arm.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56

57 58 59
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 63
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
64
static DEFINE_SPINLOCK(kvm_vmid_lock);
65

66 67
static bool vgic_present;

68 69
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

70 71 72
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
73
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 75 76 77 78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
83
	return __this_cpu_read(kvm_arm_running_vcpu);
84 85 86 87 88
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
89
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 91 92 93
{
	return &kvm_arm_running_vcpu;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


110 111 112 113
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
114 115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
116
	int ret, cpu;
117

118 119 120
	if (type)
		return -EINVAL;

121 122 123 124 125 126 127
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

128 129 130 131
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

132
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 134 135
	if (ret)
		goto out_free_stage2_pgd;

136
	kvm_vgic_early_init(kvm);
137

138 139 140
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

141
	/* The maximum number of VCPUs is limited by the host's GIC model */
142 143
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144

145 146 147 148
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
149 150
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
151
	return ret;
152 153
}

154 155 156 157 158 159 160 161 162 163
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

164 165 166 167 168 169
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


170 171 172 173
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
174 175 176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

178 179 180
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

181 182 183 184 185 186
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
187 188

	kvm_vgic_destroy(kvm);
189 190
}

191
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 193 194
{
	int r;
	switch (ext) {
195
	case KVM_CAP_IRQCHIP:
196 197
		r = vgic_present;
		break;
198
	case KVM_CAP_IOEVENTFD:
199
	case KVM_CAP_DEVICE_CTRL:
200 201 202 203
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
204
	case KVM_CAP_ARM_PSCI:
205
	case KVM_CAP_ARM_PSCI_0_2:
206
	case KVM_CAP_READONLY_MEM:
207
	case KVM_CAP_MP_STATE:
208
	case KVM_CAP_IMMEDIATE_EXIT:
209 210 211 212 213
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
223 224 225
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239
	default:
240
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

258 259 260 261 262
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

263 264 265 266 267
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

268 269 270 271 272 273 274 275 276 277
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

278
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 280 281
	if (err)
		goto vcpu_uninit;

282
	return vcpu;
283 284
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
285 286 287 288 289 290
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292
{
293
	kvm_vgic_vcpu_early_init(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
298
	kvm_mmu_free_memory_caches(vcpu);
299
	kvm_timer_vcpu_terminate(vcpu);
300
	kvm_vgic_vcpu_destroy(vcpu);
301
	kvm_pmu_vcpu_destroy(vcpu);
302
	kvm_vcpu_uninit(vcpu);
303
	kmem_cache_free(kvm_vcpu_cache, vcpu);
304 305 306 307 308 309 310 311 312
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
313 314
	return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
	       kvm_timer_should_fire(vcpu_ptimer(vcpu));
315 316
}

317 318 319 320 321 322 323 324 325 326
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

327 328
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
329 330
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
331
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332

333 334 335
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

336 337
	kvm_arm_reset_debug_ptr(vcpu);

338 339 340 341 342
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
343 344 345 346 347 348 349 350 351 352 353 354 355
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

356
	vcpu->cpu = cpu;
357
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
358

359
	kvm_arm_set_running_vcpu(vcpu);
360 361

	kvm_vgic_load(vcpu);
362 363 364 365
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
366 367
	kvm_vgic_put(vcpu);

368 369
	vcpu->cpu = -1;

370
	kvm_arm_set_running_vcpu(NULL);
371
	kvm_timer_vcpu_put(vcpu);
372 373 374 375 376
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
377
	if (vcpu->arch.power_off)
378 379 380 381 382
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
383 384 385 386 387
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
388 389
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
390
		vcpu->arch.power_off = false;
391 392
		break;
	case KVM_MP_STATE_STOPPED:
393
		vcpu->arch.power_off = true;
394 395 396 397 398 399
		break;
	default:
		return -EINVAL;
	}

	return 0;
400 401
}

402 403 404 405 406 407 408
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
409 410
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
411
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
412
		&& !v->arch.power_off && !v->arch.pause);
413 414
}

415 416 417 418 419 420 421
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
422
	preempt_disable();
423
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
424
	preempt_enable();
425 426 427 428
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
429
 * @kvm: The VM's VMID to check
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
494
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
495 496

	/* update vttbr to be used with the new vmid */
497
	pgd_phys = virt_to_phys(kvm->arch.pgd);
498
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
499
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
500
	kvm->arch.vttbr = pgd_phys | vmid;
501 502 503 504 505 506

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
507
	struct kvm *kvm = vcpu->kvm;
508
	int ret = 0;
509

510 511 512 513
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
514

515
	/*
516 517
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
518
	 */
519
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
520
		ret = kvm_vgic_map_resources(kvm);
521 522 523 524
		if (ret)
			return ret;
	}

