perf_counter.c 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Performance counter support - powerpc architecture code
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/perf_counter.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
18
#include <asm/machdep.h>
19
#include <asm/firmware.h>
20 21 22 23 24 25

struct cpu_hw_counters {
	int n_counters;
	int n_percpu;
	int disabled;
	int n_added;
26 27
	int n_limited;
	u8  pmcs_enabled;
28 29
	struct perf_counter *counter[MAX_HWCOUNTERS];
	unsigned int events[MAX_HWCOUNTERS];
30
	unsigned int flags[MAX_HWCOUNTERS];
31
	u64 mmcr[3];
32 33
	struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
34 35 36 37 38
};
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);

struct power_pmu *ppmu;

39 40 41 42 43 44 45 46 47
/*
 * Normally, to ignore kernel events we set the FCS (freeze counters
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
static unsigned int freeze_counters_kernel = MMCR0_FCS;

48 49
static void perf_counter_interrupt(struct pt_regs *regs);

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
void perf_counter_print_debug(void)
{
}

/*
 * Read one performance monitor counter (PMC).
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
 * The feasible set is returned in event[].
 */
134 135
static int power_check_constraints(unsigned int event[], unsigned int cflags[],
				   int n_ev)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
{
	u64 mask, value, nv;
	unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
	u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
	int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
	int i, j;
	u64 addf = ppmu->add_fields;
	u64 tadd = ppmu->test_adder;

	if (n_ev > ppmu->n_counter)
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
152 153 154 155 156 157
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
		    && !ppmu->limited_pmc_event(event[i])) {
			ppmu->get_alternatives(event[i], cflags[i],
					       alternatives[i]);
			event[i] = alternatives[i][0];
		}
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		if (ppmu->get_constraint(event[i], &amasks[i][0],
					 &avalues[i][0]))
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
		nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
		if ((((nv + tadd) ^ value) & mask) != 0 ||
		    (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
			break;
		value = nv;
		mask |= amasks[i][0];
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
178 179 180
		choice[i] = 0;
		n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
						  alternatives[i]);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		for (j = 1; j < n_alt[i]; ++j)
			ppmu->get_constraint(alternatives[i][j],
					     &amasks[i][j], &avalues[i][j]);
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
		 * See if any alternative k for event i,
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
			nv = (value | avalues[i][j]) +
				(value & avalues[i][j] & addf);
			if ((((nv + tadd) ^ value) & mask) == 0 &&
			    (((nv + tadd) ^ avalues[i][j])
			     & amasks[i][j]) == 0)
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
			 * to event i-1 and continue enumerating its
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
			 * Found a feasible alternative for event i,
			 * remember where we got up to with this event,
			 * go on to the next event, and start with
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
			mask |= amasks[i][j];
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
		event[i] = alternatives[i][choice[i]];
	return 0;
}

240 241 242 243 244
/*
 * Check if newly-added counters have consistent settings for
 * exclude_{user,kernel,hv} with each other and any previously
 * added counters.
 */
245 246
static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
			  int n_prev, int n_new)
247
{
248 249
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
250 251 252 253 254 255
	struct perf_counter *counter;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

256 257 258 259 260 261
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
262
		counter = ctrs[i];
263 264 265 266 267 268 269 270
		if (first) {
			eu = counter->hw_event.exclude_user;
			ek = counter->hw_event.exclude_kernel;
			eh = counter->hw_event.exclude_hv;
			first = 0;
		} else if (counter->hw_event.exclude_user != eu ||
			   counter->hw_event.exclude_kernel != ek ||
			   counter->hw_event.exclude_hv != eh) {
271
			return -EAGAIN;
272
		}
273
	}
274 275 276 277 278 279

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

280 281 282
	return 0;
}

283
static void power_pmu_read(struct perf_counter *counter)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
{
	long val, delta, prev;

	if (!counter->hw.idx)
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
		prev = atomic64_read(&counter->hw.prev_count);
		barrier();
		val = read_pmc(counter->hw.idx);
	} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);

