mdp5_ctl.c 18.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "mdp5_kms.h"
#include "mdp5_ctl.h"

/*
 * CTL - MDP Control Pool Manager
 *
20
 * Controls are shared between all display interfaces.
21 22 23 24 25 26 27 28 29 30 31
 *
 * They are intended to be used for data path configuration.
 * The top level register programming describes the complete data path for
 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
 *
 * Hardware capabilities determine the number of concurrent data paths
 *
 * In certain use cases (high-resolution dual pipe), one single CTL can be
 * shared across multiple CRTCs.
 */

32 33 34
#define CTL_STAT_BUSY		0x1
#define CTL_STAT_BOOKED	0x2

35
struct op_mode {
36
	struct mdp5_interface *intf;
37 38 39

	bool encoder_enabled;
	uint32_t start_mask;
40 41
};

42
struct mdp5_ctl {
43 44
	struct mdp5_ctl_manager *ctlm;

45
	u32 id;
46
	struct mdp5_hw_mixer *mixer;
47

48 49
	/* CTL status bitmask */
	u32 status;
50

51 52
	/* Operation Mode Configuration for the Pipeline */
	struct op_mode pipeline;
53 54 55 56 57

	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
	spinlock_t hw_lock;
	u32 reg_offset;

58 59
	/* when do CTL registers need to be flushed? (mask of trigger bits) */
	u32 pending_ctl_trigger;
60 61

	bool cursor_on;
62 63 64 65 66

	/* True if the current CTL has FLUSH bits pending for single FLUSH. */
	bool flush_pending;

	struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
67 68 69 70 71 72 73 74 75
};

struct mdp5_ctl_manager {
	struct drm_device *dev;

	/* number of CTL / Layer Mixers in this hw config: */
	u32 nlm;
	u32 nctl;

76 77 78
	/* to filter out non-present bits in the current hardware config */
	u32 flush_hw_mask;

79 80 81 82
	/* status for single FLUSH */
	bool single_flush_supported;
	u32 single_flush_pending_mask;

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
	spinlock_t pool_lock;
	struct mdp5_ctl ctls[MAX_CTL];
};

static inline
struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
{
	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;

	return to_mdp5_kms(to_mdp_kms(priv->kms));
}

static inline
void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
{
99
	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
100 101 102 103 104 105 106 107

	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
	mdp5_write(mdp5_kms, reg, data);
}

static inline
u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
{
108
	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
109 110 111 112 113

	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
	return mdp5_read(mdp5_kms, reg);
}

114 115 116 117 118 119 120
static void set_display_intf(struct mdp5_kms *mdp5_kms,
		struct mdp5_interface *intf)
{
	unsigned long flags;
	u32 intf_sel;

	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
121
	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
122 123 124

	switch (intf->num) {
	case 0:
125 126
		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
		intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
127 128
		break;
	case 1:
129 130
		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
		intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
131 132
		break;
	case 2:
133 134
		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
		intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
135 136
		break;
	case 3:
137 138
		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
		intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
139 140 141 142 143 144
		break;
	default:
		BUG();
		break;
	}

145
	mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
146 147
	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
}
148

149
static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
150 151
{
	unsigned long flags;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	u32 ctl_op = 0;

	if (!mdp5_cfg_intf_is_virtual(intf->type))
		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);

	switch (intf->type) {
	case INTF_DSI:
		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
			ctl_op |= MDP5_CTL_OP_CMD_MODE;
		break;

	case INTF_WB:
		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
		break;

	default:
		break;
	}
171 172

	spin_lock_irqsave(&ctl->hw_lock, flags);
173
	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
174
	spin_unlock_irqrestore(&ctl->hw_lock, flags);
175 176
}

177 178
int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_interface *intf,
			  struct mdp5_hw_mixer *mixer)
179 180 181 182
{
	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);

183
	ctl->mixer = mixer;
184
	ctl->pipeline.intf = intf;
185

186
	ctl->pipeline.start_mask = mdp_ctl_flush_mask_lm(mixer->lm) |
187 188
				   mdp_ctl_flush_mask_encoder(intf);

189 190 191 192 193
	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
	if (!mdp5_cfg_intf_is_virtual(intf->type))
		set_display_intf(mdp5_kms, intf);

	set_ctl_op(ctl, intf);
194 195 196 197

	return 0;
}

198 199 200 201 202 203 204
static bool start_signal_needed(struct mdp5_ctl *ctl)
{
	struct op_mode *pipeline = &ctl->pipeline;

	if (!pipeline->encoder_enabled || pipeline->start_mask != 0)
		return false;

