fault_64.c 19.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 *  Copyright (C) 1995  Linus Torvalds
 *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h>		/* For unblank_screen() */
#include <linux/compiler.h>
21
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
22
#include <linux/module.h>
23
#include <linux/kprobes.h>
24
#include <linux/uaccess.h>
25
#include <linux/kdebug.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33

#include <asm/system.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm-generic/sections.h>

34 35 36 37 38 39 40 41
/*
 * Page fault error code bits
 *	bit 0 == 0 means no page found, 1 means protection fault
 *	bit 1 == 0 means read, 1 means write
 *	bit 2 == 0 means kernel, 1 means user-mode
 *	bit 3 == 1 means use of reserved bit detected
 *	bit 4 == 1 means fault was an instruction fetch
 */
42
#define PF_PROT		(1<<0)
43
#define PF_WRITE	(1<<1)
44 45
#define PF_USER		(1<<2)
#define PF_RSVD		(1<<3)
46 47
#define PF_INSTR	(1<<4)

48
static inline int notify_page_fault(struct pt_regs *regs)
49
{
50
#ifdef CONFIG_KPROBES
51 52 53 54 55 56 57 58 59
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
60

61 62 63 64
	return ret;
#else
	return 0;
#endif
65
}
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#ifdef CONFIG_X86_32
/*
 * Return EIP plus the CS segment base.  The segment limit is also
 * adjusted, clamped to the kernel/user address space (whichever is
 * appropriate), and returned in *eip_limit.
 *
 * The segment is checked, because it might have been changed by another
 * task between the original faulting instruction and here.
 *
 * If CS is no longer a valid code segment, or if EIP is beyond the
 * limit, or if it is a kernel address when CS is not a kernel segment,
 * then the returned value will be greater than *eip_limit.
 *
 * This is slow, but is very rarely executed.
 */
static inline unsigned long get_segment_eip(struct pt_regs *regs,
					    unsigned long *eip_limit)
{
	unsigned long ip = regs->ip;
	unsigned seg = regs->cs & 0xffff;
	u32 seg_ar, seg_limit, base, *desc;

	/* Unlikely, but must come before segment checks. */
	if (unlikely(regs->flags & VM_MASK)) {
		base = seg << 4;
		*eip_limit = base + 0xffff;
		return base + (ip & 0xffff);
	}

	/* The standard kernel/user address space limit. */
	*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;

	/* By far the most common cases. */
	if (likely(SEGMENT_IS_FLAT_CODE(seg)))
		return ip;

	/* Check the segment exists, is within the current LDT/GDT size,
	   that kernel/user (ring 0..3) has the appropriate privilege,
	   that it's a code segment, and get the limit. */
	__asm__("larl %3,%0; lsll %3,%1"
		 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
	if ((~seg_ar & 0x9800) || ip > seg_limit) {
		*eip_limit = 0;
		return 1;	 /* So that returned ip > *eip_limit. */
	}

	/* Get the GDT/LDT descriptor base.
	   When you look for races in this code remember that
	   LDT and other horrors are only used in user space. */
	if (seg & (1<<2)) {
		/* Must lock the LDT while reading it. */
		mutex_lock(&current->mm->context.lock);
		desc = current->mm->context.ldt;
		desc = (void *)desc + (seg & ~7);
	} else {
		/* Must disable preemption while reading the GDT. */
		desc = (u32 *)get_cpu_gdt_table(get_cpu());
		desc = (void *)desc + (seg & ~7);
	}

	/* Decode the code segment base from the descriptor */
	base = get_desc_base((struct desc_struct *)desc);

	if (seg & (1<<2))
		mutex_unlock(&current->mm->context.lock);
	else
		put_cpu();

	/* Adjust EIP and segment limit, and clamp at the kernel limit.
	   It's legitimate for segments to wrap at 0xffffffff. */
	seg_limit += base;
	if (seg_limit < *eip_limit && seg_limit >= base)
		*eip_limit = seg_limit;
	return ip + base;
}
#endif

/*
 * X86_32
 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 * Check that here and ignore it.
 *
 * X86_64
 * Sometimes the CPU reports invalid exceptions on prefetch.
 * Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner
 */
static int is_prefetch(struct pt_regs *regs, unsigned long addr,
		       unsigned long error_code)
157
{
158
	unsigned char *instr;
L
Linus Torvalds 已提交
159
	int scan_more = 1;
160
	int prefetch = 0;
161
	unsigned char *max_instr;
L
Linus Torvalds 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174
#ifdef CONFIG_X86_32
	unsigned long limit;
	if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
		     boot_cpu_data.x86 >= 6)) {
		/* Catch an obscure case of prefetch inside an NX page. */
		if (nx_enabled && (error_code & PF_INSTR))
			return 0;
	} else {
		return 0;
	}
	instr = (unsigned char *)get_segment_eip(regs, &limit);
#else
L
Linus Torvalds 已提交
175
	/* If it was a exec fault ignore */
176
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
177
		return 0;
178
	instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
179 180
#endif

