aesni-intel_glue.c 38.0 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Support for Intel AES-NI instructions. This file contains glue
 * code, the real AES implementation is in intel-aes_asm.S.
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *
8 9 10 11 12 13 14 15
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
16 17 18 19 20 21 22 23 24 25 26 27 28
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
29
#include <crypto/ctr.h>
30 31
#include <asm/i387.h>
#include <asm/aes.h>
32 33 34 35
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#if defined(CONFIG_CRYPTO_CTR) || defined(CONFIG_CRYPTO_CTR_MODULE)
#define HAS_CTR
#endif

#if defined(CONFIG_CRYPTO_LRW) || defined(CONFIG_CRYPTO_LRW_MODULE)
#define HAS_LRW
#endif

#if defined(CONFIG_CRYPTO_PCBC) || defined(CONFIG_CRYPTO_PCBC_MODULE)
#define HAS_PCBC
#endif

#if defined(CONFIG_CRYPTO_XTS) || defined(CONFIG_CRYPTO_XTS_MODULE)
#define HAS_XTS
#endif

53 54 55 56
struct async_aes_ctx {
	struct cryptd_ablkcipher *cryptd_tfm;
};

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/* This data is stored at the end of the crypto_tfm struct.
 * It's a type of per "session" data storage location.
 * This needs to be 16 byte aligned.
 */
struct aesni_rfc4106_gcm_ctx {
	u8 hash_subkey[16];
	struct crypto_aes_ctx aes_key_expanded;
	u8 nonce[4];
	struct cryptd_aead *cryptd_tfm;
};

struct aesni_gcm_set_hash_subkey_result {
	int err;
	struct completion completion;
};

struct aesni_hash_subkey_req_data {
	u8 iv[16];
	struct aesni_gcm_set_hash_subkey_result result;
	struct scatterlist sg;
};

#define AESNI_ALIGN	(16)
80
#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
81
#define RFC4106_HASH_SUBKEY_SIZE 16
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
			     unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
			  const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
			  const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
97
#ifdef CONFIG_X86_64
98 99
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* asmlinkage void aesni_gcm_enc()
 * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
 * const u8 *in, Plaintext input
 * unsigned long plaintext_len, Length of data in bytes for encryption.
 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
 *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
 *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
 *          is going to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
 *          Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

/* asmlinkage void aesni_gcm_dec()
 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
 * u8 *out, Plaintext output. Decrypt in-place is allowed.
 * const u8 *in, Ciphertext input
 * unsigned long ciphertext_len, Length of data in bytes for decryption.
 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
 *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
 *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
 * to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
 * Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
	return
		(struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)
		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
}
151
#endif
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
	unsigned long addr = (unsigned long)raw_ctx;
	unsigned long align = AESNI_ALIGN;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return (struct crypto_aes_ctx *)ALIGN(addr, align);
}

static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
			      const u8 *in_key, unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
	u32 *flags = &tfm->crt_flags;
	int err;

	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

176
	if (!irq_fpu_usable())
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
		err = crypto_aes_expand_key(ctx, in_key, key_len);
	else {
		kernel_fpu_begin();
		err = aesni_set_key(ctx, in_key, key_len);
		kernel_fpu_end();
	}

	return err;
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}

static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

197
	if (!irq_fpu_usable())
198 199 200 201 202 203 204 205 206 207 208 209
		crypto_aes_encrypt_x86(ctx, dst, src);
	else {
		kernel_fpu_begin();
		aesni_enc(ctx, dst, src);
		kernel_fpu_end();
	}
}

static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

210
	if (!irq_fpu_usable())
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		crypto_aes_decrypt_x86(ctx, dst, src);
	else {
		kernel_fpu_begin();
		aesni_dec(ctx, dst, src);
		kernel_fpu_end();
	}
}

static struct crypto_alg aesni_alg = {
	.cra_name		= "aes",
	.cra_driver_name	= "aes-aesni",
	.cra_priority		= 300,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
	.cra_alignmask		= 0,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(aesni_alg.cra_list),
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= aes_encrypt,
			.cia_decrypt		= aes_decrypt
		}
	}
};

