ampdu.c 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*
 * Copyright (c) 2010 Broadcom Corporation
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
#include <net/mac80211.h>

#include "rate.h"
#include "scb.h"
#include "phy/phy_hal.h"
#include "antsel.h"
#include "main.h"
#include "ampdu.h"

/* max number of mpdus in an ampdu */
#define AMPDU_MAX_MPDU			32
/* max number of mpdus in an ampdu to a legacy */
#define AMPDU_NUM_MPDU_LEGACY		16
/* max Tx ba window size (in pdu) */
#define AMPDU_TX_BA_MAX_WSIZE		64
/* default Tx ba window size (in pdu) */
#define AMPDU_TX_BA_DEF_WSIZE		64
/* default Rx ba window size (in pdu) */
#define AMPDU_RX_BA_DEF_WSIZE		64
/* max Rx ba window size (in pdu) */
#define AMPDU_RX_BA_MAX_WSIZE		64
/* max dur of tx ampdu (in msec) */
#define	AMPDU_MAX_DUR			5
/* default tx retry limit */
#define AMPDU_DEF_RETRY_LIMIT		5
/* default tx retry limit at reg rate */
#define AMPDU_DEF_RR_RETRY_LIMIT	2
/* default ffpld reserved bytes */
#define AMPDU_DEF_FFPLD_RSVD		2048
/* # of inis to be freed on detach */
#define AMPDU_INI_FREE			10
/* max # of mpdus released at a time */
#define	AMPDU_SCB_MAX_RELEASE		20

#define NUM_FFPLD_FIFO 4	/* number of fifo concerned by pre-loading */
#define FFPLD_TX_MAX_UNFL   200	/* default value of the average number of ampdu
				 * without underflows
				 */
#define FFPLD_MPDU_SIZE 1800	/* estimate of maximum mpdu size */
#define FFPLD_MAX_MCS 23	/* we don't deal with mcs 32 */
#define FFPLD_PLD_INCR 1000	/* increments in bytes */
#define FFPLD_MAX_AMPDU_CNT 5000	/* maximum number of ampdu we
					 * accumulate between resets.
					 */

#define AMPDU_DELIMITER_LEN	4

/* max allowed number of mpdus in an ampdu (2 streams) */
#define AMPDU_NUM_MPDU		16

#define TX_SEQ_TO_INDEX(seq) ((seq) % AMPDU_TX_BA_MAX_WSIZE)

/* max possible overhead per mpdu in the ampdu; 3 is for roundup if needed */
#define AMPDU_MAX_MPDU_OVERHEAD (FCS_LEN + DOT11_ICV_AES_LEN +\
	AMPDU_DELIMITER_LEN + 3\
	+ DOT11_A4_HDR_LEN + DOT11_QOS_LEN + DOT11_IV_MAX_LEN)

/* modulo add/sub, bound = 2^k */
#define MODADD_POW2(x, y, bound) (((x) + (y)) & ((bound) - 1))
#define MODSUB_POW2(x, y, bound) (((x) - (y)) & ((bound) - 1))

/* structure to hold tx fifo information and pre-loading state
 * counters specific to tx underflows of ampdus
 * some counters might be redundant with the ones in wlc or ampdu structures.
 * This allows to maintain a specific state independently of
 * how often and/or when the wlc counters are updated.
 *
 * ampdu_pld_size: number of bytes to be pre-loaded
 * mcs2ampdu_table: per-mcs max # of mpdus in an ampdu
 * prev_txfunfl: num of underflows last read from the HW macstats counter
 * accum_txfunfl: num of underflows since we modified pld params
 * accum_txampdu: num of tx ampdu since we modified pld params
 * prev_txampdu: previous reading of tx ampdu
 * dmaxferrate: estimated dma avg xfer rate in kbits/sec
 */
struct brcms_fifo_info {
	u16 ampdu_pld_size;
	u8 mcs2ampdu_table[FFPLD_MAX_MCS + 1];
	u16 prev_txfunfl;
	u32 accum_txfunfl;
	u32 accum_txampdu;
	u32 prev_txampdu;
	u32 dmaxferrate;
};

/* AMPDU module specific state
 *
 * wlc: pointer to main wlc structure
 * scb_handle: scb cubby handle to retrieve data from scb
 * ini_enable: per-tid initiator enable/disable of ampdu
 * ba_tx_wsize: Tx ba window size (in pdu)
 * ba_rx_wsize: Rx ba window size (in pdu)
 * retry_limit: mpdu transmit retry limit
 * rr_retry_limit: mpdu transmit retry limit at regular rate
 * retry_limit_tid: per-tid mpdu transmit retry limit
 * rr_retry_limit_tid: per-tid mpdu transmit retry limit at regular rate
 * mpdu_density: min mpdu spacing (0-7) ==> 2^(x-1)/8 usec
 * max_pdu: max pdus allowed in ampdu
 * dur: max duration of an ampdu (in msec)
 * rx_factor: maximum rx ampdu factor (0-3) ==> 2^(13+x) bytes
 * ffpld_rsvd: number of bytes to reserve for preload
 * max_txlen: max size of ampdu per mcs, bw and sgi
 * mfbr: enable multiple fallback rate
 * tx_max_funl: underflows should be kept such that
 *		(tx_max_funfl*underflows) < tx frames
 * fifo_tb: table of fifo infos
 */
struct ampdu_info {
	struct brcms_c_info *wlc;
	int scb_handle;
	u8 ini_enable[AMPDU_MAX_SCB_TID];
	u8 ba_tx_wsize;
	u8 ba_rx_wsize;
	u8 retry_limit;
	u8 rr_retry_limit;
	u8 retry_limit_tid[AMPDU_MAX_SCB_TID];
	u8 rr_retry_limit_tid[AMPDU_MAX_SCB_TID];
	u8 mpdu_density;
	s8 max_pdu;
	u8 dur;
	u8 rx_factor;
	u32 ffpld_rsvd;
	u32 max_txlen[MCS_TABLE_SIZE][2][2];
	bool mfbr;
	u32 tx_max_funl;
	struct brcms_fifo_info fifo_tb[NUM_FFPLD_FIFO];
};