181
	max_instr = instr + 15;
L
Linus Torvalds 已提交
182

183
#ifdef CONFIG_X86_64
184
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
L
Linus Torvalds 已提交
185
		return 0;
186
#endif
L
Linus Torvalds 已提交
187

188
	while (scan_more && instr < max_instr) {
L
Linus Torvalds 已提交
189 190 191 192
		unsigned char opcode;
		unsigned char instr_hi;
		unsigned char instr_lo;

193 194 195 196
#ifdef CONFIG_X86_32
		if (instr > (unsigned char *)limit)
			break;
#endif
197
		if (probe_kernel_address(instr, opcode))
198
			break;
L
Linus Torvalds 已提交
199

200 201
		instr_hi = opcode & 0xf0;
		instr_lo = opcode & 0x0f;
L
Linus Torvalds 已提交
202 203
		instr++;

204
		switch (instr_hi) {
L
Linus Torvalds 已提交
205 206
		case 0x20:
		case 0x30:
207 208 209 210 211 212
			/*
			 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
			 * In X86_64 long mode, the CPU will signal invalid
			 * opcode if some of these prefixes are present so
			 * X86_64 will never get here anyway
			 */
L
Linus Torvalds 已提交
213 214
			scan_more = ((instr_lo & 7) == 0x6);
			break;
215
#ifdef CONFIG_X86_64
L
Linus Torvalds 已提交
216
		case 0x40:
217 218 219 220 221 222 223
			/*
			 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
			 * Need to figure out under what instruction mode the
			 * instruction was issued. Could check the LDT for lm,
			 * but for now it's good enough to assume that long
			 * mode only uses well known segments or kernel.
			 */
224
			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
L
Linus Torvalds 已提交
225
			break;
226
#endif
L
Linus Torvalds 已提交
227 228 229
		case 0x60:
			/* 0x64 thru 0x67 are valid prefixes in all modes. */
			scan_more = (instr_lo & 0xC) == 0x4;
230
			break;
L
Linus Torvalds 已提交
231
		case 0xF0:
232
			/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
L
Linus Torvalds 已提交
233
			scan_more = !instr_lo || (instr_lo>>1) == 1;
234
			break;
L
Linus Torvalds 已提交
235 236 237
		case 0x00:
			/* Prefetch instruction is 0x0F0D or 0x0F18 */
			scan_more = 0;
238 239 240 241
#ifdef CONFIG_X86_32
			if (instr > (unsigned char *)limit)
				break;
#endif
242
			if (probe_kernel_address(instr, opcode))
L
Linus Torvalds 已提交
243 244 245
				break;
			prefetch = (instr_lo == 0xF) &&
				(opcode == 0x0D || opcode == 0x18);
246
			break;
L
Linus Torvalds 已提交
247 248 249
		default:
			scan_more = 0;
			break;
250
		}
L
Linus Torvalds 已提交
251 252 253 254
	}
	return prefetch;
}

255 256 257 258 259 260 261 262 263 264 265 266
static void force_sig_info_fault(int si_signo, int si_code,
	unsigned long address, struct task_struct *tsk)
{
	siginfo_t info;

	info.si_signo = si_signo;
	info.si_errno = 0;
	info.si_code = si_code;
	info.si_addr = (void __user *)address;
	force_sig_info(si_signo, &info, tsk);
}

267 268
static int bad_address(void *p)
{
L
Linus Torvalds 已提交
269
	unsigned long dummy;
270
	return probe_kernel_address((unsigned long *)p, dummy);
271
}
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279

void dump_pagetable(unsigned long address)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

280
	pgd = (pgd_t *)read_cr3();
L
Linus Torvalds 已提交
281

282
	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
L
Linus Torvalds 已提交
283 284
	pgd += pgd_index(address);
	if (bad_address(pgd)) goto bad;
285
	printk("PGD %lx ", pgd_val(*pgd));
286
	if (!pgd_present(*pgd)) goto ret;
L
Linus Torvalds 已提交
287