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	aesni_enc(ctx, dst, src);
}

static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	aesni_dec(ctx, dst, src);
}

static struct crypto_alg __aesni_alg = {
	.cra_name		= "__aes-aesni",
	.cra_driver_name	= "__driver-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
	.cra_alignmask		= 0,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(__aesni_alg.cra_list),
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= __aes_encrypt,
			.cia_decrypt		= __aes_decrypt
		}
	}
};

275 276 277 278 279 280 281 282 283 284
static int ecb_encrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
285
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int ecb_decrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
309
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static struct crypto_alg blk_ecb_alg = {
	.cra_name		= "__ecb-aes-aesni",
	.cra_driver_name	= "__driver-ecb-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(blk_ecb_alg.cra_list),
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= ecb_encrypt,
			.decrypt	= ecb_decrypt,
		},
	},
};

static int cbc_encrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
355
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int cbc_decrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
379
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static struct crypto_alg blk_cbc_alg = {
	.cra_name		= "__cbc-aes-aesni",
	.cra_driver_name	= "__driver-cbc-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(blk_cbc_alg.cra_list),
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= cbc_encrypt,
			.decrypt	= cbc_decrypt,
		},
	},
};

415
#ifdef CONFIG_X86_64
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
			    struct blkcipher_walk *walk)
{
	u8 *ctrblk = walk->iv;
	u8 keystream[AES_BLOCK_SIZE];
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	unsigned int nbytes = walk->nbytes;

	aesni_enc(ctx, keystream, ctrblk);
	crypto_xor(keystream, src, nbytes);
	memcpy(dst, keystream, nbytes);
	crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

static int ctr_crypt(struct blkcipher_desc *desc,
		     struct scatterlist *dst, struct scatterlist *src,
		     unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
		aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	if (walk.nbytes) {
		ctr_crypt_final(ctx, &walk);
		err = blkcipher_walk_done(desc, &walk, 0);
	}
	kernel_fpu_end();

	return err;
}

static struct crypto_alg blk_ctr_alg = {
	.cra_name		= "__ctr-aes-aesni",
	.cra_driver_name	= "__driver-ctr-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= 1,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(blk_ctr_alg.cra_list),
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= ctr_crypt,
			.decrypt	= ctr_crypt,
		},
	},
};
481
#endif
482

483 484 485 486
static int ablk_set_key(struct crypto_ablkcipher *tfm, const u8 *key,
			unsigned int key_len)
{
	struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
487 488
	struct crypto_ablkcipher *child = &ctx->cryptd_tfm->base;
	int err;
489

490 491 492 493 494 495 496
	crypto_ablkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_ablkcipher_set_flags(child, crypto_ablkcipher_get_flags(tfm)
				    & CRYPTO_TFM_REQ_MASK);
	err = crypto_ablkcipher_setkey(child, key, key_len);
	crypto_ablkcipher_set_flags(tfm, crypto_ablkcipher_get_flags(child)
				    & CRYPTO_TFM_RES_MASK);
	return err;
497 498 499 500 501 502 503
}

static int ablk_encrypt(struct ablkcipher_request *req)
{
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
	struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);

504
	if (!irq_fpu_usable()) {
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		struct ablkcipher_request *cryptd_req =
			ablkcipher_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_ablkcipher_encrypt(cryptd_req);
	} else {
		struct blkcipher_desc desc;
		desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
		desc.info = req->info;
		desc.flags = 0;
		return crypto_blkcipher_crt(desc.tfm)->encrypt(
			&desc, req->dst, req->src, req->nbytes);
	}
}

static int ablk_decrypt(struct ablkcipher_request *req)
{
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
	struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);

525
	if (!irq_fpu_usable()) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		struct ablkcipher_request *cryptd_req =
			ablkcipher_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_ablkcipher_decrypt(cryptd_req);
	} else {
		struct blkcipher_desc desc;
		desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
		desc.info = req->info;
		desc.flags = 0;
		return crypto_blkcipher_crt(desc.tfm)->decrypt(
			&desc, req->dst, req->src, req->nbytes);
	}
}

static void ablk_exit(struct crypto_tfm *tfm)
{
	struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	cryptd_free_ablkcipher(ctx->cryptd_tfm);
}

static void ablk_init_common(struct crypto_tfm *tfm,
			     struct cryptd_ablkcipher *cryptd_tfm)
{
	struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->cryptd_tfm = cryptd_tfm;
	tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request) +
		crypto_ablkcipher_reqsize(&cryptd_tfm->base);
}

static int ablk_ecb_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ecb-aes-aesni", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_ecb_alg = {
	.cra_name		= "ecb(aes)",
	.cra_driver_name	= "ecb-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_ecb_alg.cra_list),
	.cra_init		= ablk_ecb_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
};

static int ablk_cbc_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher("__driver-cbc-aes-aesni", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_cbc_alg = {
	.cra_name		= "cbc(aes)",
	.cra_driver_name	= "cbc-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_cbc_alg.cra_list),
	.cra_init		= ablk_cbc_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
};