/* used for flushing ampdu packets */
struct cb_del_ampdu_pars {
	struct ieee80211_sta *sta;
	u16 tid;
};

static void brcms_c_scb_ampdu_update_max_txlen(struct ampdu_info *ampdu, u8 dur)
{
	u32 rate, mcs;

	for (mcs = 0; mcs < MCS_TABLE_SIZE; mcs++) {
		/* rate is in Kbps; dur is in msec ==> len = (rate * dur) / 8 */
		/* 20MHz, No SGI */
		rate = mcs_2_rate(mcs, false, false);
		ampdu->max_txlen[mcs][0][0] = (rate * dur) >> 3;
		/* 40 MHz, No SGI */
		rate = mcs_2_rate(mcs, true, false);
		ampdu->max_txlen[mcs][1][0] = (rate * dur) >> 3;
		/* 20MHz, SGI */
		rate = mcs_2_rate(mcs, false, true);
		ampdu->max_txlen[mcs][0][1] = (rate * dur) >> 3;
		/* 40 MHz, SGI */
		rate = mcs_2_rate(mcs, true, true);
		ampdu->max_txlen[mcs][1][1] = (rate * dur) >> 3;
	}
}

static bool brcms_c_ampdu_cap(struct ampdu_info *ampdu)
{
	if (BRCMS_PHY_11N_CAP(ampdu->wlc->band))
		return true;
	else
		return false;
}

static int brcms_c_ampdu_set(struct ampdu_info *ampdu, bool on)
{
	struct brcms_c_info *wlc = ampdu->wlc;

	wlc->pub->_ampdu = false;

	if (on) {
		if (!(wlc->pub->_n_enab & SUPPORT_11N)) {
			wiphy_err(ampdu->wlc->wiphy, "wl%d: driver not "
				"nmode enabled\n", wlc->pub->unit);
			return -ENOTSUPP;
		}
		if (!brcms_c_ampdu_cap(ampdu)) {
			wiphy_err(ampdu->wlc->wiphy, "wl%d: device not "
				"ampdu capable\n", wlc->pub->unit);
			return -ENOTSUPP;
		}
		wlc->pub->_ampdu = on;
	}

	return 0;
}

static void brcms_c_ffpld_init(struct ampdu_info *ampdu)
{
	int i, j;
	struct brcms_fifo_info *fifo;

	for (j = 0; j < NUM_FFPLD_FIFO; j++) {
		fifo = (ampdu->fifo_tb + j);
		fifo->ampdu_pld_size = 0;
		for (i = 0; i <= FFPLD_MAX_MCS; i++)
			fifo->mcs2ampdu_table[i] = 255;
		fifo->dmaxferrate = 0;
		fifo->accum_txampdu = 0;
		fifo->prev_txfunfl = 0;
		fifo->accum_txfunfl = 0;

	}
}

struct ampdu_info *brcms_c_ampdu_attach(struct brcms_c_info *wlc)
{
	struct ampdu_info *ampdu;
	int i;

	ampdu = kzalloc(sizeof(struct ampdu_info), GFP_ATOMIC);
	if (!ampdu)
		return NULL;

	ampdu->wlc = wlc;

	for (i = 0; i < AMPDU_MAX_SCB_TID; i++)
		ampdu->ini_enable[i] = true;
	/* Disable ampdu for VO by default */
	ampdu->ini_enable[PRIO_8021D_VO] = false;
	ampdu->ini_enable[PRIO_8021D_NC] = false;

	/* Disable ampdu for BK by default since not enough fifo space */
	ampdu->ini_enable[PRIO_8021D_NONE] = false;
	ampdu->ini_enable[PRIO_8021D_BK] = false;

	ampdu->ba_tx_wsize = AMPDU_TX_BA_DEF_WSIZE;
	ampdu->ba_rx_wsize = AMPDU_RX_BA_DEF_WSIZE;
	ampdu->mpdu_density = AMPDU_DEF_MPDU_DENSITY;
	ampdu->max_pdu = AUTO;
	ampdu->dur = AMPDU_MAX_DUR;

	ampdu->ffpld_rsvd = AMPDU_DEF_FFPLD_RSVD;
	/*
	 * bump max ampdu rcv size to 64k for all 11n
	 * devices except 4321A0 and 4321A1
	 */
	if (BRCMS_ISNPHY(wlc->band) && NREV_LT(wlc->band->phyrev, 2))
		ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_32K;
	else
		ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_64K;
	ampdu->retry_limit = AMPDU_DEF_RETRY_LIMIT;
	ampdu->rr_retry_limit = AMPDU_DEF_RR_RETRY_LIMIT;

	for (i = 0; i < AMPDU_MAX_SCB_TID; i++) {
		ampdu->retry_limit_tid[i] = ampdu->retry_limit;
		ampdu->rr_retry_limit_tid[i] = ampdu->rr_retry_limit;
	}

	brcms_c_scb_ampdu_update_max_txlen(ampdu, ampdu->dur);
	ampdu->mfbr = false;
	/* try to set ampdu to the default value */
	brcms_c_ampdu_set(ampdu, wlc->pub->_ampdu);

	ampdu->tx_max_funl = FFPLD_TX_MAX_UNFL;
	brcms_c_ffpld_init(ampdu);

	return ampdu;
}

void brcms_c_ampdu_detach(struct ampdu_info *ampdu)
{
	kfree(ampdu);
}

static void brcms_c_scb_ampdu_update_config(struct ampdu_info *ampdu,
					    struct scb *scb)
{
	struct scb_ampdu *scb_ampdu = &scb->scb_ampdu;
	int i;

	scb_ampdu->max_pdu = AMPDU_NUM_MPDU;

	/* go back to legacy size if some preloading is occurring */
	for (i = 0; i < NUM_FFPLD_FIFO; i++) {
		if (ampdu->fifo_tb[i].ampdu_pld_size > FFPLD_PLD_INCR)
			scb_ampdu->max_pdu = AMPDU_NUM_MPDU_LEGACY;
	}