	/* The counters are only 32 bits wide */
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &counter->hw.period_left);
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
 * us if `counter' is using such a PMC.
 */
static int is_limited_pmc(int pmcnum)
{
	return ppmu->limited_pmc5_6 && (pmcnum == 5 || pmcnum == 6);
}

static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
				    unsigned long pmc5, unsigned long pmc6)
{
	struct perf_counter *counter;
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		counter = cpuhw->limited_counter[i];
		if (!counter->hw.idx)
			continue;
		val = (counter->hw.idx == 5) ? pmc5 : pmc6;
		prev = atomic64_read(&counter->hw.prev_count);
		counter->hw.idx = 0;
		delta = (val - prev) & 0xfffffffful;
		atomic64_add(delta, &counter->count);
	}
}

static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
				  unsigned long pmc5, unsigned long pmc6)
{
	struct perf_counter *counter;
	u64 val;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
		counter = cpuhw->limited_counter[i];
		counter->hw.idx = cpuhw->limited_hwidx[i];
		val = (counter->hw.idx == 5) ? pmc5 : pmc6;
		atomic64_set(&counter->hw.prev_count, val);
		perf_counter_update_userpage(counter);
	}
}

/*
 * Since limited counters don't respect the freeze conditions, we
 * have to read them immediately after freezing or unfreezing the
 * other counters.  We try to keep the values from the limited
 * counters as consistent as possible by keeping the delay (in
 * cycles and instructions) between freezing/unfreezing and reading
 * the limited counters as small and consistent as possible.
 * Therefore, if any limited counters are in use, we read them
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
		     : "r" (mmcr0), "i" (SPRN_MMCR0),
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
		freeze_limited_counters(cpuhw, pmc5, pmc6);
	else
		thaw_limited_counters(cpuhw, pmc5, pmc6);
}

385 386 387 388
/*
 * Disable all counters to prevent PMU interrupts and to allow
 * counters to be added or removed.
 */
389
void hw_perf_disable(void)
390 391 392 393 394 395 396 397 398 399 400 401 402
{
	struct cpu_hw_counters *cpuhw;
	unsigned long ret;
	unsigned long flags;

	local_irq_save(flags);
	cpuhw = &__get_cpu_var(cpu_hw_counters);

	ret = cpuhw->disabled;
	if (!ret) {
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

403 404 405 406 407 408 409 410 411
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
			if (ppc_md.enable_pmcs)
				ppc_md.enable_pmcs();
			cpuhw->pmcs_enabled = 1;
		}

412 413 414 415 416 417 418 419 420
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

421 422 423 424 425 426
		/*
		 * Set the 'freeze counters' bit.
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the counters
		 * before we return.
		 */
427
		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
428 429 430 431 432 433 434 435 436 437
		mb();
	}
	local_irq_restore(flags);
}

/*
 * Re-enable all counters if disable == 0.
 * If we were previously disabled and counters were added, then
 * put the new config on the PMU.
 */
438
void hw_perf_enable(void)
439 440 441 442 443 444 445 446
{
	struct perf_counter *counter;
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
	unsigned int hwc_index[MAX_HWCOUNTERS];
447 448
	int n_lim;
	int idx;
449 450

	local_irq_save(flags);
451 452 453 454 455
	if (!cpuhw->disabled) {
		local_irq_restore(flags);
		return;
	}

456 457 458 459 460 461 462 463 464 465
	cpuhw = &__get_cpu_var(cpu_hw_counters);
	cpuhw->disabled = 0;

	/*
	 * If we didn't change anything, or only removed counters,
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
	 * (possibly updated for removal of counters).
	 */
	if (!cpuhw->n_added) {
466
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
467
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
468 469
		if (cpuhw->n_counters == 0)
			get_lppaca()->pmcregs_in_use = 0;
470
		goto out_enable;
471 472 473 474 475 476 477 478 479 480 481 482
	}

	/*
	 * Compute MMCR* values for the new set of counters
	 */
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