629
#ifdef CONFIG_X86_64
630 631 632 633
static int ablk_ctr_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

634
	cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ctr-aes-aesni", 0, 0);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_ctr_alg = {
	.cra_name		= "ctr(aes)",
	.cra_driver_name	= "ctr-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= 1,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_ctr_alg.cra_list),
	.cra_init		= ablk_ctr_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
661
			.decrypt	= ablk_encrypt,
662 663 664 665
			.geniv		= "chainiv",
		},
	},
};
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

#ifdef HAS_CTR
static int ablk_rfc3686_ctr_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher(
		"rfc3686(__driver-ctr-aes-aesni)", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_rfc3686_ctr_alg = {
	.cra_name		= "rfc3686(ctr(aes))",
	.cra_driver_name	= "rfc3686-ctr-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= 1,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_rfc3686_ctr_alg.cra_list),
	.cra_init		= ablk_rfc3686_ctr_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize = AES_MIN_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE+CTR_RFC3686_NONCE_SIZE,
			.ivsize	     = CTR_RFC3686_IV_SIZE,
			.setkey	     = ablk_set_key,
			.encrypt     = ablk_encrypt,
			.decrypt     = ablk_decrypt,
			.geniv	     = "seqiv",
		},
	},
};
705
#endif
706
#endif
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

#ifdef HAS_LRW
static int ablk_lrw_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher("fpu(lrw(__driver-aes-aesni))",
					     0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_lrw_alg = {
	.cra_name		= "lrw(aes)",
	.cra_driver_name	= "lrw-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_lrw_alg.cra_list),
	.cra_init		= ablk_lrw_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
};
#endif

#ifdef HAS_PCBC
static int ablk_pcbc_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher("fpu(pcbc(__driver-aes-aesni))",
					     0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_pcbc_alg = {
	.cra_name		= "pcbc(aes)",
	.cra_driver_name	= "pcbc-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_pcbc_alg.cra_list),
	.cra_init		= ablk_pcbc_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
};
#endif

#ifdef HAS_XTS
static int ablk_xts_init(struct crypto_tfm *tfm)
{
	struct cryptd_ablkcipher *cryptd_tfm;

	cryptd_tfm = cryptd_alloc_ablkcipher("fpu(xts(__driver-aes-aesni))",
					     0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ablk_init_common(tfm, cryptd_tfm);
	return 0;
}

static struct crypto_alg ablk_xts_alg = {
	.cra_name		= "xts(aes)",
	.cra_driver_name	= "xts-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct async_aes_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(ablk_xts_alg.cra_list),
	.cra_init		= ablk_xts_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
};
#endif

825
#ifdef CONFIG_X86_64
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static int rfc4106_init(struct crypto_tfm *tfm)
{
	struct cryptd_aead *cryptd_tfm;
	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ctx->cryptd_tfm = cryptd_tfm;
	tfm->crt_aead.reqsize = sizeof(struct aead_request)
		+ crypto_aead_reqsize(&cryptd_tfm->base);
	return 0;
}

static void rfc4106_exit(struct crypto_tfm *tfm)
{
	struct aesni_rfc4106_gcm_ctx *ctx =
		(struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
	if (!IS_ERR(ctx->cryptd_tfm))
		cryptd_free_aead(ctx->cryptd_tfm);
	return;
}

static void
rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
{
	struct aesni_gcm_set_hash_subkey_result *result = req->data;

	if (err == -EINPROGRESS)
		return;
	result->err = err;
	complete(&result->completion);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_ablkcipher *ctr_tfm;
	struct ablkcipher_request *req;
	int ret = -EINVAL;
	struct aesni_hash_subkey_req_data *req_data;

	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
	if (IS_ERR(ctr_tfm))
		return PTR_ERR(ctr_tfm);

	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);