525
	ret = kvm_timer_enable(vcpu);
526

527
	return ret;
528 529
}

530 531 532 533 534
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

535
void kvm_arm_halt_guest(struct kvm *kvm)
536 537 538 539 540 541
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
542
	kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
543 544
}

545 546 547 548 549 550 551
void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu->arch.pause = true;
	kvm_vcpu_kick(vcpu);
}

void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
552 553 554 555 556 557 558 559
{
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);

	vcpu->arch.pause = false;
	swake_up(wq);
}

void kvm_arm_resume_guest(struct kvm *kvm)
560 561 562 563
{
	int i;
	struct kvm_vcpu *vcpu;

564 565
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arm_resume_vcpu(vcpu);
566 567
}

568
static void vcpu_sleep(struct kvm_vcpu *vcpu)
569
{
570
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
571

572
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
573
				       (!vcpu->arch.pause)));
574 575
}

576 577 578 579 580
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

581 582 583 584 585 586 587 588 589 590 591
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
592 593
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
594 595 596
	int ret;
	sigset_t sigsaved;

597
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
598 599 600 601 602 603
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
604 605 606 607 608 609
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

610 611 612
	if (run->immediate_exit)
		return -EINTR;

613 614 615 616 617 618 619 620 621 622 623 624 625
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

626
		if (vcpu->arch.power_off || vcpu->arch.pause)
627
			vcpu_sleep(vcpu);
628

629 630 631 632 633
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
634
		preempt_disable();
635

636
		kvm_pmu_flush_hwstate(vcpu);
637

638
		kvm_timer_flush_hwstate(vcpu);
639 640
		kvm_vgic_flush_hwstate(vcpu);

641 642 643
		local_irq_disable();

		/*
644
		 * If we have a singal pending, or need to notify a userspace
645 646 647
		 * irqchip about timer or PMU level changes, then we exit (and
		 * update the timer level state in kvm_timer_update_run
		 * below).
648
		 */
649
		if (signal_pending(current) ||
650 651
		    kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
652 653 654 655
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

656
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
657
			vcpu->arch.power_off || vcpu->arch.pause) {
658
			local_irq_enable();
659
			kvm_pmu_sync_hwstate(vcpu);
660
			kvm_timer_sync_hwstate(vcpu);
661
			kvm_vgic_sync_hwstate(vcpu);
662
			preempt_enable();
663 664 665
			continue;
		}

666 667
		kvm_arm_setup_debug(vcpu);

668 669 670 671
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
672
		guest_enter_irqoff();
673 674 675 676 677
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
678
		vcpu->stat.exits++;
679 680 681 682
		/*
		 * Back from guest
		 *************************************************************/

683 684
		kvm_arm_clear_debug(vcpu);

685 686 687 688 689 690 691 692 693 694 695 696 697
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
698
		 * We do local_irq_enable() before calling guest_exit() so
699 700
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
701
		 * preemption after calling guest_exit() so that if we get
702 703 704
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
705
		guest_exit();
706
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
707

708
		/*
709 710
		 * We must sync the PMU and timer state before the vgic state so
		 * that the vgic can properly sample the updated state of the
711 712
		 * interrupt line.
		 */
713
		kvm_pmu_sync_hwstate(vcpu);
714 715
		kvm_timer_sync_hwstate(vcpu);

716
		kvm_vgic_sync_hwstate(vcpu);
717 718 719

		preempt_enable();

720 721 722
		ret = handle_exit(vcpu, run, ret);
	}

723
	/* Tell userspace about in-kernel device output levels */
724 725 726 727
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
728

729 730 731
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
732 733
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

767 768
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
769 770 771 772 773 774 775 776 777 778 779 780 781
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

782 783 784 785
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
786

787 788
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
789

790 791 792
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
811

812 813 814 815 816
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

817
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
818 819 820 821 822 823
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


868 869 870 871 872 873 874 875 876
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

877 878 879 880 881 882 883
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

884 885
	vcpu_reset_hcr(vcpu);

886
	/*
887
	 * Handle the "start in power-off" case.
888
	 */
889
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
890
		vcpu->arch.power_off = true;
891
	else
892
		vcpu->arch.power_off = false;
893 894 895 896

	return 0;
}

897 898 899 900 901 902 903
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
904
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
905 906 907 908 909 910 911 912 913 914 915 916 917
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
918
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
919 920 921 922 923 924 925 926 927 928 929 930 931
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
932
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
933 934 935 936 937 938
		break;
	}

	return ret;
}

939 940 941 942 943
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
944
	struct kvm_device_attr attr;
945 946 947 948 949 950 951 952

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

953
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
954 955 956 957
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
958 959 960 961

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

962 963 964 965 966 967 968 969 970 971 972 973
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

974 975 976
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

977 978 979 980 981 982 983 984 985 986
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
1002 1003 1004 1005 1006
	default:
		return -EINVAL;
	}
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1026 1027
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1040 1041
}