	/* apply user override */
	if (ampdu->max_pdu != AUTO)
		scb_ampdu->max_pdu = (u8) ampdu->max_pdu;

	scb_ampdu->release = min_t(u8, scb_ampdu->max_pdu,
				   AMPDU_SCB_MAX_RELEASE);

	if (scb_ampdu->max_rx_ampdu_bytes)
		scb_ampdu->release = min_t(u8, scb_ampdu->release,
			scb_ampdu->max_rx_ampdu_bytes / 1600);

	scb_ampdu->release = min(scb_ampdu->release,
				 ampdu->fifo_tb[TX_AC_BE_FIFO].
				 mcs2ampdu_table[FFPLD_MAX_MCS]);
}

static void brcms_c_scb_ampdu_update_config_all(struct ampdu_info *ampdu)
{
	brcms_c_scb_ampdu_update_config(ampdu, &ampdu->wlc->pri_scb);
}

static void brcms_c_ffpld_calc_mcs2ampdu_table(struct ampdu_info *ampdu, int f)
{
	int i;
	u32 phy_rate, dma_rate, tmp;
	u8 max_mpdu;
	struct brcms_fifo_info *fifo = (ampdu->fifo_tb + f);

	/* recompute the dma rate */
	/* note : we divide/multiply by 100 to avoid integer overflows */
	max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
			 AMPDU_NUM_MPDU_LEGACY);
	phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
	dma_rate =
	    (((phy_rate / 100) *
	      (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
	     / (max_mpdu * FFPLD_MPDU_SIZE)) * 100;
	fifo->dmaxferrate = dma_rate;

	/* fill up the mcs2ampdu table; do not recalc the last mcs */
	dma_rate = dma_rate >> 7;
	for (i = 0; i < FFPLD_MAX_MCS; i++) {
		/* shifting to keep it within integer range */
		phy_rate = mcs_2_rate(i, true, false) >> 7;
		if (phy_rate > dma_rate) {
			tmp = ((fifo->ampdu_pld_size * phy_rate) /
			       ((phy_rate - dma_rate) * FFPLD_MPDU_SIZE)) + 1;
			tmp = min_t(u32, tmp, 255);
			fifo->mcs2ampdu_table[i] = (u8) tmp;
		}
	}
}

/* evaluate the dma transfer rate using the tx underflows as feedback.
 * If necessary, increase tx fifo preloading. If not enough,
 * decrease maximum ampdu size for each mcs till underflows stop
 * Return 1 if pre-loading not active, -1 if not an underflow event,
 * 0 if pre-loading module took care of the event.
 */
static int brcms_c_ffpld_check_txfunfl(struct brcms_c_info *wlc, int fid)
{
	struct ampdu_info *ampdu = wlc->ampdu;
	u32 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
	u32 txunfl_ratio;
	u8 max_mpdu;
	u32 current_ampdu_cnt = 0;
	u16 max_pld_size;
	u32 new_txunfl;
	struct brcms_fifo_info *fifo = (ampdu->fifo_tb + fid);
	uint xmtfifo_sz;
	u16 cur_txunfl;

	/* return if we got here for a different reason than underflows */
	cur_txunfl = brcms_b_read_shm(wlc->hw,
				      M_UCODE_MACSTAT +
				      offsetof(struct macstat, txfunfl[fid]));
	new_txunfl = (u16) (cur_txunfl - fifo->prev_txfunfl);
	if (new_txunfl == 0) {
		BCMMSG(wlc->wiphy, "TX status FRAG set but no tx underflows\n");
		return -1;
	}
	fifo->prev_txfunfl = cur_txunfl;

	if (!ampdu->tx_max_funl)
		return 1;

	/* check if fifo is big enough */
	if (brcms_b_xmtfifo_sz_get(wlc->hw, fid, &xmtfifo_sz))
		return -1;

	if ((TXFIFO_SIZE_UNIT * (u32) xmtfifo_sz) <= ampdu->ffpld_rsvd)
		return 1;

	max_pld_size = TXFIFO_SIZE_UNIT * xmtfifo_sz - ampdu->ffpld_rsvd;
	fifo->accum_txfunfl += new_txunfl;

	/* we need to wait for at least 10 underflows */
	if (fifo->accum_txfunfl < 10)
		return 0;

	BCMMSG(wlc->wiphy, "ampdu_count %d  tx_underflows %d\n",
		current_ampdu_cnt, fifo->accum_txfunfl);

	/*
	   compute the current ratio of tx unfl per ampdu.
	   When the current ampdu count becomes too
	   big while the ratio remains small, we reset
	   the current count in order to not
	   introduce too big of a latency in detecting a
	   large amount of tx underflows later.
	 */

	txunfl_ratio = current_ampdu_cnt / fifo->accum_txfunfl;

	if (txunfl_ratio > ampdu->tx_max_funl) {
		if (current_ampdu_cnt >= FFPLD_MAX_AMPDU_CNT)
			fifo->accum_txfunfl = 0;

		return 0;
	}
	max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
			 AMPDU_NUM_MPDU_LEGACY);

	/* In case max value max_pdu is already lower than
	   the fifo depth, there is nothing more we can do.
	 */

	if (fifo->ampdu_pld_size >= max_mpdu * FFPLD_MPDU_SIZE) {
		fifo->accum_txfunfl = 0;
		return 0;
	}

	if (fifo->ampdu_pld_size < max_pld_size) {

		/* increment by TX_FIFO_PLD_INC bytes */
		fifo->ampdu_pld_size += FFPLD_PLD_INCR;
		if (fifo->ampdu_pld_size > max_pld_size)
			fifo->ampdu_pld_size = max_pld_size;

		/* update scb release size */
		brcms_c_scb_ampdu_update_config_all(ampdu);

		/*
		 * compute a new dma xfer rate for max_mpdu @ max mcs.
		 * This is the minimum dma rate that can achieve no
		 * underflow condition for the current mpdu size.
		 *
		 * note : we divide/multiply by 100 to avoid integer overflows
		 */
		fifo->dmaxferrate =
		    (((phy_rate / 100) *
		      (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
		     / (max_mpdu * FFPLD_MPDU_SIZE)) * 100;

		BCMMSG(wlc->wiphy, "DMA estimated transfer rate %d; "
			"pre-load size %d\n",
			fifo->dmaxferrate, fifo->ampdu_pld_size);
	} else {

		/* decrease ampdu size */
		if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] > 1) {
			if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] == 255)
				fifo->mcs2ampdu_table[FFPLD_MAX_MCS] =
				    AMPDU_NUM_MPDU_LEGACY - 1;
			else
				fifo->mcs2ampdu_table[FFPLD_MAX_MCS] -= 1;

