xpc_main.c 37.3 KB
Newer Older
1 2 3 4 5
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
6
 * Copyright (c) 2004-2008 Silicon Graphics, Inc.  All Rights Reserved.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 */

/*
 * Cross Partition Communication (XPC) support - standard version.
 *
 *	XPC provides a message passing capability that crosses partition
 *	boundaries. This module is made up of two parts:
 *
 *	    partition	This part detects the presence/absence of other
 *			partitions. It provides a heartbeat and monitors
 *			the heartbeats of other partitions.
 *
 *	    channel	This part manages the channels and sends/receives
 *			messages across them to/from other partitions.
 *
 *	There are a couple of additional functions residing in XP, which
 *	provide an interface to XPC for its users.
 *
 *
 *	Caveats:
 *
 *	  . We currently have no way to determine which nasid an IPI came
 *	    from. Thus, xpc_IPI_send() does a remote AMO write followed by
 *	    an IPI. The AMO indicates where data is to be pulled from, so
 *	    after the IPI arrives, the remote partition checks the AMO word.
 *	    The IPI can actually arrive before the AMO however, so other code
 *	    must periodically check for this case. Also, remote AMO operations
 *	    do not reliably time out. Thus we do a remote PIO read solely to
 *	    know whether the remote partition is down and whether we should
 *	    stop sending IPIs to it. This remote PIO read operation is set up
 *	    in a special nofault region so SAL knows to ignore (and cleanup)
 *	    any errors due to the remote AMO write, PIO read, and/or PIO
 *	    write operations.
 *
 *	    If/when new hardware solves this IPI problem, we should abandon
 *	    the current approach.
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/syscalls.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
53
#include <linux/delay.h>
54
#include <linux/reboot.h>
J
Jes Sorensen 已提交
55
#include <linux/completion.h>
56
#include <linux/kdebug.h>
57 58 59
#include <asm/sn/intr.h>
#include <asm/sn/sn_sal.h>
#include <asm/uaccess.h>
60
#include "xpc.h"
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/* define two XPC debug device structures to be used with dev_dbg() et al */

struct device_driver xpc_dbg_name = {
	.name = "xpc"
};

struct device xpc_part_dbg_subname = {
	.bus_id = {0},		/* set to "part" at xpc_init() time */
	.driver = &xpc_dbg_name
};

struct device xpc_chan_dbg_subname = {
	.bus_id = {0},		/* set to "chan" at xpc_init() time */
	.driver = &xpc_dbg_name
};

struct device *xpc_part = &xpc_part_dbg_subname;
struct device *xpc_chan = &xpc_chan_dbg_subname;

81 82
static int xpc_kdebug_ignore;

83 84
/* systune related variables for /proc/sys directories */

85 86 87
static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
static int xpc_hb_min_interval = 1;
static int xpc_hb_max_interval = 10;
88

89 90 91
static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
static int xpc_hb_check_min_interval = 10;
static int xpc_hb_check_max_interval = 120;
92

93 94 95
int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT;
static int xpc_disengage_request_min_timelimit = 0;
static int xpc_disengage_request_max_timelimit = 120;
96 97 98

static ctl_table xpc_sys_xpc_hb_dir[] = {
	{
99 100 101 102 103 104 105 106 107
	 .ctl_name = CTL_UNNUMBERED,
	 .procname = "hb_interval",
	 .data = &xpc_hb_interval,
	 .maxlen = sizeof(int),
	 .mode = 0644,
	 .proc_handler = &proc_dointvec_minmax,
	 .strategy = &sysctl_intvec,
	 .extra1 = &xpc_hb_min_interval,
	 .extra2 = &xpc_hb_max_interval},
108
	{
109 110 111 112 113 114 115 116 117
	 .ctl_name = CTL_UNNUMBERED,
	 .procname = "hb_check_interval",
	 .data = &xpc_hb_check_interval,
	 .maxlen = sizeof(int),
	 .mode = 0644,
	 .proc_handler = &proc_dointvec_minmax,
	 .strategy = &sysctl_intvec,
	 .extra1 = &xpc_hb_check_min_interval,
	 .extra2 = &xpc_hb_check_max_interval},
118
	{}
119 120 121
};
static ctl_table xpc_sys_xpc_dir[] = {
	{
122 123 124 125
	 .ctl_name = CTL_UNNUMBERED,
	 .procname = "hb",
	 .mode = 0555,
	 .child = xpc_sys_xpc_hb_dir},
126
	{
127 128 129 130 131 132 133 134 135
	 .ctl_name = CTL_UNNUMBERED,
	 .procname = "disengage_request_timelimit",
	 .data = &xpc_disengage_request_timelimit,
	 .maxlen = sizeof(int),
	 .mode = 0644,
	 .proc_handler = &proc_dointvec_minmax,
	 .strategy = &sysctl_intvec,
	 .extra1 = &xpc_disengage_request_min_timelimit,
	 .extra2 = &xpc_disengage_request_max_timelimit},
136
	{}
137 138 139
};
static ctl_table xpc_sys_dir[] = {
	{
140 141 142 143
	 .ctl_name = CTL_UNNUMBERED,
	 .procname = "xpc",
	 .mode = 0555,
	 .child = xpc_sys_xpc_dir},
144
	{}
145 146 147
};
static struct ctl_table_header *xpc_sysctl;

148 149
/* non-zero if any remote partition disengage request was timed out */
int xpc_disengage_request_timedout;
150 151 152 153 154 155 156 157 158

/* #of IRQs received */
static atomic_t xpc_act_IRQ_rcvd;

/* IRQ handler notifies this wait queue on receipt of an IRQ */
static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq);

static unsigned long xpc_hb_check_timeout;

