pgtable.h 15.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  arch/arm/include/asm/pgtable.h
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 1995-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _ASMARM_PGTABLE_H
#define _ASMARM_PGTABLE_H

#include <asm-generic/4level-fixup.h>
14 15 16 17 18 19 20
#include <asm/proc-fns.h>

#ifndef CONFIG_MMU

#include "pgtable-nommu.h"

#else
L
Linus Torvalds 已提交
21 22

#include <asm/memory.h>
23
#include <mach/vmalloc.h>
R
Russell King 已提交
24
#include <asm/pgtable-hwdef.h>
L
Linus Torvalds 已提交
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * Note that platforms may override VMALLOC_START, but they must provide
 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 * which may not overlap IO space.
 */
#ifndef VMALLOC_START
#define VMALLOC_OFFSET		(8*1024*1024)
#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#endif

L
Linus Torvalds 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Hardware-wise, we have a two level page table structure, where the first
 * level has 4096 entries, and the second level has 256 entries.  Each entry
 * is one 32-bit word.  Most of the bits in the second level entry are used
 * by hardware, and there aren't any "accessed" and "dirty" bits.
 *
 * Linux on the other hand has a three level page table structure, which can
 * be wrapped to fit a two level page table structure easily - using the PGD
 * and PTE only.  However, Linux also expects one "PTE" table per page, and
 * at least a "dirty" bit.
 *
 * Therefore, we tweak the implementation slightly - we tell Linux that we
 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 * hardware pointers to the second level.)  The second level contains two
 * hardware PTE tables arranged contiguously, followed by Linux versions
 * which contain the state information Linux needs.  We, therefore, end up
 * with 512 entries in the "PTE" level.
 *
 * This leads to the page tables having the following layout:
 *
 *    pgd             pte
 * |        |
 * +--------+ +0
 * |        |-----> +------------+ +0
 * +- - - - + +4    |  h/w pt 0  |
 * |        |-----> +------------+ +1024
 * +--------+ +8    |  h/w pt 1  |
 * |        |       +------------+ +2048
 * +- - - - +       | Linux pt 0 |
 * |        |       +------------+ +3072
 * +--------+       | Linux pt 1 |
 * |        |       +------------+ +4096
 *
 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 * PTE_xxx for definitions of bits appearing in the "h/w pt".
 *
 * PMD_xxx definitions refer to bits in the first level page table.
 *
 * The "dirty" bit is emulated by only granting hardware write permission
 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 * means that a write to a clean page will cause a permission fault, and
 * the Linux MM layer will mark the page dirty via handle_pte_fault().
 * For the hardware to notice the permission change, the TLB entry must
M
Martin Schwidefsky 已提交
86
 * be flushed, and ptep_set_access_flags() does that for us.
L
Linus Torvalds 已提交
87 88 89 90 91
 *
 * The "accessed" or "young" bit is emulated by a similar method; we only
 * allow accesses to the page if the "young" bit is set.  Accesses to the
 * page will cause a fault, and handle_pte_fault() will set the young bit
 * for us as long as the page is marked present in the corresponding Linux
M
Martin Schwidefsky 已提交
92 93
 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 * up to date.
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 * However, when the "young" bit is cleared, we deny access to the page
 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 * for us in this case, which means the TLB will retain the transation
 * until either the TLB entry is evicted under pressure, or a context
 * switch which changes the user space mapping occurs.
 */
#define PTRS_PER_PTE		512
#define PTRS_PER_PMD		1
#define PTRS_PER_PGD		2048

/*
 * PMD_SHIFT determines the size of the area a second-level page table can map
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#define PMD_SHIFT		21
#define PGDIR_SHIFT		21

#define LIBRARY_TEXT_START	0x0c000000

#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);

#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */

#define PMD_SIZE		(1UL << PMD_SHIFT)
#define PMD_MASK		(~(PMD_SIZE-1))
#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
#define PGDIR_MASK		(~(PGDIR_SIZE-1))

129 130 131 132 133 134 135
/*
 * This is the lowest virtual address we can permit any user space
 * mapping to be mapped at.  This is particularly important for
 * non-high vector CPUs.
 */
#define FIRST_USER_ADDRESS	PAGE_SIZE

L
Linus Torvalds 已提交
136 137 138
#define FIRST_USER_PGD_NR	1
#define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)

139 140 141 142 143 144 145
/*
 * section address mask and size definitions.
 */
#define SECTION_SHIFT		20
#define SECTION_SIZE		(1UL << SECTION_SHIFT)
#define SECTION_MASK		(~(SECTION_SIZE-1))