1042 1043 1044
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1045 1046 1047 1048 1049 1050 1051 1052 1053
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1054 1055
		if (!vgic_present)
			return -ENXIO;
1056
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1057 1058 1059
	default:
		return -ENODEV;
	}
1060 1061
}

1062 1063 1064
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1065 1066 1067 1068
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1069
	case KVM_CREATE_IRQCHIP: {
1070
		int ret;
1071 1072
		if (!vgic_present)
			return -ENXIO;
1073 1074 1075 1076
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1077
	}
1078 1079 1080 1081 1082 1083 1084
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1098 1099 1100
	default:
		return -EINVAL;
	}
1101 1102
}

1103
static void cpu_init_hyp_mode(void *dummy)
1104
{
1105
	phys_addr_t pgd_ptr;
1106 1107 1108 1109 1110
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1111
	__hyp_set_vectors(kvm_get_idmap_vector());
1112

1113
	pgd_ptr = kvm_mmu_get_httbr();
1114
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1115
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1116
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1117

M
Marc Zyngier 已提交
1118
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1119
	__cpu_init_stage2();
1120

1121 1122 1123
	if (is_kernel_in_hyp_mode())
		kvm_timer_init_vhe();

1124
	kvm_arm_init_debug();
1125 1126
}

1127 1128 1129 1130 1131 1132
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1133 1134
static void cpu_hyp_reinit(void)
{
1135 1136
	cpu_hyp_reset();

1137 1138
	if (is_kernel_in_hyp_mode()) {
		/*
1139
		 * __cpu_init_stage2() is safe to call even if the PM
1140 1141
		 * event was cancelled before the CPU was reset.
		 */
1142
		__cpu_init_stage2();
1143
	} else {
1144
		cpu_init_hyp_mode(NULL);
1145 1146 1147
	}
}

1148 1149 1150
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1151
		cpu_hyp_reinit();
1152
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1153
	}
1154
}
1155

1156 1157 1158 1159
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1174

1175 1176 1177 1178 1179
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1195
		return NOTIFY_OK;
1196 1197 1198 1199
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1200

1201 1202 1203 1204 1205
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1216 1217 1218 1219
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1220 1221 1222 1223
#else
static inline void hyp_cpu_pm_init(void)
{
}
1224 1225 1226
static inline void hyp_cpu_pm_exit(void)
{
}
1227 1228
#endif

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1242 1243 1244 1245
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1246 1247 1248 1249 1250
	return 0;
}

static int init_subsystems(void)
{
1251
	int err = 0;
1252

1253
	/*
1254
	 * Enable hardware so that subsystem initialisation can access EL2.
1255
	 */
1256
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1257 1258 1259 1260 1261 1262

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1274
		err = 0;
1275 1276
		break;
	default:
1277
		goto out;
1278 1279 1280 1281 1282 1283 1284
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1285
		goto out;
1286 1287 1288 1289

	kvm_perf_init();
	kvm_coproc_table_init();

1290 1291 1292 1293
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1306
	hyp_cpu_pm_exit();
1307 1308 1309 1310 1311 1312 1313 1314
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1339
			goto out_err;
1340 1341 1342 1343 1344 1345 1346 1347
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1348
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1349
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1350 1351
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1352
		goto out_err;
1353 1354
	}

1355
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1356
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1357 1358
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1359 1360 1361 1362 1363 1364 1365
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1366
		goto out_err;
1367 1368
	}

1369 1370 1371 1372 1373
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1374 1375
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1376 1377 1378

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1379
			goto out_err;
1380 1381 1382 1383
		}
	}

	for_each_possible_cpu(cpu) {
1384
		kvm_cpu_context_t *cpu_ctxt;
1385

1386
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1387
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1388 1389

		if (err) {
1390
			kvm_err("Cannot map host CPU state: %d\n", err);
1391
			goto out_err;
1392 1393 1394 1395
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1396

1397
	return 0;
1398

1399
out_err:
1400
	teardown_hyp_mode();
1401 1402 1403 1404
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1405 1406 1407 1408 1409
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1423 1424 1425
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1426 1427
int kvm_arch_init(void *opaque)
{
1428
	int err;
1429
	int ret, cpu;
1430 1431 1432 1433 1434 1435

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1436 1437 1438 1439 1440 1441
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1442 1443
	}

1444
	err = init_common_resources();
1445
	if (err)
1446
		return err;
1447

1448 1449 1450 1451 1452
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1453
		goto out_err;
1454

1455 1456 1457
	err = init_subsystems();
	if (err)
		goto out_hyp;
1458

1459
	return 0;
1460 1461 1462

out_hyp:
	teardown_hyp_mode();
1463
out_err:
1464
	teardown_common_resources();
1465
	return err;
1466 1467 1468 1469 1470
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1471
	kvm_perf_teardown();
1472 1473 1474 1475 1476 1477 1478 1479 1480
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);