159
/* notification that the xpc_hb_checker thread has exited */
J
Jes Sorensen 已提交
160
static DECLARE_COMPLETION(xpc_hb_checker_exited);
161

162
/* notification that the xpc_discovery thread has exited */
J
Jes Sorensen 已提交
163
static DECLARE_COMPLETION(xpc_discovery_exited);
164 165 166 167 168

static struct timer_list xpc_hb_timer;

static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);

169 170 171 172 173
static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
static struct notifier_block xpc_reboot_notifier = {
	.notifier_call = xpc_system_reboot,
};

174 175 176 177 178
static int xpc_system_die(struct notifier_block *, unsigned long, void *);
static struct notifier_block xpc_die_notifier = {
	.notifier_call = xpc_system_die,
};

179 180 181 182 183 184
/*
 * Timer function to enforce the timelimit on the partition disengage request.
 */
static void
xpc_timeout_partition_disengage_request(unsigned long data)
{
185
	struct xpc_partition *part = (struct xpc_partition *)data;
186

187
	DBUG_ON(time_before(jiffies, part->disengage_request_timeout));
188

189
	(void)xpc_partition_disengaged(part);
190 191 192 193 194

	DBUG_ON(part->disengage_request_timeout != 0);
	DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0);
}

195 196 197 198
/*
 * Notify the heartbeat check thread that an IRQ has been received.
 */
static irqreturn_t
A
Al Viro 已提交
199
xpc_act_IRQ_handler(int irq, void *dev_id)
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
{
	atomic_inc(&xpc_act_IRQ_rcvd);
	wake_up_interruptible(&xpc_act_IRQ_wq);
	return IRQ_HANDLED;
}

/*
 * Timer to produce the heartbeat.  The timer structures function is
 * already set when this is initially called.  A tunable is used to
 * specify when the next timeout should occur.
 */
static void
xpc_hb_beater(unsigned long dummy)
{
	xpc_vars->heartbeat++;

216
	if (time_after_eq(jiffies, xpc_hb_check_timeout)) {
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
		wake_up_interruptible(&xpc_act_IRQ_wq);
	}

	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
	add_timer(&xpc_hb_timer);
}

/*
 * This thread is responsible for nearly all of the partition
 * activation/deactivation.
 */
static int
xpc_hb_checker(void *ignore)
{
	int last_IRQ_count = 0;
	int new_IRQ_count;
233
	int force_IRQ = 0;
234 235 236 237 238 239 240

	/* this thread was marked active by xpc_hb_init() */

	daemonize(XPC_HB_CHECK_THREAD_NAME);

	set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU));

241
	/* set our heartbeating to other partitions into motion */
242
	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
243
	xpc_hb_beater(0);
244

245
	while (!(volatile int)xpc_exiting) {
246 247 248

		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
			"been received\n",
249
			(int)(xpc_hb_check_timeout - jiffies),
250 251 252
			atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count);

		/* checking of remote heartbeats is skewed by IRQ handling */
253
		if (time_after_eq(jiffies, xpc_hb_check_timeout)) {
254 255 256 257 258 259 260 261 262 263 264
			dev_dbg(xpc_part, "checking remote heartbeats\n");
			xpc_check_remote_hb();

			/*
			 * We need to periodically recheck to ensure no
			 * IPI/AMO pairs have been missed.  That check
			 * must always reset xpc_hb_check_timeout.
			 */
			force_IRQ = 1;
		}

265
		/* check for outstanding IRQs */
266 267 268 269 270 271 272 273 274 275
		new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd);
		if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) {
			force_IRQ = 0;

			dev_dbg(xpc_part, "found an IRQ to process; will be "
				"resetting xpc_hb_check_timeout\n");

			last_IRQ_count += xpc_identify_act_IRQ_sender();
			if (last_IRQ_count < new_IRQ_count) {
				/* retry once to help avoid missing AMO */
276
				(void)xpc_identify_act_IRQ_sender();
277 278 279 280
			}
			last_IRQ_count = new_IRQ_count;

			xpc_hb_check_timeout = jiffies +
281
			    (xpc_hb_check_interval * HZ);
282
		}
283 284

		/* wait for IRQ or timeout */
285 286 287 288 289 290
		(void)wait_event_interruptible(xpc_act_IRQ_wq,
					       (last_IRQ_count <
						atomic_read(&xpc_act_IRQ_rcvd)
						|| time_after_eq(jiffies,
							xpc_hb_check_timeout) ||
						(volatile int)xpc_exiting));
291 292 293 294
	}

	dev_dbg(xpc_part, "heartbeat checker is exiting\n");

295
	/* mark this thread as having exited */
J
Jes Sorensen 已提交
296
	complete(&xpc_hb_checker_exited);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	return 0;
}

/*
 * This thread will attempt to discover other partitions to activate
 * based on info provided by SAL. This new thread is short lived and
 * will exit once discovery is complete.
 */
static int
xpc_initiate_discovery(void *ignore)
{
	daemonize(XPC_DISCOVERY_THREAD_NAME);

	xpc_discovery();

	dev_dbg(xpc_part, "discovery thread is exiting\n");

314
	/* mark this thread as having exited */
J
Jes Sorensen 已提交
315
	complete(&xpc_discovery_exited);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	return 0;
}

/*
 * Establish first contact with the remote partititon. This involves pulling
 * the XPC per partition variables from the remote partition and waiting for
 * the remote partition to pull ours.
 */
static enum xpc_retval
xpc_make_first_contact(struct xpc_partition *part)
{
	enum xpc_retval ret;

	while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) {
		if (ret != xpcRetry) {
			XPC_DEACTIVATE_PARTITION(part, ret);
			return ret;
		}

		dev_dbg(xpc_chan, "waiting to make first contact with "
			"partition %d\n", XPC_PARTID(part));

