memcontrol.c 14.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/page-flags.h>
25
#include <linux/backing-dev.h>
26 27
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
28 29 30
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
B
Balbir Singh 已提交
31

32 33
#include <asm/uaccess.h>

B
Balbir Singh 已提交
34
struct cgroup_subsys mem_cgroup_subsys;
35
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
36 37 38 39 40 41 42 43

/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 45 46
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
47 48 49 50 51 52 53
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
54 55 56 57 58 59 60
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 * TODO: Consider making these lists per zone
	 */
	struct list_head active_list;
	struct list_head inactive_list;
61 62 63 64
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t lru_lock;
65
	unsigned long control_type;	/* control RSS or RSS+Pagecache */
B
Balbir Singh 已提交
66 67
};

68 69 70 71 72 73 74 75
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

B
Balbir Singh 已提交
76 77 78 79 80 81 82 83
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
84 85
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
B
Balbir Singh 已提交
86 87
};

88 89 90 91 92 93 94 95 96
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
97 98 99 100 101 102 103 104 105

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

127 128 129 130 131 132
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

133 134
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
135 136 137 138 139 140 141 142 143 144 145
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
146 147 148 149
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
150 151 152 153
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

154
static void __always_inline lock_page_cgroup(struct page *page)
155 156 157 158 159
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

160
static void __always_inline unlock_page_cgroup(struct page *page)
161 162 163 164
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

165
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
{
	if (active)
		list_move(&pc->lru, &pc->mem_cgroup->active_list);
	else
		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
}

/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
	struct mem_cgroup *mem;
	if (!pc)
		return;

	mem = pc->mem_cgroup;

	spin_lock(&mem->lru_lock);
	__mem_cgroup_move_lists(pc, active);
	spin_unlock(&mem->lru_lock);
}

unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
	struct page_cgroup *pc;

	if (active)
		src = &mem_cont->active_list;
	else
		src = &mem_cont->inactive_list;

	spin_lock(&mem_cont->lru_lock);
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
		pc = list_entry(src->prev, struct page_cgroup, lru);
		page = pc->page;
		VM_BUG_ON(!pc);

		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			scan--;
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			scan--;
			continue;
		}

		/*
		 * Reclaim, per zone
		 * TODO: make the active/inactive lists per zone
		 */
		if (page_zone(page) != z)
			continue;

		/*
		 * Check if the meta page went away from under us
		 */
		if (!list_empty(&pc->lru))
			list_move(&pc->lru, &pc_list);
		else
			continue;

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
	spin_unlock(&mem_cont->lru_lock);

	*scanned = scan;
	return nr_taken;
}

253 254 255 256 257 258
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
259 260
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
261 262 263
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc, *race_pc;
264 265
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
266 267 268 269 270 271 272 273

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
274
retry:
275 276 277 278 279 280
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	/*
	 * The page_cgroup exists and the page has already been accounted
	 */
	if (pc) {
281 282 283 284 285 286 287
		if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
			/* this page is under being uncharged ? */
			unlock_page_cgroup(page);
			cpu_relax();
			goto retry;
		} else
			goto done;
288 289 290 291
	}

	unlock_page_cgroup(page);

292
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	if (pc == NULL)
		goto err;

	rcu_read_lock();
	/*
	 * We always charge the cgroup the mm_struct belongs to
	 * the mm_struct's mem_cgroup changes on task migration if the
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
318
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
319 320 321 322 323 324 325 326
		bool is_atomic = gfp_mask & GFP_ATOMIC;
		/*
		 * We cannot reclaim under GFP_ATOMIC, fail the charge
		 */
		if (is_atomic)
			goto noreclaim;

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
			/*
			 * Since we control both RSS and cache, we end up with a
			 * very interesting scenario where we end up reclaiming
			 * memory (essentially RSS), since the memory is pushed
			 * to swap cache, we eventually end up adding those
			 * pages back to our list. Hence we give ourselves a
			 * few chances before we fail
			 */
		else if (nr_retries--) {
			congestion_wait(WRITE, HZ/10);
			continue;
		}
350
noreclaim:
351
		css_put(&mem->css);
352 353
		if (!is_atomic)
			mem_cgroup_out_of_memory(mem, GFP_KERNEL);
354 355 356 357 358 359 360 361 362 363 364 365
		goto free_pc;
	}

	lock_page_cgroup(page);
	/*
	 * Check if somebody else beat us to allocating the page_cgroup
	 */
	race_pc = page_get_page_cgroup(page);
	if (race_pc) {
		kfree(pc);
		pc = race_pc;
		atomic_inc(&pc->ref_cnt);
366
		res_counter_uncharge(&mem->res, PAGE_SIZE);
367 368 369 370 371 372 373 374 375
		css_put(&mem->css);
		goto done;
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
	page_assign_page_cgroup(page, pc);