205
	switch (pipeline->intf->type) {
206 207 208
	case INTF_WB:
		return true;
	case INTF_DSI:
209
		return pipeline->intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	default:
		return false;
	}
}

/*
 * send_start_signal() - Overlay Processor Start Signal
 *
 * For a given control operation (display pipeline), a START signal needs to be
 * executed in order to kick off operation and activate all layers.
 * e.g.: DSI command mode, Writeback
 */
static void send_start_signal(struct mdp5_ctl *ctl)
{
	unsigned long flags;

	spin_lock_irqsave(&ctl->hw_lock, flags);
	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
	spin_unlock_irqrestore(&ctl->hw_lock, flags);
}

static void refill_start_mask(struct mdp5_ctl *ctl)
{
	struct op_mode *pipeline = &ctl->pipeline;
234
	struct mdp5_interface *intf = pipeline->intf;
235

236
	pipeline->start_mask = mdp_ctl_flush_mask_lm(ctl->mixer->lm);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	/*
	 * Writeback encoder needs to program & flush
	 * address registers for each page flip..
	 */
	if (intf->type == INTF_WB)
		pipeline->start_mask |= mdp_ctl_flush_mask_encoder(intf);
}

/**
 * mdp5_ctl_set_encoder_state() - set the encoder state
 *
 * @enable: true, when encoder is ready for data streaming; false, otherwise.
 *
 * Note:
 * This encoder state is needed to trigger START signal (data path kickoff).
 */
int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled)
{
	if (WARN_ON(!ctl))
		return -EINVAL;

	ctl->pipeline.encoder_enabled = enabled;
260
	DBG("intf_%d: %s", ctl->pipeline.intf->num, enabled ? "on" : "off");
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	if (start_signal_needed(ctl)) {
		send_start_signal(ctl);
		refill_start_mask(ctl);
	}

	return 0;
}

/*
 * Note:
 * CTL registers need to be flushed after calling this function
 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
 */
int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable)
276
{
277
	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
278 279
	unsigned long flags;
	u32 blend_cfg;
280
	struct mdp5_hw_mixer *mixer = ctl->mixer;
281

282 283 284
	if (unlikely(WARN_ON(!mixer))) {
		dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM",
			ctl->id);
285 286 287 288 289
		return -EINVAL;
	}

	spin_lock_irqsave(&ctl->hw_lock, flags);

290
	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
291 292 293 294 295 296

	if (enable)
		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
	else
		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;

297
	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
298
	ctl->cursor_on = enable;
299 300 301

	spin_unlock_irqrestore(&ctl->hw_lock, flags);

302
	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
303 304 305 306

	return 0;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320
static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
		enum mdp_mixer_stage_id stage)
{
	switch (pipe) {
	case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
	case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
	case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
	case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
	case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
	case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
	case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
	case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
	case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
	case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
321 322
	case SSPP_CURSOR0:
	case SSPP_CURSOR1:
323 324 325 326 327 328 329
	default:	return 0;
	}
}

static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
		enum mdp_mixer_stage_id stage)
{
330
	if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
331 332 333 334 335 336 337 338 339 340 341 342 343
		return 0;

	switch (pipe) {
	case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
	case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
	case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
	case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
	case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
	case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
	case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
	case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
	case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
	case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
344 345
	case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
	case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
346 347 348 349
	default:	return 0;
	}
}

350 351
int mdp5_ctl_blend(struct mdp5_ctl *ctl, enum mdp5_pipe *stage, u32 stage_cnt,
		   u32 ctl_blend_op_flags)
352
{
353
	struct mdp5_hw_mixer *mixer = ctl->mixer;
354
	unsigned long flags;
355 356 357 358 359 360 361 362 363
	u32 blend_cfg = 0, blend_ext_cfg = 0;
	int i, start_stage;

	if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
		start_stage = STAGE0;
		blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
	} else {
		start_stage = STAGE_BASE;
	}
364

365
	for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
366 367 368 369 370
		blend_cfg |= mdp_ctl_blend_mask(stage[i], i);
		blend_ext_cfg |= mdp_ctl_blend_ext_mask(stage[i], i);
	}

	spin_lock_irqsave(&ctl->hw_lock, flags);
371 372 373
	if (ctl->cursor_on)
		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;

374 375 376
	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
	ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
		  blend_ext_cfg);
377 378
	spin_unlock_irqrestore(&ctl->hw_lock, flags);