		/* wait a 1/4 of a second or so */
339
		(void)msleep_interruptible(250);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

		if (part->act_state == XPC_P_DEACTIVATING) {
			return part->reason;
		}
	}

	return xpc_mark_partition_active(part);
}

/*
 * The first kthread assigned to a newly activated partition is the one
 * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to
 * that kthread until the partition is brought down, at which time that kthread
 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 * that XPC has dismantled all communication infrastructure for the associated
 * partition.) This kthread becomes the channel manager for that partition.
 *
 * Each active partition has a channel manager, who, besides connecting and
 * disconnecting channels, will ensure that each of the partition's connected
 * channels has the required number of assigned kthreads to get the work done.
 */
static void
xpc_channel_mgr(struct xpc_partition *part)
{
	while (part->act_state != XPC_P_DEACTIVATING ||
365 366
	       atomic_read(&part->nchannels_active) > 0 ||
	       !xpc_partition_disengaged(part)) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

		xpc_process_channel_activity(part);

		/*
		 * Wait until we've been requested to activate kthreads or
		 * all of the channel's message queues have been torn down or
		 * a signal is pending.
		 *
		 * The channel_mgr_requests is set to 1 after being awakened,
		 * This is done to prevent the channel mgr from making one pass
		 * through the loop for each request, since he will
		 * be servicing all the requests in one pass. The reason it's
		 * set to 1 instead of 0 is so that other kthreads will know
		 * that the channel mgr is running and won't bother trying to
		 * wake him up.
		 */
		atomic_dec(&part->channel_mgr_requests);
384 385 386 387 388 389 390 391 392 393 394 395 396
		(void)wait_event_interruptible(part->channel_mgr_wq,
					       (atomic_read
						(&part->channel_mgr_requests) >
						0 ||
						(volatile u64)part->
						local_IPI_amo != 0 ||
						((volatile u8)part->act_state ==
						 XPC_P_DEACTIVATING &&
						 atomic_read(&part->
							     nchannels_active)
						 == 0 &&
						 xpc_partition_disengaged
						 (part))));
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		atomic_set(&part->channel_mgr_requests, 1);

		// >>> Does it need to wakeup periodically as well? In case we
		// >>> miscalculated the #of kthreads to wakeup or create?
	}
}

/*
 * When XPC HB determines that a partition has come up, it will create a new
 * kthread and that kthread will call this function to attempt to set up the
 * basic infrastructure used for Cross Partition Communication with the newly
 * upped partition.
 *
 * The kthread that was created by XPC HB and which setup the XPC
 * infrastructure will remain assigned to the partition until the partition
 * goes down. At which time the kthread will teardown the XPC infrastructure
 * and then exit.
 *
 * XPC HB will put the remote partition's XPC per partition specific variables
 * physical address into xpc_partitions[partid].remote_vars_part_pa prior to
 * calling xpc_partition_up().
 */
static void
xpc_partition_up(struct xpc_partition *part)
{
	DBUG_ON(part->channels != NULL);

	dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part));

	if (xpc_setup_infrastructure(part) != xpcSuccess) {
		return;
	}

	/*
	 * The kthread that XPC HB called us with will become the
	 * channel manager for this partition. It will not return
	 * back to XPC HB until the partition's XPC infrastructure
	 * has been dismantled.
	 */

437
	(void)xpc_part_ref(part);	/* this will always succeed */
438 439 440 441 442 443 444 445 446 447 448 449 450

	if (xpc_make_first_contact(part) == xpcSuccess) {
		xpc_channel_mgr(part);
	}

	xpc_part_deref(part);

	xpc_teardown_infrastructure(part);
}

static int
xpc_activating(void *__partid)
{
451
	partid_t partid = (u64)__partid;
452 453
	struct xpc_partition *part = &xpc_partitions[partid];
	unsigned long irq_flags;
454
	struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 };
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	int ret;

	DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);

	spin_lock_irqsave(&part->act_lock, irq_flags);

	if (part->act_state == XPC_P_DEACTIVATING) {
		part->act_state = XPC_P_INACTIVE;
		spin_unlock_irqrestore(&part->act_lock, irq_flags);
		part->remote_rp_pa = 0;
		return 0;
	}

	/* indicate the thread is activating */
	DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ);
	part->act_state = XPC_P_ACTIVATING;

	XPC_SET_REASON(part, 0, 0);
	spin_unlock_irqrestore(&part->act_lock, irq_flags);

	dev_dbg(xpc_part, "bringing partition %d up\n", partid);

	daemonize("xpc%02d", partid);

	/*
	 * This thread needs to run at a realtime priority to prevent a
	 * significant performance degradation.
	 */
	ret = sched_setscheduler(current, SCHED_FIFO, &param);
	if (ret != 0) {
		dev_warn(xpc_part, "unable to set pid %d to a realtime "
486
			 "priority, ret=%d\n", current->pid, ret);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	}

	/* allow this thread and its children to run on any CPU */
	set_cpus_allowed(current, CPU_MASK_ALL);

	/*
	 * Register the remote partition's AMOs with SAL so it can handle
	 * and cleanup errors within that address range should the remote
	 * partition go down. We don't unregister this range because it is
	 * difficult to tell when outstanding writes to the remote partition
	 * are finished and thus when it is safe to unregister. This should
	 * not result in wasted space in the SAL xp_addr_region table because
	 * we should get the same page for remote_amos_page_pa after module
	 * reloads and system reboots.
	 */
	if (sn_register_xp_addr_region(part->remote_amos_page_pa,
503
				       PAGE_SIZE, 1) < 0) {
504
		dev_warn(xpc_part, "xpc_partition_up(%d) failed to register "
505
			 "xp_addr region\n", partid);
506 507 508 509 510 511 512 513 514

		spin_lock_irqsave(&part->act_lock, irq_flags);
		part->act_state = XPC_P_INACTIVE;
		XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__);
		spin_unlock_irqrestore(&part->act_lock, irq_flags);
		part->remote_rp_pa = 0;
		return 0;
	}