			/* recompute the table */
			brcms_c_ffpld_calc_mcs2ampdu_table(ampdu, fid);

			/* update scb release size */
			brcms_c_scb_ampdu_update_config_all(ampdu);
		}
	}
	fifo->accum_txfunfl = 0;
	return 0;
}

void
brcms_c_ampdu_tx_operational(struct brcms_c_info *wlc, u8 tid,
	u8 ba_wsize,		/* negotiated ba window size (in pdu) */
	uint max_rx_ampdu_bytes) /* from ht_cap in beacon */
{
	struct scb_ampdu *scb_ampdu;
	struct scb_ampdu_tid_ini *ini;
	struct ampdu_info *ampdu = wlc->ampdu;
	struct scb *scb = &wlc->pri_scb;
	scb_ampdu = &scb->scb_ampdu;

	if (!ampdu->ini_enable[tid]) {
		wiphy_err(ampdu->wlc->wiphy, "%s: Rejecting tid %d\n",
			  __func__, tid);
		return;
	}

	ini = &scb_ampdu->ini[tid];
	ini->tid = tid;
	ini->scb = scb_ampdu->scb;
	ini->ba_wsize = ba_wsize;
	scb_ampdu->max_rx_ampdu_bytes = max_rx_ampdu_bytes;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
void brcms_c_ampdu_reset_session(struct brcms_ampdu_session *session,
				 struct brcms_c_info *wlc)
{
	session->wlc = wlc;
	skb_queue_head_init(&session->skb_list);
	session->max_ampdu_len = 0;    /* determined from first MPDU */
	session->max_ampdu_frames = 0; /* determined from first MPDU */
	session->ampdu_len = 0;
	session->dma_len = 0;
}

/*
 * Preps the given packet for AMPDU based on the session data. If the
 * frame cannot be accomodated in the current session, -ENOSPC is
 * returned.
 */
int brcms_c_ampdu_add_frame(struct brcms_ampdu_session *session,
			    struct sk_buff *p)
{
	struct brcms_c_info *wlc = session->wlc;
	struct ampdu_info *ampdu = wlc->ampdu;
	struct scb *scb = &wlc->pri_scb;
	struct scb_ampdu *scb_ampdu = &scb->scb_ampdu;
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p);
	struct ieee80211_tx_rate *txrate = tx_info->status.rates;
	struct d11txh *txh = (struct d11txh *)p->data;
	unsigned ampdu_frames;
	u8 ndelim, tid;
	u8 *plcp;
	uint len;
	u16 mcl;
	bool fbr_iscck;
	bool rr;

	ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
	plcp = (u8 *)(txh + 1);
	fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03);
	len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) :
			  BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
	len = roundup(len, 4) + (ndelim + 1) * AMPDU_DELIMITER_LEN;

	ampdu_frames = skb_queue_len(&session->skb_list);
	if (ampdu_frames != 0) {
		struct sk_buff *first;

		if (ampdu_frames + 1 > session->max_ampdu_frames ||
		    session->ampdu_len + len > session->max_ampdu_len)
			return -ENOSPC;

		/*
		 * We aren't really out of space if the new frame is of
		 * a different priority, but we want the same behaviour
		 * so return -ENOSPC anyway.
		 *
		 * XXX: The old AMPDU code did this, but is it really
		 * necessary?
		 */
		first = skb_peek(&session->skb_list);
		if (p->priority != first->priority)
			return -ENOSPC;
	}

	/*
	 * Now that we're sure this frame can be accomodated, update the
	 * session information.
	 */
	session->ampdu_len += len;
	session->dma_len += p->len;

	tid = (u8)p->priority;

	/* Handle retry limits */
	if (txrate[0].count <= ampdu->rr_retry_limit_tid[tid]) {
		txrate[0].count++;
		rr = true;
	} else {
		txrate[1].count++;
		rr = false;
	}

	if (ampdu_frames == 0) {
		u8 plcp0, plcp3, is40, sgi, mcs;
		uint fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
		struct brcms_fifo_info *f = &ampdu->fifo_tb[fifo];

		if (rr) {
			plcp0 = plcp[0];
			plcp3 = plcp[3];
		} else {
			plcp0 = txh->FragPLCPFallback[0];
			plcp3 = txh->FragPLCPFallback[3];

		}

		/* Limit AMPDU size based on MCS */
		is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0;
		sgi = plcp3_issgi(plcp3) ? 1 : 0;
		mcs = plcp0 & ~MIMO_PLCP_40MHZ;
		session->max_ampdu_len = min(scb_ampdu->max_rx_ampdu_bytes,
					     ampdu->max_txlen[mcs][is40][sgi]);

		session->max_ampdu_frames = scb_ampdu->max_pdu;
		if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) {
			session->max_ampdu_frames =
				min_t(u16, f->mcs2ampdu_table[mcs],
				      session->max_ampdu_frames);
		}
	}

	/*
	 * Treat all frames as "middle" frames of AMPDU here. First and
	 * last frames must be fixed up after all MPDUs have been prepped.
	 */
	mcl = le16_to_cpu(txh->MacTxControlLow);
	mcl &= ~TXC_AMPDU_MASK;
	mcl |= (TXC_AMPDU_MIDDLE << TXC_AMPDU_SHIFT);
	mcl &= ~(TXC_STARTMSDU | TXC_SENDRTS | TXC_SENDCTS);
	txh->MacTxControlLow = cpu_to_le16(mcl);
	txh->PreloadSize = 0;	/* always default to 0 */

	skb_queue_tail(&session->skb_list, p);

	return 0;
}

void brcms_c_ampdu_finalize(struct brcms_ampdu_session *session)
{
	struct brcms_c_info *wlc = session->wlc;
	struct ampdu_info *ampdu = wlc->ampdu;
	struct sk_buff *first, *last;
	struct d11txh *txh;
	struct ieee80211_tx_info *tx_info;
	struct ieee80211_tx_rate *txrate;
	u8 ndelim;
	u8 *plcp;
	uint len;
	uint fifo;
	struct brcms_fifo_info *f;
	u16 mcl;
	bool fbr;
	bool fbr_iscck;
	struct ieee80211_rts *rts;
	bool use_rts = false, use_cts = false;
	u16 dma_len = session->dma_len;
	u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
	u32 rspec = 0, rspec_fallback = 0;
	u32 rts_rspec = 0, rts_rspec_fallback = 0;
	u8 plcp0, plcp3, is40, sgi, mcs;
	u16 mch;
	u8 preamble_type = BRCMS_GF_PREAMBLE;
	u8 fbr_preamble_type = BRCMS_GF_PREAMBLE;
	u8 rts_preamble_type = BRCMS_LONG_PREAMBLE;
	u8 rts_fbr_preamble_type = BRCMS_LONG_PREAMBLE;

	if (skb_queue_empty(&session->skb_list))
		return;

	first = skb_peek(&session->skb_list);
	last = skb_peek_tail(&session->skb_list);

