siena_sriov.c 45.7 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2 3
 * Driver for Solarflare network controllers and boards
 * Copyright 2010-2012 Solarflare Communications Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */
#include <linux/pci.h>
#include <linux/module.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "io.h"
#include "mcdi.h"
#include "filter.h"
#include "mcdi_pcol.h"
18
#include "farch_regs.h"
19 20 21 22 23
#include "vfdi.h"

/* Number of longs required to track all the VIs in a VF */
#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)

24 25 26
/* Maximum number of RX queues supported */
#define VF_MAX_RX_QUEUES 63

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/**
 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
 * @VF_TX_FILTER_OFF: Disabled
 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
 *	2 TX queues allowed per VF.
 * @VF_TX_FILTER_ON: Enabled
 */
enum efx_vf_tx_filter_mode {
	VF_TX_FILTER_OFF,
	VF_TX_FILTER_AUTO,
	VF_TX_FILTER_ON,
};

/**
 * struct efx_vf - Back-end resource and protocol state for a PCI VF
 * @efx: The Efx NIC owning this VF
 * @pci_rid: The PCI requester ID for this VF
 * @pci_name: The PCI name (formatted address) of this VF
 * @index: Index of VF within its port and PF.
 * @req: VFDI incoming request work item. Incoming USR_EV events are received
 *	by the NAPI handler, but must be handled by executing MCDI requests
 *	inside a work item.
 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
 *	@status_lock
 * @busy: VFDI request queued to be processed or being processed. Receiving
 *	a VFDI request when @busy is set is an error condition.
 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
 * @buftbl_base: Buffer table entries for this VF start at this index.
 * @rx_filtering: Receive filtering has been requested by the VF driver.
 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
 * @tx_filter_mode: Transmit MAC filtering mode.
 * @tx_filter_id: Transmit MAC filter ID.
 * @addr: The MAC address and outer vlan tag of the VF.
 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
 *	@peer_page_addrs and @peer_page_count from simultaneous
 *	updates by the VM and consumption by
 *	efx_sriov_update_vf_addr()
 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
 * @peer_page_count: Number of entries in @peer_page_count.
 * @evq0_addrs: Array of guest pages backing evq0.
 * @evq0_count: Number of entries in @evq0_addrs.
 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
 *	to wait for flush completions.
 * @txq_lock: Mutex for TX queue allocation.
 * @txq_mask: Mask of initialized transmit queues.
 * @txq_count: Number of initialized transmit queues.
 * @rxq_mask: Mask of initialized receive queues.
 * @rxq_count: Number of initialized receive queues.
 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
 *	due to flush failure.
 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
 * @reset_work: Work item to schedule a VF reset.
 */
struct efx_vf {
	struct efx_nic *efx;
	unsigned int pci_rid;
	char pci_name[13]; /* dddd:bb:dd.f */
	unsigned int index;
	struct work_struct req;
	u64 req_addr;
	int req_type;
	unsigned req_seqno;
	unsigned msg_seqno;
	bool busy;
	struct efx_buffer buf;
	unsigned buftbl_base;
	bool rx_filtering;
	enum efx_filter_flags rx_filter_flags;
	unsigned rx_filter_qid;
	int rx_filter_id;
	enum efx_vf_tx_filter_mode tx_filter_mode;
	int tx_filter_id;
	struct vfdi_endpoint addr;
	u64 status_addr;
	struct mutex status_lock;
	u64 *peer_page_addrs;
	unsigned peer_page_count;
	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
		       EFX_BUF_SIZE];
	unsigned evq0_count;
	wait_queue_head_t flush_waitq;
	struct mutex txq_lock;
	unsigned long txq_mask[VI_MASK_LENGTH];
	unsigned txq_count;
	unsigned long rxq_mask[VI_MASK_LENGTH];
	unsigned rxq_count;
	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
	atomic_t rxq_retry_count;
	struct work_struct reset_work;
};

struct efx_memcpy_req {
	unsigned int from_rid;
	void *from_buf;
	u64 from_addr;
	unsigned int to_rid;
	u64 to_addr;
	unsigned length;
};

/**
 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 *
 * Siena does not have a switch, so VFs can't transmit data to each
 * other. Instead the VFs must be made aware of the local addresses
 * on the vswitch, so that they can arrange for an alternative
 * software datapath to be used.
 *
 * @link: List head for insertion into efx->local_addr_list.
 * @addr: Ethernet address
 */
struct efx_local_addr {
	struct list_head link;
	u8 addr[ETH_ALEN];
};