515
	xpc_allow_hb(partid, xpc_vars);
516 517 518 519 520 521
	xpc_IPI_send_activated(part);

	/*
	 * xpc_partition_up() holds this thread and marks this partition as
	 * XPC_P_ACTIVE by calling xpc_hb_mark_active().
	 */
522
	(void)xpc_partition_up(part);
523

524
	xpc_disallow_hb(partid, xpc_vars);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	xpc_mark_partition_inactive(part);

	if (part->reason == xpcReactivating) {
		/* interrupting ourselves results in activating partition */
		xpc_IPI_send_reactivate(part);
	}

	return 0;
}

void
xpc_activate_partition(struct xpc_partition *part)
{
	partid_t partid = XPC_PARTID(part);
	unsigned long irq_flags;
	pid_t pid;

	spin_lock_irqsave(&part->act_lock, irq_flags);

	DBUG_ON(part->act_state != XPC_P_INACTIVE);

546 547
	part->act_state = XPC_P_ACTIVATION_REQ;
	XPC_SET_REASON(part, xpcCloneKThread, __LINE__);
548 549

	spin_unlock_irqrestore(&part->act_lock, irq_flags);
550

551
	pid = kernel_thread(xpc_activating, (void *)((u64)partid), 0);
552 553 554 555 556 557 558

	if (unlikely(pid <= 0)) {
		spin_lock_irqsave(&part->act_lock, irq_flags);
		part->act_state = XPC_P_INACTIVE;
		XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__);
		spin_unlock_irqrestore(&part->act_lock, irq_flags);
	}
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

/*
 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
 * than one partition, we use an AMO_t structure per partition to indicate
 * whether a partition has sent an IPI or not.  >>> If it has, then wake up the
 * associated kthread to handle it.
 *
 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC
 * running on other partitions.
 *
 * Noteworthy Arguments:
 *
 *	irq - Interrupt ReQuest number. NOT USED.
 *
 *	dev_id - partid of IPI's potential sender.
 */
irqreturn_t
A
Al Viro 已提交
578
xpc_notify_IRQ_handler(int irq, void *dev_id)
579
{
580
	partid_t partid = (partid_t) (u64)dev_id;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	struct xpc_partition *part = &xpc_partitions[partid];

	DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);

	if (xpc_part_ref(part)) {
		xpc_check_for_channel_activity(part);

		xpc_part_deref(part);
	}
	return IRQ_HANDLED;
}

/*
 * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor
 * because the write to their associated IPI amo completed after the IRQ/IPI
 * was received.
 */
void
xpc_dropped_IPI_check(struct xpc_partition *part)
{
	if (xpc_part_ref(part)) {
		xpc_check_for_channel_activity(part);

		part->dropped_IPI_timer.expires = jiffies +
605
		    XPC_P_DROPPED_IPI_WAIT;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
		add_timer(&part->dropped_IPI_timer);
		xpc_part_deref(part);
	}
}

void
xpc_activate_kthreads(struct xpc_channel *ch, int needed)
{
	int idle = atomic_read(&ch->kthreads_idle);
	int assigned = atomic_read(&ch->kthreads_assigned);
	int wakeup;

	DBUG_ON(needed <= 0);

	if (idle > 0) {
		wakeup = (needed > idle) ? idle : needed;
		needed -= wakeup;

		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
			"channel=%d\n", wakeup, ch->partid, ch->number);

		/* only wakeup the requested number of kthreads */
		wake_up_nr(&ch->idle_wq, wakeup);
	}

	if (needed <= 0) {
		return;
	}

	if (needed + assigned > ch->kthreads_assigned_limit) {
		needed = ch->kthreads_assigned_limit - assigned;
		// >>>should never be less than 0
		if (needed <= 0) {
			return;
		}
	}

	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
		needed, ch->partid, ch->number);

646
	xpc_create_kthreads(ch, needed, 0);
647 648 649 650 651 652 653 654 655 656 657
}

/*
 * This function is where XPC's kthreads wait for messages to deliver.
 */
static void
xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
{
	do {
		/* deliver messages to their intended recipients */

658 659 660
		while ((volatile s64)ch->w_local_GP.get <
		       (volatile s64)ch->w_remote_GP.put &&
		       !((volatile u32)ch->flags & XPC_C_DISCONNECTING)) {
661 662 663 664
			xpc_deliver_msg(ch);
		}

		if (atomic_inc_return(&ch->kthreads_idle) >
665
		    ch->kthreads_idle_limit) {
666 667 668 669 670 671 672 673
			/* too many idle kthreads on this channel */
			atomic_dec(&ch->kthreads_idle);
			break;
		}

		dev_dbg(xpc_chan, "idle kthread calling "
			"wait_event_interruptible_exclusive()\n");

674 675 676 677 678 679 680 681
		(void)wait_event_interruptible_exclusive(ch->idle_wq,
							 ((volatile s64)ch->
							  w_local_GP.get <
							  (volatile s64)ch->
							  w_remote_GP.put ||
							  ((volatile u32)ch->
							   flags &
							   XPC_C_DISCONNECTING)));
682 683 684

		atomic_dec(&ch->kthreads_idle);