288
	pud = pud_offset(pgd, address);
L
Linus Torvalds 已提交
289 290 291 292 293 294 295
	if (bad_address(pud)) goto bad;
	printk("PUD %lx ", pud_val(*pud));
	if (!pud_present(*pud))	goto ret;

	pmd = pmd_offset(pud, address);
	if (bad_address(pmd)) goto bad;
	printk("PMD %lx ", pmd_val(*pmd));
296
	if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
L
Linus Torvalds 已提交
297 298 299

	pte = pte_offset_kernel(pmd, address);
	if (bad_address(pte)) goto bad;
300
	printk("PTE %lx", pte_val(*pte));
L
Linus Torvalds 已提交
301 302 303 304 305 306 307
ret:
	printk("\n");
	return;
bad:
	printk("BAD\n");
}

308
#ifdef CONFIG_X86_64
309
static const char errata93_warning[] =
L
Linus Torvalds 已提交
310 311 312 313 314 315 316
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
KERN_ERR "******* Please consider a BIOS update.\n"
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";

/* Workaround for K8 erratum #93 & buggy BIOS.
   BIOS SMM functions are required to use a specific workaround
317 318
   to avoid corruption of the 64bit RIP register on C stepping K8.
   A lot of BIOS that didn't get tested properly miss this.
L
Linus Torvalds 已提交
319 320 321 322
   The OS sees this as a page fault with the upper 32bits of RIP cleared.
   Try to work around it here.
   Note we only handle faults in kernel here. */

323
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
324 325
{
	static int warned;
326
	if (address != regs->ip)
L
Linus Torvalds 已提交
327
		return 0;
328
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
329 330
		return 0;
	address |= 0xffffffffUL << 32;
331 332
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
L
Linus Torvalds 已提交
333
		if (!warned) {
334
			printk(errata93_warning);
L
Linus Torvalds 已提交
335 336
			warned = 1;
		}
337
		regs->ip = address;
L
Linus Torvalds 已提交
338 339 340
		return 1;
	}
	return 0;
341
}
342
#endif
L
Linus Torvalds 已提交
343 344 345 346

static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
				 unsigned long error_code)
{
347
	unsigned long flags = oops_begin();
348
	struct task_struct *tsk;
349

L
Linus Torvalds 已提交
350 351 352
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
	       current->comm, address);
	dump_pagetable(address);
353 354 355 356
	tsk = current;
	tsk->thread.cr2 = address;
	tsk->thread.trap_no = 14;
	tsk->thread.error_code = error_code;
357 358 359
	if (__die("Bad pagetable", regs, error_code))
		regs = NULL;
	oops_end(flags, regs, SIGKILL);
L
Linus Torvalds 已提交
360 361 362
}

/*
363
 * Handle a fault on the vmalloc area
364 365
 *
 * This assumes no large pages in there.
L
Linus Torvalds 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
 */
static int vmalloc_fault(unsigned long address)
{
	pgd_t *pgd, *pgd_ref;
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Copy kernel mappings over when needed. This can also
	   happen within a race in page table update. In the later
	   case just flush. */

	pgd = pgd_offset(current->mm ?: &init_mm, address);
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;
	if (pgd_none(*pgd))
		set_pgd(pgd, *pgd_ref);
384
	else
385
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393

	/* Below here mismatches are bugs because these lower tables
	   are shared */

	pud = pud_offset(pgd, address);
	pud_ref = pud_offset(pgd_ref, address);
	if (pud_none(*pud_ref))
		return -1;
394
	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403 404 405
		BUG();
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;
	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
		BUG();
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;
	pte = pte_offset_kernel(pmd, address);
406 407 408 409
	/* Don't use pte_page here, because the mappings can point
	   outside mem_map, and the NUMA hash lookup cannot handle
	   that. */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
L
Linus Torvalds 已提交
410 411 412 413
		BUG();
	return 0;
}

414
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
415 416 417 418 419 420

/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
421 422
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
					unsigned long error_code)
L
Linus Torvalds 已提交
423 424 425
{
	struct task_struct *tsk;
	struct mm_struct *mm;
426
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
427
	unsigned long address;
N
Nick Piggin 已提交
428
	int write, fault;
429
	unsigned long flags;
430
	int si_code;
L
Linus Torvalds 已提交
431

P
Peter Zijlstra 已提交
432 433 434 435 436
	/*
	 * We can fault from pretty much anywhere, with unknown IRQ state.
	 */
	trace_hardirqs_fixup();

437 438 439 440
	tsk = current;
	mm = tsk->mm;
	prefetchw(&mm->mmap_sem);

L
Linus Torvalds 已提交
441
	/* get the address */
442
	address = read_cr2();
L
Linus Torvalds 已提交
443