/**
 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 *
 * @link: List head for insertion into efx->local_page_list.
 * @ptr: Pointer to page.
 * @addr: DMA address of page.
 */
struct efx_endpoint_page {
	struct list_head link;
	void *ptr;
	dma_addr_t addr;
};

/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))

#define EFX_FIELD_MASK(_field)			\
	((1 << _field ## _WIDTH) - 1)

/* VFs can only use this many transmit channels */
static unsigned int vf_max_tx_channels = 2;
module_param(vf_max_tx_channels, uint, 0444);
MODULE_PARM_DESC(vf_max_tx_channels,
		 "Limit the number of TX channels VFs can use");

static int max_vfs = -1;
module_param(max_vfs, int, 0444);
MODULE_PARM_DESC(max_vfs,
		 "Reduce the number of VFs initialized by the driver");

/* Workqueue used by VFDI communication.  We can't use the global
 * workqueue because it may be running the VF driver's probe()
 * routine, which will be blocked there waiting for a VFDI response.
 */
static struct workqueue_struct *vfdi_workqueue;

static unsigned abs_index(struct efx_vf *vf, unsigned index)
{
	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
}

static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
			 unsigned *vi_scale_out, unsigned *vf_total_out)
{
200 201
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	unsigned vi_scale, vf_total;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);

	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_SRIOV_OUT_LEN)
		return -EIO;

	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
	if (vi_scale > EFX_VI_SCALE_MAX)
		return -EOPNOTSUPP;

	if (vi_scale_out)
		*vi_scale_out = vi_scale;
	if (vf_total_out)
		*vf_total_out = vf_total;

	return 0;
}

static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
{
232
	struct siena_nic_data *nic_data = efx->nic_data;
233 234 235 236
	efx_oword_t reg;

	EFX_POPULATE_OWORD_2(reg,
			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
237
			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
238 239 240 241 242 243
	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
}

static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
			    unsigned int count)
{
244 245 246
	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
	MCDI_DECLARE_STRUCT_PTR(record);
	unsigned int index, used;
247 248
	u64 from_addr;
	u32 from_rid;
249 250 251 252
	int rc;

	mb();	/* Finish writing source/reading dest before DMA starts */

253
	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
254
		return -ENOBUFS;
255
	used = MC_CMD_MEMCPY_IN_LEN(count);
256

257 258 259 260
	for (index = 0; index < count; index++) {
		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
			       count);
261 262
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
			       req->to_rid);
263 264
		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
			       req->to_addr);
265 266
		if (req->from_buf == NULL) {
			from_rid = req->from_rid;
267
			from_addr = req->from_addr;
268
		} else {
269 270
			if (WARN_ON(used + req->length >
				    MCDI_CTL_SDU_LEN_MAX_V1)) {
271 272 273 274 275
				rc = -ENOBUFS;
				goto out;
			}

			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
276
			from_addr = used;
277 278
			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
			       req->length);
279 280 281 282
			used += req->length;
		}

		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
283 284
		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
			       from_addr);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
			       req->length);

		++req;
	}

	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
out:
	mb();	/* Don't write source/read dest before DMA is complete */

	return rc;
}

/* The TX filter is entirely controlled by this driver, and is modified
 * underneath the feet of the VF
 */
static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct efx_filter_spec filter;
	u16 vlan;
	int rc;

	if (vf->tx_filter_id != -1) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  vf->tx_filter_id);
		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
			  vf->pci_name, vf->tx_filter_id);
		vf->tx_filter_id = -1;
	}

	if (is_zero_ether_addr(vf->addr.mac_addr))
		return;

	/* Turn on TX filtering automatically if not explicitly
	 * enabled or disabled.
	 */
	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
		vf->tx_filter_mode = VF_TX_FILTER_ON;

	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
	efx_filter_init_tx(&filter, abs_index(vf, 0));
	rc = efx_filter_set_eth_local(&filter,
				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
				      vf->addr.mac_addr);
	BUG_ON(rc);

	rc = efx_filter_insert_filter(efx, &filter, true);
	if (rc < 0) {
		netif_warn(efx, hw, efx->net_dev,
			   "Unable to migrate tx filter for vf %s\n",
			   vf->pci_name);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
			  vf->pci_name, rc);
		vf->tx_filter_id = rc;
	}
}

/* The RX filter is managed here on behalf of the VF driver */
static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct efx_filter_spec filter;
	u16 vlan;
	int rc;

	if (vf->rx_filter_id != -1) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  vf->rx_filter_id);
		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
			  vf->pci_name, vf->rx_filter_id);
		vf->rx_filter_id = -1;
	}

	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
		return;