685
	} while (!((volatile u32)ch->flags & XPC_C_DISCONNECTING));
686 687 688 689 690 691 692 693 694 695
}

static int
xpc_daemonize_kthread(void *args)
{
	partid_t partid = XPC_UNPACK_ARG1(args);
	u16 ch_number = XPC_UNPACK_ARG2(args);
	struct xpc_partition *part = &xpc_partitions[partid];
	struct xpc_channel *ch;
	int n_needed;
696
	unsigned long irq_flags;
697 698 699 700 701 702 703 704 705 706 707 708

	daemonize("xpc%02dc%d", partid, ch_number);

	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
		partid, ch_number);

	ch = &part->channels[ch_number];

	if (!(ch->flags & XPC_C_DISCONNECTING)) {

		/* let registerer know that connection has been established */

709
		spin_lock_irqsave(&ch->lock, irq_flags);
710 711
		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
			ch->flags |= XPC_C_CONNECTEDCALLOUT;
712 713
			spin_unlock_irqrestore(&ch->lock, irq_flags);

714 715
			xpc_connected_callout(ch);

716 717 718 719
			spin_lock_irqsave(&ch->lock, irq_flags);
			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
			spin_unlock_irqrestore(&ch->lock, irq_flags);

720 721 722 723 724 725 726 727
			/*
			 * It is possible that while the callout was being
			 * made that the remote partition sent some messages.
			 * If that is the case, we may need to activate
			 * additional kthreads to help deliver them. We only
			 * need one less than total #of messages to deliver.
			 */
			n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1;
728
			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) {
729 730
				xpc_activate_kthreads(ch, n_needed);
			}
731 732
		} else {
			spin_unlock_irqrestore(&ch->lock, irq_flags);
733 734 735 736 737
		}

		xpc_kthread_waitmsgs(part, ch);
	}

738
	/* let registerer know that connection is disconnecting */
739

740 741
	spin_lock_irqsave(&ch->lock, irq_flags);
	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
742
	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
743
		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
744
		spin_unlock_irqrestore(&ch->lock, irq_flags);
745 746 747 748 749 750 751 752 753

		xpc_disconnect_callout(ch, xpcDisconnecting);

		spin_lock_irqsave(&ch->lock, irq_flags);
		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
	}
	spin_unlock_irqrestore(&ch->lock, irq_flags);

	if (atomic_dec_return(&ch->kthreads_assigned) == 0) {
754 755 756 757
		if (atomic_dec_return(&part->nchannels_engaged) == 0) {
			xpc_mark_partition_disengaged(part);
			xpc_IPI_send_disengage(part);
		}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	}

	xpc_msgqueue_deref(ch);

	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
		partid, ch_number);

	xpc_part_deref(part);
	return 0;
}

/*
 * For each partition that XPC has established communications with, there is
 * a minimum of one kernel thread assigned to perform any operation that
 * may potentially sleep or block (basically the callouts to the asynchronous
 * functions registered via xpc_connect()).
 *
 * Additional kthreads are created and destroyed by XPC as the workload
 * demands.
 *
 * A kthread is assigned to one of the active channels that exists for a given
 * partition.
 */
void
782
xpc_create_kthreads(struct xpc_channel *ch, int needed,
783
		    int ignore_disconnecting)
784 785 786 787
{
	unsigned long irq_flags;
	pid_t pid;
	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
788
	struct xpc_partition *part = &xpc_partitions[ch->partid];
789 790

	while (needed-- > 0) {
791 792 793 794 795 796

		/*
		 * The following is done on behalf of the newly created
		 * kthread. That kthread is responsible for doing the
		 * counterpart to the following before it exits.
		 */
797 798 799 800
		if (ignore_disconnecting) {
			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
				/* kthreads assigned had gone to zero */
				BUG_ON(!(ch->flags &
801
					 XPC_C_DISCONNECTINGCALLOUT_MADE));
802 803 804 805 806 807 808 809 810 811
				break;
			}

		} else if (ch->flags & XPC_C_DISCONNECTING) {
			break;

		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1) {
			if (atomic_inc_return(&part->nchannels_engaged) == 1)
				xpc_mark_partition_engaged(part);
		}
812
		(void)xpc_part_ref(part);
813 814
		xpc_msgqueue_ref(ch);

815
		pid = kernel_thread(xpc_daemonize_kthread, (void *)args, 0);
816 817
		if (pid < 0) {
			/* the fork failed */
818 819 820 821 822 823 824 825 826 827 828

			/*
			 * NOTE: if (ignore_disconnecting &&
			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
			 * then we'll deadlock if all other kthreads assigned
			 * to this channel are blocked in the channel's
			 * registerer, because the only thing that will unblock
			 * them is the xpcDisconnecting callout that this
			 * failed kernel_thread would have made.
			 */

829 830 831 832 833 834 835
			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
			    atomic_dec_return(&part->nchannels_engaged) == 0) {
				xpc_mark_partition_disengaged(part);
				xpc_IPI_send_disengage(part);
			}
			xpc_msgqueue_deref(ch);
			xpc_part_deref(part);
836 837

			if (atomic_read(&ch->kthreads_assigned) <
838
			    ch->kthreads_idle_limit) {
839 840 841 842 843 844 845
				/*
				 * Flag this as an error only if we have an
				 * insufficient #of kthreads for the channel
				 * to function.
				 */
				spin_lock_irqsave(&ch->lock, irq_flags);
				XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources,
846
						       &irq_flags);
847 848 849 850 851 852 853 854 855 856 857 858
				spin_unlock_irqrestore(&ch->lock, irq_flags);
			}
			break;
		}

		ch->kthreads_created++;	// >>> temporary debug only!!!
	}
}

void
xpc_disconnect_wait(int ch_number)
{
859
	unsigned long irq_flags;
860 861 862
	partid_t partid;
	struct xpc_partition *part;
	struct xpc_channel *ch;
863
	int wakeup_channel_mgr;
864 865 866 867 868