444
	si_code = SEGV_MAPERR;
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457


	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
458
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
459
	 */
460
	if (unlikely(address >= TASK_SIZE64)) {
461 462 463 464 465
		/*
		 * Don't check for the module range here: its PML4
		 * is always initialized because it's shared with the main
		 * kernel text. Only vmalloc may need PML4 syncups.
		 */
466
		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
467
		      ((address >= VMALLOC_START && address < VMALLOC_END))) {
468 469
			if (vmalloc_fault(address) >= 0)
				return;
L
Linus Torvalds 已提交
470
		}
471
		if (notify_page_fault(regs))
472
			return;
L
Linus Torvalds 已提交
473 474 475 476 477 478 479
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
		 * fault we could otherwise deadlock.
		 */
		goto bad_area_nosemaphore;
	}

480
	if (notify_page_fault(regs))
481 482
		return;

483
	if (likely(regs->flags & X86_EFLAGS_IF))
484 485
		local_irq_enable();

486
	if (unlikely(error_code & PF_RSVD))
L
Linus Torvalds 已提交
487 488 489
		pgtable_bad(address, regs, error_code);

	/*
490 491
	 * If we're in an interrupt, have no user context or are running in an
	 * atomic region then we must not take the fault.
L
Linus Torvalds 已提交
492 493 494 495
	 */
	if (unlikely(in_atomic() || !mm))
		goto bad_area_nosemaphore;

496 497 498 499 500 501 502
	/*
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet.
	 */
	if (user_mode_vm(regs))
		error_code |= PF_USER;

L
Linus Torvalds 已提交
503 504 505
 again:
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
S
Simon Arlott 已提交
506
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
A
Adrian Bunk 已提交
507
	 * erroneous fault occurring in a code path which already holds mmap_sem
L
Linus Torvalds 已提交
508 509 510 511 512 513
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
S
Simon Arlott 已提交
514
	 * the source reference check when there is a possibility of a deadlock.
L
Linus Torvalds 已提交
515 516 517 518 519
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
520
		if ((error_code & PF_USER) == 0 &&
521
		    !search_exception_tables(regs->ip))
L
Linus Torvalds 已提交
522 523 524 525 526 527 528 529 530 531 532
			goto bad_area_nosemaphore;
		down_read(&mm->mmap_sem);
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (likely(vma->vm_start <= address))
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
533
	if (error_code & PF_USER) {
534 535 536
		/* Allow userspace just enough access below the stack pointer
		 * to let the 'enter' instruction work.
		 */
537
		if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;
/*
 * Ok, we have a good vm_area for this memory access, so
 * we can handle it..
 */
good_area:
547
	si_code = SEGV_ACCERR;
L
Linus Torvalds 已提交
548
	write = 0;
549
	switch (error_code & (PF_PROT|PF_WRITE)) {
550 551 552 553 554 555 556 557 558 559 560
	default:	/* 3: write, present */
		/* fall through */
	case PF_WRITE:		/* write, not present */
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
		write++;
		break;
	case PF_PROT:		/* read, present */
		goto bad_area;
	case 0:			/* read, not present */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568
			goto bad_area;
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
N
Nick Piggin 已提交
569 570 571 572 573 574 575
	fault = handle_mm_fault(mm, vma, address, write);
	if (unlikely(fault & VM_FAULT_ERROR)) {
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGBUS)
			goto do_sigbus;
		BUG();
L
Linus Torvalds 已提交
576
	}
N
Nick Piggin 已提交
577 578 579 580
	if (fault & VM_FAULT_MAJOR)
		tsk->maj_flt++;
	else
		tsk->min_flt++;
L
Linus Torvalds 已提交
581 582 583 584 585 586 587 588 589 590 591 592
	up_read(&mm->mmap_sem);
	return;

/*
 * Something tried to access memory that isn't in our memory map..
 * Fix it, but check if it's kernel or user first..
 */
bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses just cause a SIGSEGV */
593
	if (error_code & PF_USER) {
594 595 596 597 598 599

		/*
		 * It's possible to have interrupts off here.
		 */
		local_irq_enable();

L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612
		if (is_prefetch(regs, address, error_code))
			return;

		/* Work around K8 erratum #100 K8 in compat mode
		   occasionally jumps to illegal addresses >4GB.  We
		   catch this here in the page fault handler because
		   these addresses are not reachable. Just detect this
		   case and return.  Any code segment in LDT is
		   compatibility mode. */
		if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
		    (address >> 32))
			return;