	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
876 877
	if (ret)
		goto out;
878 879 880

	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
	if (!req) {
881 882
		ret = -EINVAL;
		goto out_free_ablkcipher;
883 884 885 886
	}

	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
	if (!req_data) {
887 888
		ret = -ENOMEM;
		goto out_free_request;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	}
	memset(req_data->iv, 0, sizeof(req_data->iv));

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	init_completion(&req_data->result.completion);
	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
	ablkcipher_request_set_tfm(req, ctr_tfm);
	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
					CRYPTO_TFM_REQ_MAY_BACKLOG,
					rfc4106_set_hash_subkey_done,
					&req_data->result);

	ablkcipher_request_set_crypt(req, &req_data->sg,
		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);

	ret = crypto_ablkcipher_encrypt(req);
	if (ret == -EINPROGRESS || ret == -EBUSY) {
		ret = wait_for_completion_interruptible
			(&req_data->result.completion);
		if (!ret)
			ret = req_data->result.err;
	}
914
out_free_request:
915 916
	ablkcipher_request_free(req);
	kfree(req_data);
917
out_free_ablkcipher:
918
	crypto_free_ablkcipher(ctr_tfm);
919
out:
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	return ret;
}

static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
						   unsigned int key_len)
{
	int ret = 0;
	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	u8 *new_key_mem = NULL;

	if (key_len < 4) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;
	if (key_len != AES_KEYSIZE_128) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
		return -EINVAL;

	if ((unsigned long)key % AESNI_ALIGN) {
		/*key is not aligned: use an auxuliar aligned pointer*/
		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
		if (!new_key_mem)
			return -ENOMEM;

		new_key_mem = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
		memcpy(new_key_mem, key, key_len);
		key = new_key_mem;
	}

	if (!irq_fpu_usable())
		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
		key, key_len);
	else {
		kernel_fpu_begin();
		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
		kernel_fpu_end();
	}
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
		ret = -EINVAL;
		goto exit;
	}
	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
exit:
	kfree(new_key_mem);
	return ret;
}

/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
				unsigned int authsize)
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);

	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}
	crypto_aead_crt(parent)->authsize = authsize;
	crypto_aead_crt(cryptd_child)->authsize = authsize;
	return 0;
}

static int rfc4106_encrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_aead_encrypt(cryptd_req);
	} else {
		kernel_fpu_begin();
		ret = cryptd_child->base.crt_aead.encrypt(req);
		kernel_fpu_end();
		return ret;
	}
}

static int rfc4106_decrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);
		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		return crypto_aead_decrypt(cryptd_req);
	} else {
		kernel_fpu_begin();
		ret = cryptd_child->base.crt_aead.decrypt(req);
		kernel_fpu_end();
		return ret;
	}
}

static struct crypto_alg rfc4106_alg = {
	.cra_name = "rfc4106(gcm(aes))",
	.cra_driver_name = "rfc4106-gcm-aesni",
	.cra_priority = 400,
	.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
	.cra_blocksize = 1,
	.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
	.cra_alignmask = 0,
	.cra_type = &crypto_nivaead_type,
	.cra_module = THIS_MODULE,
	.cra_list = LIST_HEAD_INIT(rfc4106_alg.cra_list),
	.cra_init = rfc4106_init,
	.cra_exit = rfc4106_exit,
	.cra_u = {
		.aead = {
			.setkey = rfc4106_set_key,
			.setauthsize = rfc4106_set_authsize,
			.encrypt = rfc4106_encrypt,
			.decrypt = rfc4106_decrypt,
			.geniv = "seqiv",
			.ivsize = 8,
			.maxauthsize = 16,
		},
	},
};

static int __driver_rfc4106_encrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv_tab[16+AESNI_ALIGN];
	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
	struct scatter_walk src_sg_walk;
	struct scatter_walk assoc_sg_walk;
	struct scatter_walk dst_sg_walk;
	unsigned int i;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length equal */
	/* to 8 or 12 bytes */
	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
		return -EINVAL;
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		scatterwalk_start(&assoc_sg_walk, req->assoc);
		src = scatterwalk_map(&src_sg_walk, 0);
		assoc = scatterwalk_map(&assoc_sg_walk, 0);
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk, 0);
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
			GFP_ATOMIC);
		if (unlikely(!src))
			return -ENOMEM;
		assoc = (src + req->cryptlen + auth_tag_len);
		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
		scatterwalk_map_and_copy(assoc, req->assoc, 0,
					req->assoclen, 0);
		dst = src;
	}

	aesni_gcm_enc(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
		+ ((unsigned long)req->cryptlen), auth_tag_len);