	/* now wait for all callouts to the caller's function to cease */
	for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
		part = &xpc_partitions[partid];

869 870 871
		if (!xpc_part_ref(part)) {
			continue;
		}
872

873
		ch = &part->channels[ch_number];
874

875
		if (!(ch->flags & XPC_C_WDISCONNECT)) {
876
			xpc_part_deref(part);
877
			continue;
878
		}
879

J
Jes Sorensen 已提交
880
		wait_for_completion(&ch->wdisconnect_wait);
881 882 883 884 885 886 887 888 889

		spin_lock_irqsave(&ch->lock, irq_flags);
		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
		wakeup_channel_mgr = 0;

		if (ch->delayed_IPI_flags) {
			if (part->act_state != XPC_P_DEACTIVATING) {
				spin_lock(&part->IPI_lock);
				XPC_SET_IPI_FLAGS(part->local_IPI_amo,
890 891
						  ch->number,
						  ch->delayed_IPI_flags);
892 893 894 895
				spin_unlock(&part->IPI_lock);
				wakeup_channel_mgr = 1;
			}
			ch->delayed_IPI_flags = 0;
896
		}
897 898 899 900 901 902 903 904 905

		ch->flags &= ~XPC_C_WDISCONNECT;
		spin_unlock_irqrestore(&ch->lock, irq_flags);

		if (wakeup_channel_mgr) {
			xpc_wakeup_channel_mgr(part);
		}

		xpc_part_deref(part);
906 907 908 909
	}
}

static void
910
xpc_do_exit(enum xpc_retval reason)
911 912
{
	partid_t partid;
913
	int active_part_count, printed_waiting_msg = 0;
914
	struct xpc_partition *part;
915
	unsigned long printmsg_time, disengage_request_timeout = 0;
916

917 918
	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
	DBUG_ON(xpc_exiting == 1);
919 920

	/*
921 922 923
	 * Let the heartbeat checker thread and the discovery thread
	 * (if one is running) know that they should exit. Also wake up
	 * the heartbeat checker thread in case it's sleeping.
924 925 926 927
	 */
	xpc_exiting = 1;
	wake_up_interruptible(&xpc_act_IRQ_wq);

928 929
	/* ignore all incoming interrupts */
	free_irq(SGI_XPC_ACTIVATE, NULL);
930

931
	/* wait for the discovery thread to exit */
J
Jes Sorensen 已提交
932
	wait_for_completion(&xpc_discovery_exited);
933

934
	/* wait for the heartbeat checker thread to exit */
J
Jes Sorensen 已提交
935
	wait_for_completion(&xpc_hb_checker_exited);
936

937
	/* sleep for a 1/3 of a second or so */
938
	(void)msleep_interruptible(300);
939 940 941

	/* wait for all partitions to become inactive */

942 943
	printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ);
	xpc_disengage_request_timedout = 0;
944

945 946 947 948 949 950
	do {
		active_part_count = 0;

		for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
			part = &xpc_partitions[partid];

951
			if (xpc_partition_disengaged(part) &&
952
			    part->act_state == XPC_P_INACTIVE) {
953
				continue;
954
			}
955 956 957 958

			active_part_count++;

			XPC_DEACTIVATE_PARTITION(part, reason);
959

960
			if (part->disengage_request_timeout >
961
			    disengage_request_timeout) {
962
				disengage_request_timeout =
963
				    part->disengage_request_timeout;
964
			}
965
		}
966

967 968 969
		if (xpc_partition_engaged(-1UL)) {
			if (time_after(jiffies, printmsg_time)) {
				dev_info(xpc_part, "waiting for remote "
970 971 972 973
					 "partitions to disengage, timeout in "
					 "%ld seconds\n",
					 (disengage_request_timeout - jiffies)
					 / HZ);
974
				printmsg_time = jiffies +
975
				    (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ);
976 977 978 979 980 981
				printed_waiting_msg = 1;
			}

		} else if (active_part_count > 0) {
			if (printed_waiting_msg) {
				dev_info(xpc_part, "waiting for local partition"
982
					 " to disengage\n");
983 984 985 986 987 988
				printed_waiting_msg = 0;
			}

		} else {
			if (!xpc_disengage_request_timedout) {
				dev_info(xpc_part, "all partitions have "
989
					 "disengaged\n");
990 991
			}
			break;
992 993
		}

994
		/* sleep for a 1/3 of a second or so */
995
		(void)msleep_interruptible(300);
996 997 998 999 1000 1001 1002 1003 1004 1005

	} while (1);

	DBUG_ON(xpc_partition_engaged(-1UL));

	/* indicate to others that our reserved page is uninitialized */
	xpc_rsvd_page->vars_pa = 0;

	/* now it's time to eliminate our heartbeat */
	del_timer_sync(&xpc_hb_timer);
1006
	DBUG_ON(xpc_vars->heartbeating_to_mask != 0);
1007

1008 1009
	if (reason == xpcUnloading) {
		/* take ourselves off of the reboot_notifier_list */
1010
		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1011

1012
		/* take ourselves off of the die_notifier list */
1013
		(void)unregister_die_notifier(&xpc_die_notifier);
1014
	}
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
	/* close down protections for IPI operations */
	xpc_restrict_IPI_ops();