483 484 485 486 487 488 489 490 491 492
	/*
	 * Add in MMCR0 freeze bits corresponding to the
	 * hw_event.exclude_* bits for the first counter.
	 * We have already checked that all counters have the
	 * same values for these bits as the first counter.
	 */
	counter = cpuhw->counter[0];
	if (counter->hw_event.exclude_user)
		cpuhw->mmcr[0] |= MMCR0_FCP;
	if (counter->hw_event.exclude_kernel)
493
		cpuhw->mmcr[0] |= freeze_counters_kernel;
494 495 496
	if (counter->hw_event.exclude_hv)
		cpuhw->mmcr[0] |= MMCR0_FCHV;

497 498 499 500 501
	/*
	 * Write the new configuration to MMCR* with the freeze
	 * bit set and set the hardware counters to their initial values.
	 * Then unfreeze the counters.
	 */
502
	get_lppaca()->pmcregs_in_use = 1;
503
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
504 505 506 507 508 509 510 511 512 513 514
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
	 * Read off any pre-existing counters that need to move
	 * to another PMC.
	 */
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
515
			power_pmu_read(counter);
516 517 518 519 520 521 522 523
			write_pmc(counter->hw.idx, 0);
			counter->hw.idx = 0;
		}
	}

	/*
	 * Initialize the PMCs for all the new and moved counters.
	 */
524
	cpuhw->n_limited = n_lim = 0;
525 526 527 528
	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
		if (counter->hw.idx)
			continue;
529 530 531 532 533 534 535
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
			cpuhw->limited_counter[n_lim] = counter;
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
536
		val = 0;
537
		if (counter->hw.irq_period) {
538 539 540 541 542
			left = atomic64_read(&counter->hw.period_left);
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
		atomic64_set(&counter->hw.prev_count, val);
543 544
		counter->hw.idx = idx;
		write_pmc(idx, val);
545
		perf_counter_update_userpage(counter);
546
	}
547
	cpuhw->n_limited = n_lim;
548
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
549 550 551

 out_enable:
	mb();
552
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
553

554 555 556 557 558 559 560 561
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

562 563 564 565 566
 out:
	local_irq_restore(flags);
}

static int collect_events(struct perf_counter *group, int max_count,
567 568
			  struct perf_counter *ctrs[], unsigned int *events,
			  unsigned int *flags)
569 570 571 572 573 574 575 576
{
	int n = 0;
	struct perf_counter *counter;

	if (!is_software_counter(group)) {
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
577
		flags[n] = group->hw.counter_base;
578 579 580 581 582 583 584 585
		events[n++] = group->hw.config;
	}
	list_for_each_entry(counter, &group->sibling_list, list_entry) {
		if (!is_software_counter(counter) &&
		    counter->state != PERF_COUNTER_STATE_OFF) {
			if (n >= max_count)
				return -1;
			ctrs[n] = counter;
586
			flags[n] = counter->hw.counter_base;
587 588 589 590 591 592 593 594 595 596
			events[n++] = counter->hw.config;
		}
	}
	return n;
}

static void counter_sched_in(struct perf_counter *counter, int cpu)
{
	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;
P
Paul Mackerras 已提交
597
	counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
598
	if (is_software_counter(counter))
599
		counter->pmu->enable(counter);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
}

/*
 * Called to enable a whole group of counters.
 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
 * Assumes the caller has disabled interrupts and has
 * frozen the PMU with hw_perf_save_disable.
 */
int hw_perf_group_sched_in(struct perf_counter *group_leader,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	struct cpu_hw_counters *cpuhw;
	long i, n, n0;
	struct perf_counter *sub;

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	n = collect_events(group_leader, ppmu->n_counter - n0,
619 620
			   &cpuhw->counter[n0], &cpuhw->events[n0],
			   &cpuhw->flags[n0]);
621 622
	if (n < 0)
		return -EAGAIN;
623
	if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
624
		return -EAGAIN;
625 626
	i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
	if (i < 0)
627 628 629 630 631 632 633 634 635 636
		return -EAGAIN;
	cpuhw->n_counters = n0 + n;
	cpuhw->n_added += n;