	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
			   vf->rx_filter_flags,
			   abs_index(vf, vf->rx_filter_qid));
	rc = efx_filter_set_eth_local(&filter,
				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
				      vf->addr.mac_addr);
	BUG_ON(rc);

	rc = efx_filter_insert_filter(efx, &filter, true);
	if (rc < 0) {
		netif_warn(efx, hw, efx->net_dev,
			   "Unable to insert rx filter for vf %s\n",
			   vf->pci_name);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
			  vf->pci_name, rc);
		vf->rx_filter_id = rc;
	}
}

static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
{
386 387 388
	struct efx_nic *efx = vf->efx;
	struct siena_nic_data *nic_data = efx->nic_data;

389 390
	efx_sriov_reset_tx_filter(vf);
	efx_sriov_reset_rx_filter(vf);
391
	queue_work(vfdi_workqueue, &nic_data->peer_work);
392 393 394 395 396 397 398 399 400 401
}

/* Push the peer list to this VF. The caller must hold status_lock to interlock
 * with VFDI requests, and they must be serialised against manipulation of
 * local_page_list, either by acquiring local_lock or by running from
 * efx_sriov_peer_work()
 */
static void __efx_sriov_push_vf_status(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
402 403
	struct siena_nic_data *nic_data = efx->nic_data;
	struct vfdi_status *status = nic_data->vfdi_status.addr;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	struct efx_memcpy_req copy[4];
	struct efx_endpoint_page *epp;
	unsigned int pos, count;
	unsigned data_offset;
	efx_qword_t event;

	WARN_ON(!mutex_is_locked(&vf->status_lock));
	WARN_ON(!vf->status_addr);

	status->local = vf->addr;
	status->generation_end = ++status->generation_start;

	memset(copy, '\0', sizeof(copy));
	/* Write generation_start */
	copy[0].from_buf = &status->generation_start;
	copy[0].to_rid = vf->pci_rid;
	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
						     generation_start);
	copy[0].length = sizeof(status->generation_start);
	/* DMA the rest of the structure (excluding the generations). This
	 * assumes that the non-generation portion of vfdi_status is in
	 * one chunk starting at the version member.
	 */
	data_offset = offsetof(struct vfdi_status, version);
	copy[1].from_rid = efx->pci_dev->devfn;
429
	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
430 431 432 433 434 435 436
	copy[1].to_rid = vf->pci_rid;
	copy[1].to_addr = vf->status_addr + data_offset;
	copy[1].length =  status->length - data_offset;

	/* Copy the peer pages */
	pos = 2;
	count = 0;
437
	list_for_each_entry(epp, &nic_data->local_page_list, link) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		if (count == vf->peer_page_count) {
			/* The VF driver will know they need to provide more
			 * pages because peer_addr_count is too large.
			 */
			break;
		}
		copy[pos].from_buf = NULL;
		copy[pos].from_rid = efx->pci_dev->devfn;
		copy[pos].from_addr = epp->addr;
		copy[pos].to_rid = vf->pci_rid;
		copy[pos].to_addr = vf->peer_page_addrs[count];
		copy[pos].length = EFX_PAGE_SIZE;

		if (++pos == ARRAY_SIZE(copy)) {
			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
			pos = 0;
		}
		++count;
	}

	/* Write generation_end */
	copy[pos].from_buf = &status->generation_end;
	copy[pos].to_rid = vf->pci_rid;
	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
						       generation_end);
	copy[pos].length = sizeof(status->generation_end);
	efx_sriov_memcpy(efx, copy, pos + 1);

	/* Notify the guest */
	EFX_POPULATE_QWORD_3(event,
			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
	++vf->msg_seqno;
472 473 474
	efx_farch_generate_event(efx,
				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
				 &event);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
			   u64 *addr, unsigned count)
{
	efx_qword_t buf;
	unsigned pos;

	for (pos = 0; pos < count; ++pos) {
		EFX_POPULATE_QWORD_3(buf,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF,
				     addr ? addr[pos] >> 12 : 0,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
				&buf, offset + pos);
	}
}

static bool bad_vf_index(struct efx_nic *efx, unsigned index)
{
	return index >= efx_vf_size(efx);
}

static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
{
	unsigned max_buf_count = max_entry_count *
		sizeof(efx_qword_t) / EFX_BUF_SIZE;