613 614
		if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
		    printk_ratelimit()) {
L
Linus Torvalds 已提交
615
			printk(
616
		       "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx\n",
L
Linus Torvalds 已提交
617
					tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
618 619
					tsk->comm, tsk->pid, address, regs->ip,
					regs->sp, error_code);
L
Linus Torvalds 已提交
620
		}
621

L
Linus Torvalds 已提交
622 623 624 625
		tsk->thread.cr2 = address;
		/* Kernel addresses are always protection faults */
		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
		tsk->thread.trap_no = 14;
626 627

		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
L
Linus Torvalds 已提交
628 629 630 631 632
		return;
	}

no_context:
	/* Are we prepared to handle this kernel fault?  */
633
	if (fixup_exception(regs))
L
Linus Torvalds 已提交
634 635
		return;

636
	/*
L
Linus Torvalds 已提交
637 638 639
	 * Hall of shame of CPU/BIOS bugs.
	 */

640 641
	if (is_prefetch(regs, address, error_code))
		return;
L
Linus Torvalds 已提交
642 643

	if (is_errata93(regs, address))
644
		return;
L
Linus Torvalds 已提交
645 646 647 648 649 650

/*
 * Oops. The kernel tried to access some bad page. We'll have to
 * terminate things with extreme prejudice.
 */

651
	flags = oops_begin();
L
Linus Torvalds 已提交
652 653 654 655 656

	if (address < PAGE_SIZE)
		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
	else
		printk(KERN_ALERT "Unable to handle kernel paging request");
657
	printk(" at %016lx RIP: \n" KERN_ALERT, address);
658
	printk_address(regs->ip);
L
Linus Torvalds 已提交
659
	dump_pagetable(address);
660 661 662
	tsk->thread.cr2 = address;
	tsk->thread.trap_no = 14;
	tsk->thread.error_code = error_code;
663 664
	if (__die("Oops", regs, error_code))
		regs = NULL;
L
Linus Torvalds 已提交
665 666
	/* Executive summary in case the body of the oops scrolled away */
	printk(KERN_EMERG "CR2: %016lx\n", address);
667
	oops_end(flags, regs, SIGKILL);
L
Linus Torvalds 已提交
668 669 670 671 672 673 674

/*
 * We ran out of memory, or some other thing happened to us that made
 * us unable to handle the page fault gracefully.
 */
out_of_memory:
	up_read(&mm->mmap_sem);
675
	if (is_global_init(current)) {
L
Linus Torvalds 已提交
676 677 678 679
		yield();
		goto again;
	}
	printk("VM: killing process %s\n", tsk->comm);
680
	if (error_code & PF_USER)
681
		do_group_exit(SIGKILL);
L
Linus Torvalds 已提交
682 683 684 685 686 687
	goto no_context;

do_sigbus:
	up_read(&mm->mmap_sem);

	/* Kernel mode? Handle exceptions or die */
688
	if (!(error_code & PF_USER))
L
Linus Torvalds 已提交
689 690 691 692 693
		goto no_context;

	tsk->thread.cr2 = address;
	tsk->thread.error_code = error_code;
	tsk->thread.trap_no = 14;
694
	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
L
Linus Torvalds 已提交
695 696
	return;
}
697

698
DEFINE_SPINLOCK(pgd_lock);
699
LIST_HEAD(pgd_list);
700 701 702

void vmalloc_sync_all(void)
{
703
	/* Note that races in the updates of insync and start aren't
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	   problematic:
	   insync can only get set bits added, and updates to start are only
	   improving performance (without affecting correctness if undone). */
	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
	static unsigned long start = VMALLOC_START & PGDIR_MASK;
	unsigned long address;

	for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
		if (!test_bit(pgd_index(address), insync)) {
			const pgd_t *pgd_ref = pgd_offset_k(address);
			struct page *page;

			if (pgd_none(*pgd_ref))
				continue;
			spin_lock(&pgd_lock);
719
			list_for_each_entry(page, &pgd_list, lru) {
720 721 722 723 724
				pgd_t *pgd;
				pgd = (pgd_t *)page_address(page) + pgd_index(address);
				if (pgd_none(*pgd))
					set_pgd(pgd, *pgd_ref);
				else
725
					BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
726 727 728 729 730 731 732 733 734
			}
			spin_unlock(&pgd_lock);
			set_bit(pgd_index(address), insync);
		}
		if (address == start)
			start = address + PGDIR_SIZE;
	}
	/* Check that there is no need to do the same for the modules area. */
	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
735
	BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
736 737
				(__START_KERNEL & PGDIR_MASK)));
}