L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * ARMv6 supersection address mask and size definitions.
 */
#define SUPERSECTION_SHIFT	24
#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))

/*
 * "Linux" PTE definitions.
 *
 * We keep two sets of PTEs - the hardware and the linux version.
 * This allows greater flexibility in the way we map the Linux bits
 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 * bits.
 *
 * The PTE table pointer refers to the hardware entries; the "Linux"
 * entries are stored 1024 bytes below.
 */
#define L_PTE_PRESENT		(1 << 0)
#define L_PTE_YOUNG		(1 << 1)
166
#define L_PTE_FILE		(1 << 2)	/* only when !PRESENT */
167 168 169 170
#define L_PTE_DIRTY		(1 << 6)
#define L_PTE_WRITE		(1 << 7)
#define L_PTE_USER		(1 << 8)
#define L_PTE_EXEC		(1 << 9)
171
#define L_PTE_SHARED		(1 << 10)	/* shared(v6), coherent(xsc3) */
L
Linus Torvalds 已提交
172

173 174 175 176 177 178 179 180 181 182
/*
 * These are the memory types, defined to be compatible with
 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
 */
#define L_PTE_MT_UNCACHED	(0x00 << 2)	/* 0000 */
#define L_PTE_MT_BUFFERABLE	(0x01 << 2)	/* 0001 */
#define L_PTE_MT_WRITETHROUGH	(0x02 << 2)	/* 0010 */
#define L_PTE_MT_WRITEBACK	(0x03 << 2)	/* 0011 */
#define L_PTE_MT_MINICACHE	(0x06 << 2)	/* 0110 (sa1100, xscale) */
#define L_PTE_MT_WRITEALLOC	(0x07 << 2)	/* 0111 */
183
#define L_PTE_MT_DEV_SHARED	(0x04 << 2)	/* 0100 */
184
#define L_PTE_MT_DEV_NONSHARED	(0x0c << 2)	/* 1100 */
185
#define L_PTE_MT_DEV_WC		(0x09 << 2)	/* 1001 */
186 187 188
#define L_PTE_MT_DEV_CACHED	(0x0b << 2)	/* 1011 */
#define L_PTE_MT_MASK		(0x0f << 2)

L
Linus Torvalds 已提交
189 190 191
#ifndef __ASSEMBLY__

/*
192 193 194 195
 * The pgprot_* and protection_map entries will be fixed up in runtime
 * to include the cachable and bufferable bits based on memory policy,
 * as well as any architecture dependent bits like global/ASID and SMP
 * shared mapping bits.
L
Linus Torvalds 已提交
196
 */
197
#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
L
Linus Torvalds 已提交
198

199
extern pgprot_t		pgprot_user;
L
Linus Torvalds 已提交
200 201
extern pgprot_t		pgprot_kernel;

202
#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define PAGE_NONE		pgprot_user
#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
#define PAGE_KERNEL		pgprot_kernel
#define PAGE_KERNEL_EXEC	_MOD_PROT(pgprot_kernel, L_PTE_EXEC)

#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT)
#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
221

L
Linus Torvalds 已提交
222 223 224 225 226 227 228 229 230 231
#endif /* __ASSEMBLY__ */

/*
 * The table below defines the page protection levels that we insert into our
 * Linux page table version.  These get translated into the best that the
 * architecture can perform.  Note that on most ARM hardware:
 *  1) We cannot do execute protection
 *  2) If we could do execute protection, then read is implied
 *  3) write implies read permissions
 */
232 233 234 235
#define __P000  __PAGE_NONE
#define __P001  __PAGE_READONLY
#define __P010  __PAGE_COPY
#define __P011  __PAGE_COPY
236 237 238 239
#define __P100  __PAGE_READONLY_EXEC
#define __P101  __PAGE_READONLY_EXEC
#define __P110  __PAGE_COPY_EXEC
#define __P111  __PAGE_COPY_EXEC
240 241 242 243 244

#define __S000  __PAGE_NONE
#define __S001  __PAGE_READONLY
#define __S010  __PAGE_SHARED
#define __S011  __PAGE_SHARED
245 246 247 248
#define __S100  __PAGE_READONLY_EXEC
#define __S101  __PAGE_READONLY_EXEC
#define __S110  __PAGE_SHARED_EXEC
#define __S111  __PAGE_SHARED_EXEC
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261

#ifndef __ASSEMBLY__
/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr)	(empty_zero_page)

#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot)	(__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))