379
	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
380

381
	DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
382 383
		blend_cfg, blend_ext_cfg);

384 385 386
	return 0;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
{
	if (intf->type == INTF_WB)
		return MDP5_CTL_FLUSH_WB;

	switch (intf->num) {
	case 0: return MDP5_CTL_FLUSH_TIMING_0;
	case 1: return MDP5_CTL_FLUSH_TIMING_1;
	case 2: return MDP5_CTL_FLUSH_TIMING_2;
	case 3: return MDP5_CTL_FLUSH_TIMING_3;
	default: return 0;
	}
}

u32 mdp_ctl_flush_mask_cursor(int cursor_id)
{
	switch (cursor_id) {
	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
	default: return 0;
	}
}

u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
{
	switch (pipe) {
	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
423 424
	case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
	case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	default:        return 0;
	}
}

u32 mdp_ctl_flush_mask_lm(int lm)
{
	switch (lm) {
	case 0:  return MDP5_CTL_FLUSH_LM0;
	case 1:  return MDP5_CTL_FLUSH_LM1;
	case 2:  return MDP5_CTL_FLUSH_LM2;
	case 5:  return MDP5_CTL_FLUSH_LM5;
	default: return 0;
	}
}

static u32 fix_sw_flush(struct mdp5_ctl *ctl, u32 flush_mask)
{
	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
	u32 sw_mask = 0;
#define BIT_NEEDS_SW_FIX(bit) \
	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))

	/* for some targets, cursor bit is the same as LM bit */
	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
449
		sw_mask |= mdp_ctl_flush_mask_lm(ctl->mixer->lm);
450 451 452 453

	return sw_mask;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
		u32 *flush_id)
{
	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;

	if (ctl->pair) {
		DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
		ctl->flush_pending = true;
		ctl_mgr->single_flush_pending_mask |= (*flush_mask);
		*flush_mask = 0;

		if (ctl->pair->flush_pending) {
			*flush_id = min_t(u32, ctl->id, ctl->pair->id);
			*flush_mask = ctl_mgr->single_flush_pending_mask;

			ctl->flush_pending = false;
			ctl->pair->flush_pending = false;
			ctl_mgr->single_flush_pending_mask = 0;

			DBG("Single FLUSH mask %x,ID %d", *flush_mask,
				*flush_id);
		}
	}
}

479 480 481 482 483 484 485 486 487 488 489 490 491
/**
 * mdp5_ctl_commit() - Register Flush
 *
 * The flush register is used to indicate several registers are all
 * programmed, and are safe to update to the back copy of the double
 * buffered registers.
 *
 * Some registers FLUSH bits are shared when the hardware does not have
 * dedicated bits for them; handling these is the job of fix_sw_flush().
 *
 * CTL registers need to be flushed in some circumstances; if that is the
 * case, some trigger bits will be present in both flush mask and
 * ctl->pending_ctl_trigger.
492 493
 *
 * Return H/W flushed bit mask.
494
 */
495
u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask)
496
{
497
	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
498
	struct op_mode *pipeline = &ctl->pipeline;
499
	unsigned long flags;
500 501
	u32 flush_id = ctl->id;
	u32 curr_ctl_flush_mask;
502

503
	pipeline->start_mask &= ~flush_mask;
504

505 506
	VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
			pipeline->start_mask, ctl->pending_ctl_trigger);
507

508 509 510
	if (ctl->pending_ctl_trigger & flush_mask) {
		flush_mask |= MDP5_CTL_FLUSH_CTL;
		ctl->pending_ctl_trigger = 0;
511 512
	}

513
	flush_mask |= fix_sw_flush(ctl, flush_mask);
514

515
	flush_mask &= ctl_mgr->flush_hw_mask;
516

517 518 519 520
	curr_ctl_flush_mask = flush_mask;

	fix_for_single_flush(ctl, &flush_mask, &flush_id);

521 522
	if (flush_mask) {
		spin_lock_irqsave(&ctl->hw_lock, flags);
523
		ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
524 525 526 527 528 529 530 531
		spin_unlock_irqrestore(&ctl->hw_lock, flags);
	}

	if (start_signal_needed(ctl)) {
		send_start_signal(ctl);
		refill_start_mask(ctl);
	}

532
	return curr_ctl_flush_mask;
533 534 535 536 537
}

u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
{
	return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
538 539
}

540 541 542 543 544
int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
{
	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
 */
int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
{
	struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);