	/*
	 * OK, this group can go on; update counter states etc.,
	 * and enable any software counters
	 */
	for (i = n0; i < n0 + n; ++i)
		cpuhw->counter[i]->hw.config = cpuhw->events[i];
637
	cpuctx->active_oncpu += n;
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	n = 1;
	counter_sched_in(group_leader, cpu);
	list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
		if (sub->state != PERF_COUNTER_STATE_OFF) {
			counter_sched_in(sub, cpu);
			++n;
		}
	}
	ctx->nr_active += n;

	return 1;
}

/*
 * Add a counter to the PMU.
 * If all counters are not already frozen, then we disable and
654
 * re-enable the PMU in order to get hw_perf_enable to do the
655 656
 * actual work of reconfiguring the PMU.
 */
657
static int power_pmu_enable(struct perf_counter *counter)
658 659 660 661 662 663 664
{
	struct cpu_hw_counters *cpuhw;
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
665
	perf_disable();
666 667 668 669 670 671 672 673 674 675 676

	/*
	 * Add the counter to the list (if there is room)
	 * and check whether the total set is still feasible.
	 */
	cpuhw = &__get_cpu_var(cpu_hw_counters);
	n0 = cpuhw->n_counters;
	if (n0 >= ppmu->n_counter)
		goto out;
	cpuhw->counter[n0] = counter;
	cpuhw->events[n0] = counter->hw.config;
677 678
	cpuhw->flags[n0] = counter->hw.counter_base;
	if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
679
		goto out;
680
	if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
681 682 683 684 685 686 687 688
		goto out;

	counter->hw.config = cpuhw->events[n0];
	++cpuhw->n_counters;
	++cpuhw->n_added;

	ret = 0;
 out:
689
	perf_enable();
690 691 692 693 694 695 696
	local_irq_restore(flags);
	return ret;
}

/*
 * Remove a counter from the PMU.
 */
697
static void power_pmu_disable(struct perf_counter *counter)
698 699 700 701 702 703
{
	struct cpu_hw_counters *cpuhw;
	long i;
	unsigned long flags;

	local_irq_save(flags);
704
	perf_disable();
705

706
	power_pmu_read(counter);
707 708 709 710 711 712 713 714

	cpuhw = &__get_cpu_var(cpu_hw_counters);
	for (i = 0; i < cpuhw->n_counters; ++i) {
		if (counter == cpuhw->counter[i]) {
			while (++i < cpuhw->n_counters)
				cpuhw->counter[i-1] = cpuhw->counter[i];
			--cpuhw->n_counters;
			ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
715 716 717 718
			if (counter->hw.idx) {
				write_pmc(counter->hw.idx, 0);
				counter->hw.idx = 0;
			}
719
			perf_counter_update_userpage(counter);
720 721 722
			break;
		}
	}
723 724 725 726 727 728 729 730 731 732
	for (i = 0; i < cpuhw->n_limited; ++i)
		if (counter == cpuhw->limited_counter[i])
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
733 734 735 736 737
	if (cpuhw->n_counters == 0) {
		/* disable exceptions if no counters are running */
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

738
	perf_enable();
739 740 741
	local_irq_restore(flags);
}

742 743 744 745
struct pmu power_pmu = {
	.enable		= power_pmu_enable,
	.disable	= power_pmu_disable,
	.read		= power_pmu_read,
746 747
};

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
 * Return 1 if we might be able to put counter on a limited PMC,
 * or 0 if not.
 * A counter can only go on a limited PMC if it counts something
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
static int can_go_on_limited_pmc(struct perf_counter *counter, unsigned int ev,
				 unsigned int flags)
{
	int n;
	unsigned int alt[MAX_EVENT_ALTERNATIVES];

	if (counter->hw_event.exclude_user
	    || counter->hw_event.exclude_kernel
	    || counter->hw_event.exclude_hv
	    || counter->hw_event.irq_period)
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
	 * The requested event isn't on a limited PMC already;
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);
	if (n)
		return alt[0];

	return 0;
}

/*
 * Find an alternative event that goes on a normal PMC, if possible,
 * and return the event code, or 0 if there is no such alternative.
 * (Note: event code 0 is "don't count" on all machines.)
 */
static unsigned long normal_pmc_alternative(unsigned long ev,
					    unsigned long flags)
{
	unsigned int alt[MAX_EVENT_ALTERNATIVES];
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/* Number of perf_counters counting hardware events */
static atomic_t num_counters;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
 * Release the PMU if this is the last perf_counter.
 */
static void hw_perf_counter_destroy(struct perf_counter *counter)
{
	if (!atomic_add_unless(&num_counters, -1, 1)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_dec_return(&num_counters) == 0)
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