#define pte_none(pte)		(!pte_val(pte))
R
Russell King 已提交
262
#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
L
Linus Torvalds 已提交
263
#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
264 265 266
#define pte_offset_kernel(dir,addr)	(pmd_page_vaddr(*(dir)) + __pte_index(addr))
#define pte_offset_map(dir,addr)	(pmd_page_vaddr(*(dir)) + __pte_index(addr))
#define pte_offset_map_nested(dir,addr)	(pmd_page_vaddr(*(dir)) + __pte_index(addr))
L
Linus Torvalds 已提交
267 268 269
#define pte_unmap(pte)		do { } while (0)
#define pte_unmap_nested(pte)	do { } while (0)

R
Russell King 已提交
270 271 272
#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)

#define set_pte_at(mm,addr,ptep,pteval) do { \
273
	set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \
R
Russell King 已提交
274
 } while (0)
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282 283

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
#define pte_write(pte)		(pte_val(pte) & L_PTE_WRITE)
#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
N
Nick Piggin 已提交
284
#define pte_special(pte)	(0)
L
Linus Torvalds 已提交
285 286 287 288 289 290 291 292 293 294 295

#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }

PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
PTE_BIT_FUNC(mkwrite,   |= L_PTE_WRITE);
PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);

N
Nick Piggin 已提交
296 297
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }

L
Linus Torvalds 已提交
298 299 300
/*
 * Mark the prot value as uncacheable and unbufferable.
 */
301 302 303 304
#define pgprot_noncached(prot) \
	__pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_UNCACHED)
#define pgprot_writecombine(prot) \
	__pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_BUFFERABLE)
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

#define pmd_none(pmd)		(!pmd_val(pmd))
#define pmd_present(pmd)	(pmd_val(pmd))
#define pmd_bad(pmd)		(pmd_val(pmd) & 2)

#define copy_pmd(pmdpd,pmdps)		\
	do {				\
		pmdpd[0] = pmdps[0];	\
		pmdpd[1] = pmdps[1];	\
		flush_pmd_entry(pmdpd);	\
	} while (0)

#define pmd_clear(pmdp)			\
	do {				\
		pmdp[0] = __pmd(0);	\
		pmdp[1] = __pmd(0);	\
		clean_pmd_entry(pmdp);	\
	} while (0)

324
static inline pte_t *pmd_page_vaddr(pmd_t pmd)
L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332 333
{
	unsigned long ptr;

	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
	ptr += PTRS_PER_PTE * sizeof(void *);

	return __va(ptr);
}

334
#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
#define pgd_none(pgd)		(0)
#define pgd_bad(pgd)		(0)
#define pgd_present(pgd)	(1)
#define pgd_clear(pgdp)		do { } while (0)
#define set_pgd(pgd,pgdp)	do { } while (0)

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)

/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr)	((pmd_t *)(dir))

/* Find an entry in the third-level page table.. */
#define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
	return pte;
}

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

376 377 378 379 380 381
/*
 * Encode and decode a swap entry.  Swap entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
382
 *   <--------------- offset --------------------> <- type --> 0 0 0
L
Linus Torvalds 已提交
383
 *
384
 * This gives us up to 63 swap files and 32GB per swap file.  Note that
385
 * the offset field is always non-zero.
L
Linus Torvalds 已提交
386
 */
387 388
#define __SWP_TYPE_SHIFT	3
#define __SWP_TYPE_BITS		6
389 390 391 392 393 394 395
#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)

#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })

L
Linus Torvalds 已提交
396 397 398
#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })

399 400 401 402 403 404 405
/*
 * It is an error for the kernel to have more swap files than we can
 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
 * is increased beyond what we presently support.
 */
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)

406 407 408 409 410 411
/*
 * Encode and decode a file entry.  File entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
412
 *   <----------------------- offset ------------------------> 1 0 0
413 414
 */
#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
415 416
#define pte_to_pgoff(x)		(pte_val(x) >> 3)
#define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
417

418
#define PTE_FILE_MAX_BITS	29
419

L
Linus Torvalds 已提交
420 421 422 423 424 425 426 427 428 429 430 431
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr)	(1)

#include <asm-generic/pgtable.h>

/*
 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
 */
#define HAVE_ARCH_UNMAPPED_AREA

/*
432
 * remap a physical page `pfn' of size `size' with page protection `prot'
L
Linus Torvalds 已提交
433 434 435 436 437 438 439 440 441
 * into virtual address `from'
 */
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
		remap_pfn_range(vma, from, pfn, size, prot)

#define pgtable_cache_init() do { } while (0)

#endif /* !__ASSEMBLY__ */

442 443
#endif /* CONFIG_MMU */

L
Linus Torvalds 已提交
444
#endif /* _ASMARM_PGTABLE_H */