	/* do nothing silently if hw doesn't support */
	if (!ctl_mgr->single_flush_supported)
		return 0;

	if (!enable) {
		ctlx->pair = NULL;
		ctly->pair = NULL;
560
		mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
561 562 563 564 565 566 567 568 569 570 571 572
		return 0;
	} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
		dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
		return -EINVAL;
	} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
		dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
		return -EINVAL;
	}

	ctlx->pair = ctly;
	ctly->pair = ctlx;

573 574
	mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
		   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
575 576 577 578

	return 0;
}

579
/*
580
 * mdp5_ctl_request() - CTL allocation
581
 *
582 583 584 585
 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
 * If no CTL is available in preferred category, allocate from the other one.
 *
 * @return fail if no CTL is available.
586
 */
587
struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
588
		int intf_num)
589 590
{
	struct mdp5_ctl *ctl = NULL;
591 592
	const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
	u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
593 594 595 596 597
	unsigned long flags;
	int c;

	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);

598
	/* search the preferred */
599
	for (c = 0; c < ctl_mgr->nctl; c++)
600 601
		if ((ctl_mgr->ctls[c].status & checkm) == match)
			goto found;
602

603 604 605 606 607 608 609
	dev_warn(ctl_mgr->dev->dev,
		"fall back to the other CTL category for INTF %d!\n", intf_num);

	match ^= CTL_STAT_BOOKED;
	for (c = 0; c < ctl_mgr->nctl; c++)
		if ((ctl_mgr->ctls[c].status & checkm) == match)
			goto found;
610

611 612 613 614
	dev_err(ctl_mgr->dev->dev, "No more CTL available!");
	goto unlock;

found:
615
	ctl = &ctl_mgr->ctls[c];
616
	ctl->mixer = NULL;
617
	ctl->status |= CTL_STAT_BUSY;
618
	ctl->pending_ctl_trigger = 0;
619 620 621 622 623 624 625
	DBG("CTL %d allocated", ctl->id);

unlock:
	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
	return ctl;
}

626
void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
627 628 629 630 631 632 633 634 635 636 637 638 639
{
	unsigned long flags;
	int c;

	for (c = 0; c < ctl_mgr->nctl; c++) {
		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];

		spin_lock_irqsave(&ctl->hw_lock, flags);
		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
		spin_unlock_irqrestore(&ctl->hw_lock, flags);
	}
}

640
void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
641 642 643 644
{
	kfree(ctl_mgr);
}

645
struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
646
		void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
647
{
648
	struct mdp5_ctl_manager *ctl_mgr;
649 650
	const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
	int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
651
	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
652 653 654
	unsigned long flags;
	int c, ret;

655 656 657 658 659 660 661
	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
	if (!ctl_mgr) {
		dev_err(dev->dev, "failed to allocate CTL manager\n");
		ret = -ENOMEM;
		goto fail;
	}

662 663 664 665 666 667 668 669 670 671 672
	if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
		dev_err(dev->dev, "Increase static pool size to at least %d\n",
				ctl_cfg->count);
		ret = -ENOSPC;
		goto fail;
	}

	/* initialize the CTL manager: */
	ctl_mgr->dev = dev;
	ctl_mgr->nlm = hw_cfg->lm.count;
	ctl_mgr->nctl = ctl_cfg->count;
673
	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
674 675 676 677 678 679 680 681 682 683
	spin_lock_init(&ctl_mgr->pool_lock);

	/* initialize each CTL of the pool: */
	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
	for (c = 0; c < ctl_mgr->nctl; c++) {
		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];

		if (WARN_ON(!ctl_cfg->base[c])) {
			dev_err(dev->dev, "CTL_%d: base is null!\n", c);
			ret = -EINVAL;
684
			spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
685 686
			goto fail;
		}
687
		ctl->ctlm = ctl_mgr;
688 689
		ctl->id = c;
		ctl->reg_offset = ctl_cfg->base[c];
690
		ctl->status = 0;
691 692
		spin_lock_init(&ctl->hw_lock);
	}
693 694 695 696 697 698 699 700 701 702 703 704 705

	/*
	 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
	 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
	 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
	 * Single FLUSH is supported from hw rev v3.0.
	 */
	if (rev >= 3) {
		ctl_mgr->single_flush_supported = true;
		/* Reserve CTL0/1 for INTF1/2 */
		ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
		ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
	}
706 707 708 709 710 711 712 713 714 715 716
	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);

	return ctl_mgr;

fail:
	if (ctl_mgr)
		mdp5_ctlm_destroy(ctl_mgr);

	return ERR_PTR(ret);
}