	/* The authTag (aka the Integrity Check Value) needs to be written
	 * back to the packet. */
	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst, 0);
			scatterwalk_done(&dst_sg_walk, 0, 0);
		}
		scatterwalk_unmap(src, 0);
		scatterwalk_unmap(assoc, 0);
		scatterwalk_done(&src_sg_walk, 0, 0);
		scatterwalk_done(&assoc_sg_walk, 0, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, 0,
			req->cryptlen + auth_tag_len, 1);
		kfree(src);
	}
	return 0;
}

static int __driver_rfc4106_decrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	unsigned long tempCipherLen = 0;
	__be32 counter = cpu_to_be32(1);
	int retval = 0;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv_and_authTag[32+AESNI_ALIGN];
	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
	u8 *authTag = iv + 16;
	struct scatter_walk src_sg_walk;
	struct scatter_walk assoc_sg_walk;
	struct scatter_walk dst_sg_walk;
	unsigned int i;

	if (unlikely((req->cryptlen < auth_tag_len) ||
		(req->assoclen != 8 && req->assoclen != 12)))
		return -EINVAL;
	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length */
	/* equal to 8 or 12 bytes */

	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		scatterwalk_start(&assoc_sg_walk, req->assoc);
		src = scatterwalk_map(&src_sg_walk, 0);
		assoc = scatterwalk_map(&assoc_sg_walk, 0);
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
			dst = scatterwalk_map(&dst_sg_walk, 0);
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
		if (!src)
			return -ENOMEM;
		assoc = (src + req->cryptlen + auth_tag_len);
		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
		scatterwalk_map_and_copy(assoc, req->assoc, 0,
			req->assoclen, 0);
		dst = src;
	}

	aesni_gcm_dec(aes_ctx, dst, src, tempCipherLen, iv,
		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
		authTag, auth_tag_len);

	/* Compare generated tag with passed in tag. */
	retval = memcmp(src + tempCipherLen, authTag, auth_tag_len) ?
		-EBADMSG : 0;

	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
			scatterwalk_unmap(dst, 0);
			scatterwalk_done(&dst_sg_walk, 0, 0);
		}
		scatterwalk_unmap(src, 0);
		scatterwalk_unmap(assoc, 0);
		scatterwalk_done(&src_sg_walk, 0, 0);
		scatterwalk_done(&assoc_sg_walk, 0, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
		kfree(src);
	}
	return retval;
}

static struct crypto_alg __rfc4106_alg = {
	.cra_name		= "__gcm-aes-aesni",
	.cra_driver_name	= "__driver-gcm-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
	.cra_blocksize		= 1,
	.cra_ctxsize	= sizeof(struct aesni_rfc4106_gcm_ctx) + AESNI_ALIGN,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_aead_type,
	.cra_module		= THIS_MODULE,
	.cra_list		= LIST_HEAD_INIT(__rfc4106_alg.cra_list),
	.cra_u = {
		.aead = {
			.encrypt	= __driver_rfc4106_encrypt,
			.decrypt	= __driver_rfc4106_decrypt,
		},
	},
};
1242
#endif
1243

1244 1245 1246 1247 1248
static int __init aesni_init(void)
{
	int err;

	if (!cpu_has_aes) {
1249
		printk(KERN_INFO "Intel AES-NI instructions are not detected.\n");
1250 1251
		return -ENODEV;
	}
1252