	/* clear the interface to XPC's functions */
	xpc_clear_interface();

	if (xpc_sysctl) {
		unregister_sysctl_table(xpc_sysctl);
	}
1025 1026

	kfree(xpc_remote_copy_buffer_base);
1027 1028
}

1029
/*
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
 * This function is called when the system is being rebooted.
 */
static int
xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
{
	enum xpc_retval reason;

	switch (event) {
	case SYS_RESTART:
		reason = xpcSystemReboot;
		break;
	case SYS_HALT:
		reason = xpcSystemHalt;
		break;
	case SYS_POWER_OFF:
		reason = xpcSystemPoweroff;
		break;
	default:
		reason = xpcSystemGoingDown;
	}

	xpc_do_exit(reason);
	return NOTIFY_DONE;
}

/*
 * Notify other partitions to disengage from all references to our memory.
1057 1058 1059 1060 1061 1062 1063
 */
static void
xpc_die_disengage(void)
{
	struct xpc_partition *part;
	partid_t partid;
	unsigned long engaged;
1064
	long time, printmsg_time, disengage_request_timeout;
1065 1066 1067 1068

	/* keep xpc_hb_checker thread from doing anything (just in case) */
	xpc_exiting = 1;

1069
	xpc_vars->heartbeating_to_mask = 0;	/* indicate we're deactivated */
1070 1071 1072 1073

	for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
		part = &xpc_partitions[partid];

1074
		if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) {
1075 1076 1077 1078 1079 1080 1081

			/* just in case it was left set by an earlier XPC */
			xpc_clear_partition_engaged(1UL << partid);
			continue;
		}

		if (xpc_partition_engaged(1UL << partid) ||
1082
		    part->act_state != XPC_P_INACTIVE) {
1083 1084 1085 1086 1087 1088
			xpc_request_partition_disengage(part);
			xpc_mark_partition_disengaged(part);
			xpc_IPI_send_disengage(part);
		}
	}

1089 1090
	time = rtc_time();
	printmsg_time = time +
1091
	    (XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second);
1092
	disengage_request_timeout = time +
1093
	    (xpc_disengage_request_timelimit * sn_rtc_cycles_per_second);
1094 1095 1096

	/* wait for all other partitions to disengage from us */

1097 1098 1099 1100 1101 1102
	while (1) {
		engaged = xpc_partition_engaged(-1UL);
		if (!engaged) {
			dev_info(xpc_part, "all partitions have disengaged\n");
			break;
		}
1103

1104 1105 1106 1107 1108
		time = rtc_time();
		if (time >= disengage_request_timeout) {
			for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
				if (engaged & (1UL << partid)) {
					dev_info(xpc_part, "disengage from "
1109 1110
						 "remote partition %d timed "
						 "out\n", partid);
1111 1112 1113 1114 1115 1116
				}
			}
			break;
		}

		if (time >= printmsg_time) {
1117
			dev_info(xpc_part, "waiting for remote partitions to "
1118 1119 1120
				 "disengage, timeout in %ld seconds\n",
				 (disengage_request_timeout - time) /
				 sn_rtc_cycles_per_second);
1121
			printmsg_time = time +
1122 1123
			    (XPC_DISENGAGE_PRINTMSG_INTERVAL *
			     sn_rtc_cycles_per_second);
1124 1125 1126 1127 1128
		}
	}
}

/*
1129 1130 1131 1132 1133 1134
 * This function is called when the system is being restarted or halted due
 * to some sort of system failure. If this is the case we need to notify the
 * other partitions to disengage from all references to our memory.
 * This function can also be called when our heartbeater could be offlined
 * for a time. In this case we need to notify other partitions to not worry
 * about the lack of a heartbeat.
1135 1136 1137 1138 1139 1140 1141 1142 1143
 */
static int
xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
{
	switch (event) {
	case DIE_MACHINE_RESTART:
	case DIE_MACHINE_HALT:
		xpc_die_disengage();
		break;
1144 1145 1146 1147 1148 1149 1150

	case DIE_KDEBUG_ENTER:
		/* Should lack of heartbeat be ignored by other partitions? */
		if (!xpc_kdebug_ignore) {
			break;
		}
		/* fall through */
1151 1152 1153 1154 1155
	case DIE_MCA_MONARCH_ENTER:
	case DIE_INIT_MONARCH_ENTER:
		xpc_vars->heartbeat++;
		xpc_vars->heartbeat_offline = 1;
		break;
1156 1157 1158 1159 1160 1161 1162

	case DIE_KDEBUG_LEAVE:
		/* Is lack of heartbeat being ignored by other partitions? */
		if (!xpc_kdebug_ignore) {
			break;
		}
		/* fall through */
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	case DIE_MCA_MONARCH_LEAVE:
	case DIE_INIT_MONARCH_LEAVE:
		xpc_vars->heartbeat++;
		xpc_vars->heartbeat_offline = 0;
		break;
	}

	return NOTIFY_DONE;
}

1173 1174 1175 1176 1177 1178 1179
int __init
xpc_init(void)
{
	int ret;
	partid_t partid;
	struct xpc_partition *part;
	pid_t pid;
1180
	size_t buf_size;
1181

1182 1183 1184 1185
	if (!ia64_platform_is("sn2")) {
		return -ENODEV;
	}

1186
	buf_size = max(XPC_RP_VARS_SIZE,
1187
		       XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES);
1188
	xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size,
1189 1190
							       GFP_KERNEL,
							       &xpc_remote_copy_buffer_base);
1191 1192
	if (xpc_remote_copy_buffer == NULL)
		return -ENOMEM;
1193 1194 1195 1196

	snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part");
	snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan");

1197
	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * The first few fields of each entry of xpc_partitions[] need to
	 * be initialized now so that calls to xpc_connect() and
	 * xpc_disconnect() can be made prior to the activation of any remote
	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
	 * PARTITION HAS BEEN ACTIVATED.
	 */
	for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
		part = &xpc_partitions[partid];