821
const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
822
{
823
	unsigned long ev, flags;
824 825
	struct perf_counter *ctrs[MAX_HWCOUNTERS];
	unsigned int events[MAX_HWCOUNTERS];
826
	unsigned int cflags[MAX_HWCOUNTERS];
827
	int n;
828
	int err;
829 830

	if (!ppmu)
831
		return ERR_PTR(-ENXIO);
832 833
	if (!perf_event_raw(&counter->hw_event)) {
		ev = perf_event_id(&counter->hw_event);
834
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
835
			return ERR_PTR(-EOPNOTSUPP);
836
		ev = ppmu->generic_events[ev];
837
	} else {
838
		ev = perf_event_config(&counter->hw_event);
839 840 841 842
	}
	counter->hw.config_base = ev;
	counter->hw.idx = 0;

843 844 845
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
846
	 * the user set it to.
847 848 849
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
		counter->hw_event.exclude_hv = 0;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

	/*
	 * If this is a per-task counter, then we can use
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
	if (counter->ctx->task)
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
	 * If this machine has limited counters, check whether this
	 * event could go on a limited counter.
	 */
	if (ppmu->limited_pmc5_6) {
		if (can_go_on_limited_pmc(counter, ev, flags)) {
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
			 * The requested event is on a limited PMC,
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
				return ERR_PTR(-EINVAL);
		}
	}

880 881 882 883 884 885 886 887
	/*
	 * If this is in a group, check if it can go on with all the
	 * other hardware counters in the group.  We assume the counter
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
	if (counter->group_leader != counter) {
		n = collect_events(counter->group_leader, ppmu->n_counter - 1,
888
				   ctrs, events, cflags);
889
		if (n < 0)
890
			return ERR_PTR(-EINVAL);
891
	}
892
	events[n] = ev;
893
	ctrs[n] = counter;
894 895
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
896
		return ERR_PTR(-EINVAL);
897
	if (power_check_constraints(events, cflags, n + 1))
898
		return ERR_PTR(-EINVAL);
899

900
	counter->hw.config = events[n];
901
	counter->hw.counter_base = cflags[n];
902
	atomic64_set(&counter->hw.period_left, counter->hw.irq_period);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

	/*
	 * See if we need to reserve the PMU.
	 * If no counters are currently in use, then we have to take a
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
	if (!atomic_inc_not_zero(&num_counters)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_read(&num_counters) == 0 &&
		    reserve_pmc_hardware(perf_counter_interrupt))
			err = -EBUSY;
		else
			atomic_inc(&num_counters);
		mutex_unlock(&pmc_reserve_mutex);
	}
	counter->destroy = hw_perf_counter_destroy;

	if (err)
923
		return ERR_PTR(err);
924
	return &power_pmu;
925 926 927 928 929 930 931 932
}

/*
 * A counter has overflowed; update its count and record
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
static void record_and_restart(struct perf_counter *counter, long val,
933
			       struct pt_regs *regs, int nmi)
934
{
935
	u64 period = counter->hw.irq_period;
936 937 938 939 940 941 942 943 944 945 946 947 948 949
	s64 prev, delta, left;
	int record = 0;

	/* we don't have to worry about interrupts here */
	prev = atomic64_read(&counter->hw.prev_count);
	delta = (val - prev) & 0xfffffffful;
	atomic64_add(delta, &counter->count);