	/* Need to fix up last MPDU first to adjust AMPDU length */
	txh = (struct d11txh *)last->data;
	fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
	f = &ampdu->fifo_tb[fifo];

	mcl = le16_to_cpu(txh->MacTxControlLow);
	mcl &= ~TXC_AMPDU_MASK;
	mcl |= (TXC_AMPDU_LAST << TXC_AMPDU_SHIFT);
	txh->MacTxControlLow = cpu_to_le16(mcl);

	/* remove the null delimiter after last mpdu */
	ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
	txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 0;
	session->ampdu_len -= ndelim * AMPDU_DELIMITER_LEN;

	/* remove the pad len from last mpdu */
	fbr_iscck = ((le16_to_cpu(txh->XtraFrameTypes) & 0x3) == 0);
	len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) :
			  BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
	session->ampdu_len -= roundup(len, 4) - len;

	/* Now fix up the first MPDU */
	tx_info = IEEE80211_SKB_CB(first);
	txrate = tx_info->status.rates;
	txh = (struct d11txh *)first->data;
	plcp = (u8 *)(txh + 1);
	rts = (struct ieee80211_rts *)&txh->rts_frame;

	mcl = le16_to_cpu(txh->MacTxControlLow);
	/* If only one MPDU leave it marked as last */
	if (first != last) {
		mcl &= ~TXC_AMPDU_MASK;
		mcl |= (TXC_AMPDU_FIRST << TXC_AMPDU_SHIFT);
	}
	mcl |= TXC_STARTMSDU;
	if (ieee80211_is_rts(rts->frame_control)) {
		mcl |= TXC_SENDRTS;
		use_rts = true;
	}
	if (ieee80211_is_cts(rts->frame_control)) {
		mcl |= TXC_SENDCTS;
		use_cts = true;
	}
	txh->MacTxControlLow = cpu_to_le16(mcl);

	fbr = txrate[1].count > 0;
	if (!fbr) {
		plcp0 = plcp[0];
		plcp3 = plcp[3];
	} else {
		plcp0 = txh->FragPLCPFallback[0];
		plcp3 = txh->FragPLCPFallback[3];
	}
	is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0;
	sgi = plcp3_issgi(plcp3) ? 1 : 0;
	mcs = plcp0 & ~MIMO_PLCP_40MHZ;

	if (is40) {
		if (CHSPEC_SB_UPPER(wlc_phy_chanspec_get(wlc->band->pi)))
			mimo_ctlchbw = PHY_TXC1_BW_20MHZ_UP;
		else
			mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
	}

	/* rebuild the rspec and rspec_fallback */
	rspec = RSPEC_MIMORATE;
	rspec |= plcp[0] & ~MIMO_PLCP_40MHZ;
	if (plcp[0] & MIMO_PLCP_40MHZ)
		rspec |= (PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT);

	fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03);
	if (fbr_iscck) {
		rspec_fallback =
			cck_rspec(cck_phy2mac_rate(txh->FragPLCPFallback[0]));
	} else {
		rspec_fallback = RSPEC_MIMORATE;
		rspec_fallback |= txh->FragPLCPFallback[0] & ~MIMO_PLCP_40MHZ;
		if (txh->FragPLCPFallback[0] & MIMO_PLCP_40MHZ)
			rspec_fallback |= PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT;
	}

	if (use_rts || use_cts) {
		rts_rspec =
			brcms_c_rspec_to_rts_rspec(wlc, rspec,
						   false, mimo_ctlchbw);
		rts_rspec_fallback =
			brcms_c_rspec_to_rts_rspec(wlc, rspec_fallback,
						   false, mimo_ctlchbw);
	}

	BRCMS_SET_MIMO_PLCP_LEN(plcp, session->ampdu_len);
	/* mark plcp to indicate ampdu */
	BRCMS_SET_MIMO_PLCP_AMPDU(plcp);

	/* reset the mixed mode header durations */
	if (txh->MModeLen) {
		u16 mmodelen = brcms_c_calc_lsig_len(wlc, rspec,
						     session->ampdu_len);
		txh->MModeLen = cpu_to_le16(mmodelen);
		preamble_type = BRCMS_MM_PREAMBLE;
	}
	if (txh->MModeFbrLen) {
		u16 mmfbrlen = brcms_c_calc_lsig_len(wlc, rspec_fallback,
						     session->ampdu_len);
		txh->MModeFbrLen = cpu_to_le16(mmfbrlen);
		fbr_preamble_type = BRCMS_MM_PREAMBLE;
	}

	/* set the preload length */
	if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) {
		dma_len = min(dma_len, f->ampdu_pld_size);
		txh->PreloadSize = cpu_to_le16(dma_len);
	} else {
		txh->PreloadSize = 0;
	}

	mch = le16_to_cpu(txh->MacTxControlHigh);

	/* update RTS dur fields */
	if (use_rts || use_cts) {
		u16 durid;
		if ((mch & TXC_PREAMBLE_RTS_MAIN_SHORT) ==
		    TXC_PREAMBLE_RTS_MAIN_SHORT)
			rts_preamble_type = BRCMS_SHORT_PREAMBLE;

		if ((mch & TXC_PREAMBLE_RTS_FB_SHORT) ==
		     TXC_PREAMBLE_RTS_FB_SHORT)
			rts_fbr_preamble_type = BRCMS_SHORT_PREAMBLE;

		durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec,
						   rspec, rts_preamble_type,
						   preamble_type,
						   session->ampdu_len, true);
		rts->duration = cpu_to_le16(durid);
		durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
						   rts_rspec_fallback,
						   rspec_fallback,
						   rts_fbr_preamble_type,
						   fbr_preamble_type,
						   session->ampdu_len, true);
		txh->RTSDurFallback = cpu_to_le16(durid);
		/* set TxFesTimeNormal */
		txh->TxFesTimeNormal = rts->duration;
		/* set fallback rate version of TxFesTimeNormal */
		txh->TxFesTimeFallback = txh->RTSDurFallback;
	}

