time.c 4.9 KB
Newer Older
1
#include <linux/types.h>
2
#include <linux/i8253.h>
3
#include <linux/interrupt.h>
4
#include <linux/irq.h>
5
#include <linux/smp.h>
6
#include <linux/time.h>
7
#include <linux/clockchips.h>
8 9 10

#include <asm/sni.h>
#include <asm/time.h>
11
#include <asm-generic/rtc.h>
12 13 14 15 16

#define SNI_CLOCK_TICK_RATE     3686400
#define SNI_COUNTER2_DIV        64
#define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)

17 18
static void a20r_set_mode(enum clock_event_mode mode,
                          struct clock_event_device *evt)
19
{
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
		wmb();

		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
		wmb();

                break;
        case CLOCK_EVT_MODE_ONESHOT:
        case CLOCK_EVT_MODE_UNUSED:
        case CLOCK_EVT_MODE_SHUTDOWN:
                break;
        case CLOCK_EVT_MODE_RESUME:
                break;
        }
44 45
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static struct clock_event_device a20r_clockevent_device = {
	.name		= "a20r-timer",
	.features	= CLOCK_EVT_FEAT_PERIODIC,

	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */

	.rating		= 300,
	.irq		= SNI_A20R_IRQ_TIMER,
	.set_mode	= a20r_set_mode,
};

static irqreturn_t a20r_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *cd = dev_id;

	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
	wmb();

	cd->event_handler(cd);

	return IRQ_HANDLED;
}

static struct irqaction a20r_irqaction = {
	.handler	= a20r_interrupt,
71
	.flags		= IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
72 73 74
	.name		= "a20r-timer",
};

75 76 77 78
/*
 * a20r platform uses 2 counters to divide the input frequency.
 * Counter 2 output is connected to Counter 0 & 1 input.
 */
79
static void __init sni_a20r_timer_setup(void)
80
{
81 82 83
	struct clock_event_device *cd = &a20r_clockevent_device;
	struct irqaction *action = &a20r_irqaction;
	unsigned int cpu = smp_processor_id();
84

85
	cd->cpumask             = cpumask_of(cpu);
86
	clockevents_register_device(cd);
87 88
	action->dev_id = cd;
	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
89 90 91 92 93 94 95 96 97
}

#define SNI_8254_TICK_RATE        1193182UL

#define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)

static __init unsigned long dosample(void)
{
	u32 ct0, ct1;
98
	volatile u8 msb;
99 100

	/* Start the counter. */
101
	outb_p(0x34, 0x43);
102
	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
103
	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104 105 106 107 108 109

	/* Get initial counter invariant */
	ct0 = read_c0_count();

	/* Latch and spin until top byte of counter0 is zero */
	do {
110
		outb(0x00, 0x43);
111
		(void) inb(0x40);
112
		msb = inb(0x40);
113 114 115 116
		ct1 = read_c0_count();
	} while (msb);

	/* Stop the counter. */
117
	outb(0x38, 0x43);
118 119 120 121 122 123 124 125 126 127 128 129
	/*
	 * Return the difference, this is how far the r4k counter increments
	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
	 * clock (= 1000000 / HZ / 2).
	 */
	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
}

/*
 * Here we need to calibrate the cycle counter to at least be close.
 */
130
void __init plat_time_init(void)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned long r4k_ticks[3];
	unsigned long r4k_tick;

	/*
	 * Figure out the r4k offset, the algorithm is very simple and works in
	 * _all_ cases as long as the 8254 counter register itself works ok (as
	 * an interrupt driving timer it does not because of bug, this is why
	 * we are using the onchip r4k counter/compare register to serve this
	 * purpose, but for r4k_offset calculation it will work ok for us).
	 * There are other very complicated ways of performing this calculation
	 * but this one works just fine so I am not going to futz around. ;-)
	 */
	printk(KERN_INFO "Calibrating system timer... ");
	dosample();	/* Prime cache. */
	dosample();	/* Prime cache. */
	/* Zero is NOT an option. */
	do {
		r4k_ticks[0] = dosample();
	} while (!r4k_ticks[0]);
	do {
		r4k_ticks[1] = dosample();
	} while (!r4k_ticks[1]);

	if (r4k_ticks[0] != r4k_ticks[1]) {
		printk("warning: timer counts differ, retrying... ");
		r4k_ticks[2] = dosample();
		if (r4k_ticks[2] == r4k_ticks[0]
		    || r4k_ticks[2] == r4k_ticks[1])
			r4k_tick = r4k_ticks[2];
		else {
			printk("disagreement, using average... ");
			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
				   + r4k_ticks[2]) / 3;
		}
	} else
		r4k_tick = r4k_ticks[0];

	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
		(int) (r4k_tick / (500000 / HZ)),
		(int) (r4k_tick % (500000 / HZ)));

	mips_hpt_frequency = r4k_tick * HZ;
174

175 176 177 178 179
	switch (sni_brd_type) {
	case SNI_BRD_10:
	case SNI_BRD_10NEW:
	case SNI_BRD_TOWER_OASIC:
	case SNI_BRD_MINITOWER:
180 181
		sni_a20r_timer_setup();
		break;
182
	}
183
	setup_pit_timer();
184
}
185

186
void read_persistent_clock(struct timespec *ts)
187
{
188 189
	ts->tv_sec = -1;
	ts->tv_nsec = 0;
190
}