	/*
	 * See if the total period for this counter has expired,
	 * and update for the next period.
	 */
	val = 0;
	left = atomic64_read(&counter->hw.period_left) - delta;
950
	if (period) {
951
		if (left <= 0) {
952
			left += period;
953
			if (left <= 0)
954
				left = period;
955 956 957 958 959 960 961 962
			record = 1;
		}
		if (left < 0x80000000L)
			val = 0x80000000L - left;
	}
	write_pmc(counter->hw.idx, val);
	atomic64_set(&counter->hw.prev_count, val);
	atomic64_set(&counter->hw.period_left, left);
963
	perf_counter_update_userpage(counter);
964 965 966 967

	/*
	 * Finally record data if requested.
	 */
968
	if (record)
969
		perf_counter_overflow(counter, nmi, regs, 0);
970 971 972 973 974 975 976 977 978 979 980
}

/*
 * Performance monitor interrupt stuff
 */
static void perf_counter_interrupt(struct pt_regs *regs)
{
	int i;
	struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
	struct perf_counter *counter;
	long val;
981
	int found = 0;
982 983
	int nmi;

984 985 986 987
	if (cpuhw->n_limited)
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
					mfspr(SPRN_PMC6));

988 989 990 991 992 993 994 995 996
	/*
	 * If interrupts were soft-disabled when this PMU interrupt
	 * occurred, treat it as an NMI.
	 */
	nmi = !regs->softe;
	if (nmi)
		nmi_enter();
	else
		irq_enter();
997 998 999

	for (i = 0; i < cpuhw->n_counters; ++i) {
		counter = cpuhw->counter[i];
1000 1001
		if (is_limited_pmc(counter->hw.idx))
			continue;
1002 1003 1004 1005
		val = read_pmc(counter->hw.idx);
		if ((int)val < 0) {
			/* counter has overflowed */
			found = 1;
1006
			record_and_restart(counter, val, regs, nmi);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		}
	}

	/*
	 * In case we didn't find and reset the counter that caused
	 * the interrupt, scan all counters and reset any that are
	 * negative, to avoid getting continual interrupts.
	 * Any that we processed in the previous loop will not be negative.
	 */
	if (!found) {
		for (i = 0; i < ppmu->n_counter; ++i) {
1018 1019
			if (is_limited_pmc(i + 1))
				continue;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			val = read_pmc(i + 1);
			if ((int)val < 0)
				write_pmc(i + 1, 0);
		}
	}

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
	 * and thus allow interrupts to occur again.
	 * XXX might want to use MSR.PM to keep the counters frozen until
	 * we get back out of this interrupt.
	 */
1033
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1034

1035 1036 1037
	if (nmi)
		nmi_exit();
	else
1038
		irq_exit();
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048
void hw_perf_counter_setup(int cpu)
{
	struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);

	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1049
extern struct power_pmu power4_pmu;
1050
extern struct power_pmu ppc970_pmu;
1051
extern struct power_pmu power5_pmu;
1052
extern struct power_pmu power5p_pmu;
1053
extern struct power_pmu power6_pmu;
1054

1055 1056
static int init_perf_counters(void)
{
1057 1058 1059 1060 1061
	unsigned long pvr;

	/* XXX should get this from cputable */
	pvr = mfspr(SPRN_PVR);
	switch (PVR_VER(pvr)) {
1062 1063 1064 1065
	case PV_POWER4:
	case PV_POWER4p:
		ppmu = &power4_pmu;
		break;
1066 1067 1068 1069 1070
	case PV_970:
	case PV_970FX:
	case PV_970MP:
		ppmu = &ppc970_pmu;
		break;
1071 1072 1073
	case PV_POWER5:
		ppmu = &power5_pmu;
		break;
1074 1075 1076
	case PV_POWER5p:
		ppmu = &power5p_pmu;
		break;
1077 1078 1079
	case 0x3e:
		ppmu = &power6_pmu;
		break;
1080
	}
1081 1082 1083 1084 1085 1086 1087

	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
		freeze_counters_kernel = MMCR0_FCHV;

1088 1089 1090 1091
	return 0;
}

arch_initcall(init_perf_counters);