1253 1254
	if ((err = crypto_register_alg(&aesni_alg)))
		goto aes_err;
1255 1256
	if ((err = crypto_register_alg(&__aesni_alg)))
		goto __aes_err;
1257 1258 1259 1260 1261 1262 1263 1264
	if ((err = crypto_register_alg(&blk_ecb_alg)))
		goto blk_ecb_err;
	if ((err = crypto_register_alg(&blk_cbc_alg)))
		goto blk_cbc_err;
	if ((err = crypto_register_alg(&ablk_ecb_alg)))
		goto ablk_ecb_err;
	if ((err = crypto_register_alg(&ablk_cbc_alg)))
		goto ablk_cbc_err;
1265 1266 1267
#ifdef CONFIG_X86_64
	if ((err = crypto_register_alg(&blk_ctr_alg)))
		goto blk_ctr_err;
1268 1269
	if ((err = crypto_register_alg(&ablk_ctr_alg)))
		goto ablk_ctr_err;
1270 1271 1272 1273
	if ((err = crypto_register_alg(&__rfc4106_alg)))
		goto __aead_gcm_err;
	if ((err = crypto_register_alg(&rfc4106_alg)))
		goto aead_gcm_err;
1274 1275 1276
#ifdef HAS_CTR
	if ((err = crypto_register_alg(&ablk_rfc3686_ctr_alg)))
		goto ablk_rfc3686_ctr_err;
1277
#endif
1278
#endif
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
#ifdef HAS_LRW
	if ((err = crypto_register_alg(&ablk_lrw_alg)))
		goto ablk_lrw_err;
#endif
#ifdef HAS_PCBC
	if ((err = crypto_register_alg(&ablk_pcbc_alg)))
		goto ablk_pcbc_err;
#endif
#ifdef HAS_XTS
	if ((err = crypto_register_alg(&ablk_xts_alg)))
		goto ablk_xts_err;
#endif
1291 1292
	return err;

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
#ifdef HAS_XTS
ablk_xts_err:
#endif
#ifdef HAS_PCBC
	crypto_unregister_alg(&ablk_pcbc_alg);
ablk_pcbc_err:
#endif
#ifdef HAS_LRW
	crypto_unregister_alg(&ablk_lrw_alg);
ablk_lrw_err:
#endif
1304
#ifdef CONFIG_X86_64
1305
#ifdef HAS_CTR
1306 1307 1308
	crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
ablk_rfc3686_ctr_err:
#endif
1309 1310 1311 1312
	crypto_unregister_alg(&rfc4106_alg);
aead_gcm_err:
	crypto_unregister_alg(&__rfc4106_alg);
__aead_gcm_err:
1313 1314
	crypto_unregister_alg(&ablk_ctr_alg);
ablk_ctr_err:
1315 1316 1317
	crypto_unregister_alg(&blk_ctr_alg);
blk_ctr_err:
#endif
1318
	crypto_unregister_alg(&ablk_cbc_alg);
1319 1320 1321 1322 1323 1324 1325
ablk_cbc_err:
	crypto_unregister_alg(&ablk_ecb_alg);
ablk_ecb_err:
	crypto_unregister_alg(&blk_cbc_alg);
blk_cbc_err:
	crypto_unregister_alg(&blk_ecb_alg);
blk_ecb_err:
1326 1327
	crypto_unregister_alg(&__aesni_alg);
__aes_err:
1328 1329 1330 1331 1332 1333 1334
	crypto_unregister_alg(&aesni_alg);
aes_err:
	return err;
}

static void __exit aesni_exit(void)
{
1335 1336 1337 1338 1339 1340 1341 1342 1343
#ifdef HAS_XTS
	crypto_unregister_alg(&ablk_xts_alg);
#endif
#ifdef HAS_PCBC
	crypto_unregister_alg(&ablk_pcbc_alg);
#endif
#ifdef HAS_LRW
	crypto_unregister_alg(&ablk_lrw_alg);
#endif
1344
#ifdef CONFIG_X86_64
1345
#ifdef HAS_CTR
1346
	crypto_unregister_alg(&ablk_rfc3686_ctr_alg);
1347
#endif
1348 1349
	crypto_unregister_alg(&rfc4106_alg);
	crypto_unregister_alg(&__rfc4106_alg);
1350
	crypto_unregister_alg(&ablk_ctr_alg);
1351 1352
	crypto_unregister_alg(&blk_ctr_alg);
#endif
1353 1354 1355 1356
	crypto_unregister_alg(&ablk_cbc_alg);
	crypto_unregister_alg(&ablk_ecb_alg);
	crypto_unregister_alg(&blk_cbc_alg);
	crypto_unregister_alg(&blk_ecb_alg);
1357
	crypto_unregister_alg(&__aesni_alg);
1358 1359 1360 1361 1362 1363 1364 1365 1366
	crypto_unregister_alg(&aesni_alg);
}

module_init(aesni_init);
module_exit(aesni_exit);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS("aes");