;
908
	flash->mtd.writesize = 1;
909 910
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
911 912
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
913 914

	/* sst flash chips use AAI word program */
915
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
916
		flash->mtd._write = sst_write;
917
	else
918
		flash->mtd._write = m25p80_write;
919

920 921 922 923 924 925 926 927 928
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

929 930 931
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

932
	ppdata.of_node = spi->dev.of_node;
933
	flash->mtd.dev.parent = &spi->dev;
934
	flash->page_size = info->page_size;
935 936 937 938 939 940 941

	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
942
			set_4byte(flash, info->jedec_id, 1);
943 944 945
		} else
			flash->addr_width = 3;
	}
946

947
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
948
			(long long)flash->mtd.size >> 10);
949

950
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
951
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
952
		flash->mtd.name,
953
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
954 955 956 957 958
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
959
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
960
				".erasesize = 0x%.8x (%uKiB), "
961
				".numblocks = %d }\n",
962
				i, (long long)flash->mtd.eraseregions[i].offset,
963 964 965 966 967 968 969 970
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
971 972 973
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
974 975 976 977 978 979 980 981 982
}


static int __devexit m25p_remove(struct spi_device *spi)
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
983
	status = mtd_device_unregister(&flash->mtd);
984 985
	if (status == 0) {
		kfree(flash->command);
986
		kfree(flash);
987
	}
988 989 990 991 992 993 994 995 996
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
997
	.id_table	= m25p_ids,
998 999
	.probe	= m25p_probe,
	.remove	= __devexit_p(m25p_remove),
1000 1001 1002 1003 1004

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1005 1006
};

1007
module_spi_driver(m25p80_driver);
1008 1009 1010 1011

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");