	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
}

/* Check that VI specified by per-port index belongs to a VF.
 * Optionally set VF index and VI index within the VF.
 */
static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
			 struct efx_vf **vf_out, unsigned *rel_index_out)
{
	unsigned vf_i;

	if (abs_index < EFX_VI_BASE)
		return true;
517
	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	if (vf_i >= efx->vf_init_count)
		return true;

	if (vf_out)
		*vf_out = efx->vf + vf_i;
	if (rel_index_out)
		*rel_index_out = abs_index % efx_vf_size(efx);
	return false;
}

static int efx_vfdi_init_evq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_evq = req->u.init_evq.index;
	unsigned buf_count = req->u.init_evq.buf_count;
	unsigned abs_evq = abs_index(vf, vf_evq);
	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) ||
	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
				  vf->pci_name, vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}

	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);

	EFX_POPULATE_OWORD_3(reg,
			     FRF_CZ_TIMER_Q_EN, 1,
			     FRF_CZ_HOST_NOTIFY_MODE, 0,
			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);

	if (vf_evq == 0) {
		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
		       buf_count * sizeof(u64));
		vf->evq0_count = buf_count;
	}

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_init_rxq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_rxq = req->u.init_rxq.index;
	unsigned vf_evq = req->u.init_rxq.evq;
	unsigned buf_count = req->u.init_rxq.buf_count;
	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
	unsigned label;
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
581
	    vf_rxq >= VF_MAX_RX_QUEUES ||
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
				  "buf_count %d\n", vf->pci_name, vf_rxq,
				  vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}
	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
		++vf->rxq_count;
	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);

	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
	EFX_POPULATE_OWORD_6(reg,
			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
			     FRF_AZ_RX_DESCQ_LABEL, label,
			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
			     FRF_AZ_RX_DESCQ_JUMBO,
			     !!(req->u.init_rxq.flags &
				VFDI_RXQ_FLAG_SCATTER_EN),
			     FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
			 abs_index(vf, vf_rxq));

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_init_txq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_txq = req->u.init_txq.index;
	unsigned vf_evq = req->u.init_txq.evq;
	unsigned buf_count = req->u.init_txq.buf_count;
	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
	unsigned label, eth_filt_en;
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
	    vf_txq >= vf_max_tx_channels ||
	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
				  "buf_count %d\n", vf->pci_name, vf_txq,
				  vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}

	mutex_lock(&vf->txq_lock);
	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
		++vf->txq_count;
	mutex_unlock(&vf->txq_lock);
	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);

	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;

	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
	EFX_POPULATE_OWORD_8(reg,
			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
			     FRF_AZ_TX_DESCQ_EN, 1,
			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
			     FRF_AZ_TX_DESCQ_LABEL, label,
			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
			 abs_index(vf, vf_txq));

	return VFDI_RC_SUCCESS;
}

/* Returns true when efx_vfdi_fini_all_queues should wake */
static bool efx_vfdi_flush_wake(struct efx_vf *vf)
{
	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
	smp_mb();

	return (!vf->txq_count && !vf->rxq_count) ||
		atomic_read(&vf->rxq_retry_count);
}

static void efx_vfdi_flush_clear(struct efx_vf *vf)
{
	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
	vf->txq_count = 0;
	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
	vf->rxq_count = 0;
	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
	atomic_set(&vf->rxq_retry_count, 0);
}

static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	efx_oword_t reg;
	unsigned count = efx_vf_size(efx);
	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
	unsigned timeout = HZ;
	unsigned index, rxqs_count;
684
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
685 686
	int rc;

687 688 689
	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);

690
	rtnl_lock();
691
	siena_prepare_flush(efx);
692 693 694 695 696 697 698 699 700 701 702 703
	rtnl_unlock();

	/* Flush all the initialized queues */
	rxqs_count = 0;
	for (index = 0; index < count; ++index) {
		if (test_bit(index, vf->txq_mask)) {
			EFX_POPULATE_OWORD_2(reg,
					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
					     FRF_AZ_TX_FLUSH_DESCQ,
					     vf_offset + index);
			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
		}
704 705 706 707 708 709
		if (test_bit(index, vf->rxq_mask)) {
			MCDI_SET_ARRAY_DWORD(
				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
				rxqs_count, vf_offset + index);
			rxqs_count++;
		}
710 711 712 713
	}

	atomic_set(&vf->rxq_retry_count, 0);
	while (timeout && (vf->rxq_count || vf->txq_count)) {
714 715 716
		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
				  NULL, 0, NULL);
717 718 719 720 721 722 723 724 725
		WARN_ON(rc < 0);

		timeout = wait_event_timeout(vf->flush_waitq,
					     efx_vfdi_flush_wake(vf),
					     timeout);
		rxqs_count = 0;
		for (index = 0; index < count; ++index) {
			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
				atomic_dec(&vf->rxq_retry_count);
726 727 728 729
				MCDI_SET_ARRAY_DWORD(
					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
					rxqs_count, vf_offset + index);
				rxqs_count++;
730 731 732 733 734
			}
		}
	}

	rtnl_lock();
735
	siena_finish_flush(efx);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	rtnl_unlock();