	/* set flag and plcp for fallback rate */
	if (fbr) {
		mch |= TXC_AMPDU_FBR;
		txh->MacTxControlHigh = cpu_to_le16(mch);
		BRCMS_SET_MIMO_PLCP_AMPDU(plcp);
		BRCMS_SET_MIMO_PLCP_AMPDU(txh->FragPLCPFallback);
	}

	BCMMSG(wlc->wiphy, "wl%d: count %d ampdu_len %d\n",
		wlc->pub->unit, skb_queue_len(&session->skb_list),
		session->ampdu_len);
}

816 817 818 819 820
int
brcms_c_sendampdu(struct ampdu_info *ampdu, struct brcms_txq_info *qi,
	      struct sk_buff **pdu, int prec)
{
	struct brcms_c_info *wlc;
821 822
	struct sk_buff *p;
	struct brcms_ampdu_session session;
823
	int err = 0;
824
	u8 tid;
825

826
	uint count, fifo, seg_cnt = 0;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	struct scb *scb;
	struct scb_ampdu *scb_ampdu;
	struct scb_ampdu_tid_ini *ini;
	struct ieee80211_tx_info *tx_info;
	u16 qlen;
	struct wiphy *wiphy;

	wlc = ampdu->wlc;
	wiphy = wlc->wiphy;
	p = *pdu;

	tid = (u8) (p->priority);

	scb = &wlc->pri_scb;
	scb_ampdu = &scb->scb_ampdu;
	ini = &scb_ampdu->ini[tid];

	/* Let pressure continue to build ... */
	qlen = pktq_plen(&qi->q, prec);
	if (ini->tx_in_transit > 0 &&
	    qlen < min(scb_ampdu->max_pdu, ini->ba_wsize))
		/* Collect multiple MPDU's to be sent in the next AMPDU */
		return -EBUSY;

	/* at this point we intend to transmit an AMPDU */
852 853
	brcms_c_ampdu_reset_session(&session, wlc);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	while (p) {
		struct ieee80211_tx_rate *txrate;

		tx_info = IEEE80211_SKB_CB(p);
		txrate = tx_info->status.rates;

		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
			err = brcms_c_prep_pdu(wlc, p, &fifo);
		} else {
			wiphy_err(wiphy, "%s: AMPDU flag is off!\n", __func__);
			*pdu = NULL;
			err = 0;
			break;
		}

		if (err) {
			if (err == -EBUSY) {
				wiphy_err(wiphy, "wl%d: sendampdu: "
872
					  "prep_xdu retry\n", wlc->pub->unit);
873 874 875 876 877 878
				*pdu = p;
				break;
			}

			/* error in the packet; reject it */
			wiphy_err(wiphy, "wl%d: sendampdu: prep_xdu "
879
				  "rejected\n", wlc->pub->unit);
880 881 882 883
			*pdu = NULL;
			break;
		}

884 885 886 887 888 889 890 891 892 893 894 895 896
		err = brcms_c_ampdu_add_frame(&session, p);
		if (err == -ENOSPC) {
			/*
			 * No space for this packet in the AMPDU.
			 * Requeue packet and proceed;
			 */
			*pdu = p;
			break;
		} else if (err) {
			/* Unexpected error; reject packet */
			wiphy_err(wiphy, "wl%d: sendampdu: add_frame rejected",
				  wlc->pub->unit);
			*pdu = NULL;
897 898 899
			break;
		}

900
		seg_cnt += 1;
901 902 903 904 905 906 907

		/*
		 * check to see if the next pkt is
		 * a candidate for aggregation
		 */
		p = pktq_ppeek(&qi->q, prec);
		if (p) {
908
			tx_info = IEEE80211_SKB_CB(p);
909
			if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
910 911 912 913 914
				/*
				 * check if there are enough
				 * descriptors available
				 */
				if (*wlc->core->txavail[fifo] <= seg_cnt + 1) {
915
					wiphy_err(wiphy, "%s: No fifo space "
916 917 918 919
						  "!!\n", __func__);
					p = NULL;
					continue;
				}
920
				/* next packet fit for aggregation so dequeue */
921 922 923 924 925 926 927
				p = brcmu_pktq_pdeq(&qi->q, prec);
			} else {
				p = NULL;
			}
		}
	}			/* end while(p) */

928
	count = skb_queue_len(&session.skb_list);
929 930 931
	ini->tx_in_transit += count;

	if (count) {
932 933
		/* patch up first and last txh's */
		brcms_c_ampdu_finalize(&session);
934

935 936
		while ((p = skb_dequeue(&session.skb_list)) != NULL)
			brcms_c_txfifo(wlc, fifo, p,
937
				       skb_queue_empty(&session.skb_list));
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	}
	/* endif (count) */
	return err;
}

static void
brcms_c_ampdu_rate_status(struct brcms_c_info *wlc,
			  struct ieee80211_tx_info *tx_info,
			  struct tx_status *txs, u8 mcs)
{
	struct ieee80211_tx_rate *txrate = tx_info->status.rates;
	int i;

	/* clear the rest of the rates */
	for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
		txrate[i].idx = -1;
		txrate[i].count = 0;
	}
}

static void
brcms_c_ampdu_dotxstatus_complete(struct ampdu_info *ampdu, struct scb *scb,
			      struct sk_buff *p, struct tx_status *txs,
			      u32 s1, u32 s2)
{
	struct scb_ampdu *scb_ampdu;
	struct brcms_c_info *wlc = ampdu->wlc;
	struct scb_ampdu_tid_ini *ini;
	u8 bitmap[8], queue, tid;
	struct d11txh *txh;
	u8 *plcp;
	struct ieee80211_hdr *h;
	u16 seq, start_seq = 0, bindex, index, mcl;
	u8 mcs = 0;
	bool ba_recd = false, ack_recd = false;
	u8 suc_mpdu = 0, tot_mpdu = 0;
	uint supr_status;
	bool update_rate = true, retry = true, tx_error = false;
	u16 mimoantsel = 0;
	u8 antselid = 0;
	u8 retry_limit, rr_retry_limit;
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p);
	struct wiphy *wiphy = wlc->wiphy;