376 377 378 379
	spin_lock_irqsave(&mem->lru_lock, flags);
	list_add(&pc->lru, &mem->active_list);
	spin_unlock_irqrestore(&mem->lru_lock, flags);

380 381 382 383 384 385 386 387 388
done:
	unlock_page_cgroup(page);
	return 0;
free_pc:
	kfree(pc);
err:
	return -ENOMEM;
}

389 390 391
/*
 * See if the cached pages should be charged at all?
 */
392 393
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
394 395 396 397 398 399 400
{
	struct mem_cgroup *mem;
	if (!mm)
		mm = &init_mm;

	mem = rcu_dereference(mm->mem_cgroup);
	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
401
		return mem_cgroup_charge(page, mm, gfp_mask);
402 403 404 405
	else
		return 0;
}

406 407 408 409 410 411 412 413
/*
 * Uncharging is always a welcome operation, we never complain, simply
 * uncharge.
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
	struct page *page;
414
	unsigned long flags;
415

416 417 418 419
	/*
	 * This can handle cases when a page is not charged at all and we
	 * are switching between handling the control_type.
	 */
420 421 422 423 424 425 426 427 428 429
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
		lock_page_cgroup(page);
		mem = pc->mem_cgroup;
		css_put(&mem->css);
		page_assign_page_cgroup(page, NULL);
		unlock_page_cgroup(page);
430
		res_counter_uncharge(&mem->res, PAGE_SIZE);
431 432 433 434

 		spin_lock_irqsave(&mem->lru_lock, flags);
 		list_del_init(&pc->lru);
 		spin_unlock_irqrestore(&mem->lru_lock, flags);
435 436
		kfree(pc);
	}
437 438
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
455 456
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
457 458
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
459 460 461 462 463 464 465
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
466 467
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
468 469
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static ssize_t mem_control_type_write(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			const char __user *userbuf,
			size_t nbytes, loff_t *pos)
{
	int ret;
	char *buf, *end;
	unsigned long tmp;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	ret = -ENOMEM;
	if (buf == NULL)
		goto out;

	buf[nbytes] = 0;
	ret = -EFAULT;
	if (copy_from_user(buf, userbuf, nbytes))
		goto out_free;

	ret = -EINVAL;
	tmp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto out_free;

	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
		goto out_free;

	mem->control_type = tmp;
	ret = nbytes;
out_free:
	kfree(buf);
out:
	return ret;
}

static ssize_t mem_control_type_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long val;
	char buf[64], *s;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	s = buf;
	val = mem->control_type;
	s += sprintf(s, "%lu\n", val);
	return simple_read_from_buffer((void __user *)userbuf, nbytes,
			ppos, buf, s - buf);
}

B
Balbir Singh 已提交
524 525
static struct cftype mem_cgroup_files[] = {
	{
526
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
527 528 529 530
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
531
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
532 533 534 535 536 537 538 539 540
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
541 542 543 544 545
	{
		.name = "control_type",
		.write = mem_control_type_write,
		.read = mem_control_type_read,
	},
B
Balbir Singh 已提交
546 547
};

548 549
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
550 551 552 553 554
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;

555 556 557 558 559 560 561 562
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
B
Balbir Singh 已提交
563 564

	res_counter_init(&mem->res);
565 566
	INIT_LIST_HEAD(&mem->active_list);
	INIT_LIST_HEAD(&mem->inactive_list);
567
	spin_lock_init(&mem->lru_lock);
568
	mem->control_type = MEM_CGROUP_TYPE_ALL;
B
Balbir Singh 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	return &mem->css;
}

static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
619 620 621 622 623 624
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
625
	.attach = mem_cgroup_move_task,
626
	.early_init = 1,
B
Balbir Singh 已提交
627
};