1210
		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
1211 1212 1213 1214 1215

		part->act_IRQ_rcvd = 0;
		spin_lock_init(&part->act_lock);
		part->act_state = XPC_P_INACTIVE;
		XPC_SET_REASON(part, 0, 0);
1216 1217 1218

		init_timer(&part->disengage_request_timer);
		part->disengage_request_timer.function =
1219 1220
		    xpc_timeout_partition_disengage_request;
		part->disengage_request_timer.data = (unsigned long)part;
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		part->setup_state = XPC_P_UNSET;
		init_waitqueue_head(&part->teardown_wq);
		atomic_set(&part->references, 0);
	}

	/*
	 * Open up protections for IPI operations (and AMO operations on
	 * Shub 1.1 systems).
	 */
	xpc_allow_IPI_ops();

	/*
	 * Interrupts being processed will increment this atomic variable and
	 * awaken the heartbeat thread which will process the interrupts.
	 */
	atomic_set(&xpc_act_IRQ_rcvd, 0);

	/*
	 * This is safe to do before the xpc_hb_checker thread has started
	 * because the handler releases a wait queue.  If an interrupt is
	 * received before the thread is waiting, it will not go to sleep,
	 * but rather immediately process the interrupt.
	 */
	ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0,
1246
			  "xpc hb", NULL);
1247 1248 1249 1250 1251 1252 1253 1254 1255
	if (ret != 0) {
		dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
			"errno=%d\n", -ret);

		xpc_restrict_IPI_ops();

		if (xpc_sysctl) {
			unregister_sysctl_table(xpc_sysctl);
		}
1256 1257

		kfree(xpc_remote_copy_buffer_base);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		return -EBUSY;
	}

	/*
	 * Fill the partition reserved page with the information needed by
	 * other partitions to discover we are alive and establish initial
	 * communications.
	 */
	xpc_rsvd_page = xpc_rsvd_page_init();
	if (xpc_rsvd_page == NULL) {
		dev_err(xpc_part, "could not setup our reserved page\n");

		free_irq(SGI_XPC_ACTIVATE, NULL);
		xpc_restrict_IPI_ops();

		if (xpc_sysctl) {
			unregister_sysctl_table(xpc_sysctl);
		}
1276 1277

		kfree(xpc_remote_copy_buffer_base);
1278 1279 1280
		return -EBUSY;
	}

1281 1282 1283 1284 1285 1286
	/* add ourselves to the reboot_notifier_list */
	ret = register_reboot_notifier(&xpc_reboot_notifier);
	if (ret != 0) {
		dev_warn(xpc_part, "can't register reboot notifier\n");
	}

1287
	/* add ourselves to the die_notifier list */
1288 1289 1290 1291 1292
	ret = register_die_notifier(&xpc_die_notifier);
	if (ret != 0) {
		dev_warn(xpc_part, "can't register die notifier\n");
	}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	init_timer(&xpc_hb_timer);
	xpc_hb_timer.function = xpc_hb_beater;

	/*
	 * The real work-horse behind xpc.  This processes incoming
	 * interrupts and monitors remote heartbeats.
	 */
	pid = kernel_thread(xpc_hb_checker, NULL, 0);
	if (pid < 0) {
		dev_err(xpc_part, "failed while forking hb check thread\n");

		/* indicate to others that our reserved page is uninitialized */
		xpc_rsvd_page->vars_pa = 0;

1307
		/* take ourselves off of the reboot_notifier_list */
1308
		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1309

1310
		/* take ourselves off of the die_notifier list */
1311
		(void)unregister_die_notifier(&xpc_die_notifier);
1312

1313 1314 1315 1316 1317 1318 1319
		del_timer_sync(&xpc_hb_timer);
		free_irq(SGI_XPC_ACTIVATE, NULL);
		xpc_restrict_IPI_ops();

		if (xpc_sysctl) {
			unregister_sysctl_table(xpc_sysctl);
		}
1320 1321

		kfree(xpc_remote_copy_buffer_base);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		return -EBUSY;
	}

	/*
	 * Startup a thread that will attempt to discover other partitions to
	 * activate based on info provided by SAL. This new thread is short
	 * lived and will exit once discovery is complete.
	 */
	pid = kernel_thread(xpc_initiate_discovery, NULL, 0);
	if (pid < 0) {
		dev_err(xpc_part, "failed while forking discovery thread\n");

		/* mark this new thread as a non-starter */
J
Jes Sorensen 已提交
1335
		complete(&xpc_discovery_exited);
1336

1337
		xpc_do_exit(xpcUnloading);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		return -EBUSY;
	}

	/* set the interface to point at XPC's functions */
	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
			  xpc_initiate_allocate, xpc_initiate_send,
			  xpc_initiate_send_notify, xpc_initiate_received,
			  xpc_initiate_partid_to_nasids);

	return 0;
}

1350
module_init(xpc_init);
1351 1352 1353 1354

void __exit
xpc_exit(void)
{
1355
	xpc_do_exit(xpcUnloading);
1356 1357
}

1358
module_exit(xpc_exit);
1359 1360 1361 1362 1363 1364 1365

MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
MODULE_LICENSE("GPL");

module_param(xpc_hb_interval, int, 0);
MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1366
		 "heartbeat increments.");
1367 1368 1369

module_param(xpc_hb_check_interval, int, 0);
MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1370
		 "heartbeat checks.");
1371

1372 1373
module_param(xpc_disengage_request_timelimit, int, 0);
MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait "
1374
		 "for disengage request to complete.");
1375

1376 1377
module_param(xpc_kdebug_ignore, int, 0);
MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1378
		 "other partitions when dropping into kdebug.");