J
Joe Perches 已提交
982
#ifdef DEBUG
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	u8 hole[AMPDU_MAX_MPDU];
	memset(hole, 0, sizeof(hole));
#endif

	scb_ampdu = &scb->scb_ampdu;
	tid = (u8) (p->priority);

	ini = &scb_ampdu->ini[tid];
	retry_limit = ampdu->retry_limit_tid[tid];
	rr_retry_limit = ampdu->rr_retry_limit_tid[tid];
	memset(bitmap, 0, sizeof(bitmap));
	queue = txs->frameid & TXFID_QUEUE_MASK;
	supr_status = txs->status & TX_STATUS_SUPR_MASK;

	if (txs->status & TX_STATUS_ACK_RCV) {
		if (TX_STATUS_SUPR_UF == supr_status)
			update_rate = false;

		WARN_ON(!(txs->status & TX_STATUS_INTERMEDIATE));
		start_seq = txs->sequence >> SEQNUM_SHIFT;
		bitmap[0] = (txs->status & TX_STATUS_BA_BMAP03_MASK) >>
		    TX_STATUS_BA_BMAP03_SHIFT;

		WARN_ON(s1 & TX_STATUS_INTERMEDIATE);
		WARN_ON(!(s1 & TX_STATUS_AMPDU));

		bitmap[0] |=
		    (s1 & TX_STATUS_BA_BMAP47_MASK) <<
		    TX_STATUS_BA_BMAP47_SHIFT;
		bitmap[1] = (s1 >> 8) & 0xff;
		bitmap[2] = (s1 >> 16) & 0xff;
		bitmap[3] = (s1 >> 24) & 0xff;

		bitmap[4] = s2 & 0xff;
		bitmap[5] = (s2 >> 8) & 0xff;
		bitmap[6] = (s2 >> 16) & 0xff;
		bitmap[7] = (s2 >> 24) & 0xff;

		ba_recd = true;
	} else {
		if (supr_status) {
			update_rate = false;
			if (supr_status == TX_STATUS_SUPR_BADCH) {
1026 1027
				wiphy_err(wiphy,
					  "%s: Pkt tx suppressed, illegal channel possibly %d\n",
1028 1029 1030 1031
					  __func__, CHSPEC_CHANNEL(
					  wlc->default_bss->chanspec));
			} else {
				if (supr_status != TX_STATUS_SUPR_FRAG)
1032
					wiphy_err(wiphy, "%s: supr_status 0x%x\n",
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
						  __func__, supr_status);
			}
			/* no need to retry for badch; will fail again */
			if (supr_status == TX_STATUS_SUPR_BADCH ||
			    supr_status == TX_STATUS_SUPR_EXPTIME) {
				retry = false;
			} else if (supr_status == TX_STATUS_SUPR_EXPTIME) {
				/* TX underflow:
				 *   try tuning pre-loading or ampdu size
				 */
			} else if (supr_status == TX_STATUS_SUPR_FRAG) {
				/*
				 * if there were underflows, but pre-loading
				 * is not active, notify rate adaptation.
				 */
1048
				if (brcms_c_ffpld_check_txfunfl(wlc, queue) > 0)
1049 1050 1051 1052
					tx_error = true;
			}
		} else if (txs->phyerr) {
			update_rate = false;
1053 1054
			wiphy_err(wiphy, "%s: ampdu tx phy error (0x%x)\n",
				  __func__, txs->phyerr);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

			if (brcm_msg_level & LOG_ERROR_VAL) {
				brcmu_prpkt("txpkt (AMPDU)", p);
				brcms_c_print_txdesc((struct d11txh *) p->data);
			}
			brcms_c_print_txstatus(txs);
		}
	}

	/* loop through all pkts and retry if not acked */
	while (p) {
		tx_info = IEEE80211_SKB_CB(p);
		txh = (struct d11txh *) p->data;
		mcl = le16_to_cpu(txh->MacTxControlLow);
		plcp = (u8 *) (txh + 1);
		h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN);
		seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT;

		if (tot_mpdu == 0) {
			mcs = plcp[0] & MIMO_PLCP_MCS_MASK;
			mimoantsel = le16_to_cpu(txh->ABI_MimoAntSel);
		}

		index = TX_SEQ_TO_INDEX(seq);
		ack_recd = false;
		if (ba_recd) {
			bindex = MODSUB_POW2(seq, start_seq, SEQNUM_MAX);
1082 1083 1084 1085
			BCMMSG(wiphy,
			       "tid %d seq %d, start_seq %d, bindex %d set %d, index %d\n",
			       tid, seq, start_seq, bindex,
			       isset(bitmap, bindex), index);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			/* if acked then clear bit and free packet */
			if ((bindex < AMPDU_TX_BA_MAX_WSIZE)
			    && isset(bitmap, bindex)) {
				ini->tx_in_transit--;
				ini->txretry[index] = 0;

				/*
				 * ampdu_ack_len:
				 *   number of acked aggregated frames
				 */
				/* ampdu_len: number of aggregated frames */
				brcms_c_ampdu_rate_status(wlc, tx_info, txs,
							  mcs);
				tx_info->flags |= IEEE80211_TX_STAT_ACK;
				tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
				tx_info->status.ampdu_ack_len =
					tx_info->status.ampdu_len = 1;

				skb_pull(p, D11_PHY_HDR_LEN);
				skb_pull(p, D11_TXH_LEN);

				ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
							    p);
				ack_recd = true;
				suc_mpdu++;
			}
		}
		/* either retransmit or send bar if ack not recd */
		if (!ack_recd) {
1115
			if (retry && (ini->txretry[index] < (int)retry_limit)) {
1116 1117
				ini->txretry[index]++;
				ini->tx_in_transit--;
1118
				brcms_c_txq_enq(wlc, scb, p);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
			} else {
				/* Retry timeout */
				ini->tx_in_transit--;
				ieee80211_tx_info_clear_status(tx_info);
				tx_info->status.ampdu_ack_len = 0;
				tx_info->status.ampdu_len = 1;
				tx_info->flags |=
				    IEEE80211_TX_STAT_AMPDU_NO_BACK;
				skb_pull(p, D11_PHY_HDR_LEN);
				skb_pull(p, D11_TXH_LEN);
1129 1130 1131
				BCMMSG(wiphy,
				       "BA Timeout, seq %d, in_transit %d\n",
				       seq, ini->tx_in_transit);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
				ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
							    p);
			}
		}
		tot_mpdu++;

		/* break out if last packet of ampdu */
		if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
		    TXC_AMPDU_LAST)
			break;

		p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED);
	}
	brcms_c_send_q(wlc);

	/* update rate state */
	antselid = brcms_c_antsel_antsel2id(wlc->asi, mimoantsel);

1150
	brcms_c_txfifo_complete(wlc, queue);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
}

void
brcms_c_ampdu_dotxstatus(struct ampdu_info *ampdu, struct scb *scb,
		     struct sk_buff *p, struct tx_status *txs)
{
	struct scb_ampdu *scb_ampdu;
	struct brcms_c_info *wlc = ampdu->wlc;
	struct scb_ampdu_tid_ini *ini;
	u32 s1 = 0, s2 = 0;
	struct ieee80211_tx_info *tx_info;

	tx_info = IEEE80211_SKB_CB(p);

	/* BMAC_NOTE: For the split driver, second level txstatus comes later
	 * So if the ACK was received then wait for the second level else just
	 * call the first one
	 */
	if (txs->status & TX_STATUS_ACK_RCV) {
		u8 status_delay = 0;

		/* wait till the next 8 bytes of txstatus is available */
1173 1174
		s1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus));
		while ((s1 & TXS_V) == 0) {
1175 1176 1177 1178
			udelay(1);
			status_delay++;
			if (status_delay > 10)
				return; /* error condition */
1179 1180
			s1 = bcma_read32(wlc->hw->d11core,
					 D11REGOFFS(frmtxstatus));
1181 1182
		}

1183
		s2 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus2));
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	}

	if (scb) {
		scb_ampdu = &scb->scb_ampdu;
		ini = &scb_ampdu->ini[p->priority];
		brcms_c_ampdu_dotxstatus_complete(ampdu, scb, p, txs, s1, s2);
	} else {
		/* loop through all pkts and free */
		u8 queue = txs->frameid & TXFID_QUEUE_MASK;
		struct d11txh *txh;
		u16 mcl;
		while (p) {
			tx_info = IEEE80211_SKB_CB(p);
			txh = (struct d11txh *) p->data;
			mcl = le16_to_cpu(txh->MacTxControlLow);
			brcmu_pkt_buf_free_skb(p);
			/* break out if last packet of ampdu */
			if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
			    TXC_AMPDU_LAST)
				break;
			p = dma_getnexttxp(wlc->hw->di[queue],
					   DMA_RANGE_TRANSMITTED);
		}
1207
		brcms_c_txfifo_complete(wlc, queue);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	}
}

void brcms_c_ampdu_macaddr_upd(struct brcms_c_info *wlc)
{
	char template[T_RAM_ACCESS_SZ * 2];

	/* driver needs to write the ta in the template; ta is at offset 16 */
	memset(template, 0, sizeof(template));
	memcpy(template, wlc->pub->cur_etheraddr, ETH_ALEN);
	brcms_b_write_template_ram(wlc->hw, (T_BA_TPL_BASE + 16),
				  (T_RAM_ACCESS_SZ * 2),
				  template);
}

bool brcms_c_aggregatable(struct brcms_c_info *wlc, u8 tid)
{
	return wlc->ampdu->ini_enable[tid];
}

void brcms_c_ampdu_shm_upd(struct ampdu_info *ampdu)
{
	struct brcms_c_info *wlc = ampdu->wlc;

	/*
	 * Extend ucode internal watchdog timer to
	 * match larger received frames
	 */
	if ((ampdu->rx_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) ==
	    IEEE80211_HT_MAX_AMPDU_64K) {
		brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_MAX);
		brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_MAX);
	} else {
		brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_DEF);
		brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_DEF);
	}
}

/*
 * callback function that helps flushing ampdu packets from a priority queue
 */
static bool cb_del_ampdu_pkt(struct sk_buff *mpdu, void *arg_a)
{
	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(mpdu);
	struct cb_del_ampdu_pars *ampdu_pars =
				 (struct cb_del_ampdu_pars *)arg_a;
	bool rc;

	rc = tx_info->flags & IEEE80211_TX_CTL_AMPDU ? true : false;
1257 1258
	rc = rc && (tx_info->rate_driver_data[0] == NULL || ampdu_pars->sta == NULL ||
		    tx_info->rate_driver_data[0] == ampdu_pars->sta);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	rc = rc && ((u8)(mpdu->priority) == ampdu_pars->tid);
	return rc;
}

/*
 * callback function that helps invalidating ampdu packets in a DMA queue
 */
static void dma_cb_fn_ampdu(void *txi, void *arg_a)
{
	struct ieee80211_sta *sta = arg_a;
	struct ieee80211_tx_info *tx_info = (struct ieee80211_tx_info *)txi;

	if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1272 1273
	    (tx_info->rate_driver_data[0] == sta || sta == NULL))
		tx_info->rate_driver_data[0] = NULL;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

/*
 * When a remote party is no longer available for ampdu communication, any
 * pending tx ampdu packets in the driver have to be flushed.
 */
void brcms_c_ampdu_flush(struct brcms_c_info *wlc,
		     struct ieee80211_sta *sta, u16 tid)
{
	struct brcms_txq_info *qi = wlc->pkt_queue;
	struct pktq *pq = &qi->q;
	int prec;
	struct cb_del_ampdu_pars ampdu_pars;

	ampdu_pars.sta = sta;
	ampdu_pars.tid = tid;
	for (prec = 0; prec < pq->num_prec; prec++)
		brcmu_pktq_pflush(pq, prec, true, cb_del_ampdu_pkt,
			    (void *)&ampdu_pars);
	brcms_c_inval_dma_pkts(wlc->hw, sta, dma_cb_fn_ampdu);
}