	/* Irrespective of success/failure, fini the queues */
	EFX_ZERO_OWORD(reg);
	for (index = 0; index < count; ++index) {
		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
				 vf_offset + index);
	}
	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
	efx_vfdi_flush_clear(vf);

	vf->evq0_count = 0;

	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
}

static int efx_vfdi_insert_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
762
	struct siena_nic_data *nic_data = efx->nic_data;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_rxq = req->u.mac_filter.rxq;
	unsigned flags;

	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
				  "flags 0x%x\n", vf->pci_name, vf_rxq,
				  req->u.mac_filter.flags);
		return VFDI_RC_EINVAL;
	}

	flags = 0;
	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
		flags |= EFX_FILTER_FLAG_RX_RSS;
	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
		flags |= EFX_FILTER_FLAG_RX_SCATTER;
	vf->rx_filter_flags = flags;
	vf->rx_filter_qid = vf_rxq;
	vf->rx_filtering = true;

	efx_sriov_reset_rx_filter(vf);
786
	queue_work(vfdi_workqueue, &nic_data->peer_work);
787 788 789 790 791 792

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
{
793 794 795
	struct efx_nic *efx = vf->efx;
	struct siena_nic_data *nic_data = efx->nic_data;

796 797
	vf->rx_filtering = false;
	efx_sriov_reset_rx_filter(vf);
798
	queue_work(vfdi_workqueue, &nic_data->peer_work);
799 800 801 802 803 804 805

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_set_status_page(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
806
	struct siena_nic_data *nic_data = efx->nic_data;
807
	struct vfdi_req *req = vf->buf.addr;
808 809 810 811 812
	u64 page_count = req->u.set_status_page.peer_page_count;
	u64 max_page_count =
		(EFX_PAGE_SIZE -
		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
813

814
	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
815 816 817 818 819 820 821
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
				  vf->pci_name);
		return VFDI_RC_EINVAL;
	}

822
	mutex_lock(&nic_data->local_lock);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	mutex_lock(&vf->status_lock);
	vf->status_addr = req->u.set_status_page.dma_addr;

	kfree(vf->peer_page_addrs);
	vf->peer_page_addrs = NULL;
	vf->peer_page_count = 0;

	if (page_count) {
		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
					      GFP_KERNEL);
		if (vf->peer_page_addrs) {
			memcpy(vf->peer_page_addrs,
			       req->u.set_status_page.peer_page_addr,
			       page_count * sizeof(u64));
			vf->peer_page_count = page_count;
		}
	}

	__efx_sriov_push_vf_status(vf);
	mutex_unlock(&vf->status_lock);
843
	mutex_unlock(&nic_data->local_lock);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_clear_status_page(struct efx_vf *vf)
{
	mutex_lock(&vf->status_lock);
	vf->status_addr = 0;
	mutex_unlock(&vf->status_lock);

	return VFDI_RC_SUCCESS;
}

typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);

static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
};

static void efx_sriov_vfdi(struct work_struct *work)
{
	struct efx_vf *vf = container_of(work, struct efx_vf, req);
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	struct efx_memcpy_req copy[2];
	int rc;

	/* Copy this page into the local address space */
	memset(copy, '\0', sizeof(copy));
	copy[0].from_rid = vf->pci_rid;
	copy[0].from_addr = vf->req_addr;
	copy[0].to_rid = efx->pci_dev->devfn;
	copy[0].to_addr = vf->buf.dma_addr;
	copy[0].length = EFX_PAGE_SIZE;
	rc = efx_sriov_memcpy(efx, copy, 1);
	if (rc) {
		/* If we can't get the request, we can't reply to the caller */
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
				  vf->pci_name, -rc);
		vf->busy = false;
		return;
	}

	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
		rc = vfdi_ops[req->op](vf);
		if (rc == 0) {
			netif_dbg(efx, hw, efx->net_dev,
				  "vfdi request %d from %s ok\n",
				  req->op, vf->pci_name);
		}
	} else {
		netif_dbg(efx, hw, efx->net_dev,
			  "ERROR: Unrecognised request %d from VF %s addr "
			  "%llx\n", req->op, vf->pci_name,
			  (unsigned long long)vf->req_addr);
		rc = VFDI_RC_EOPNOTSUPP;
	}

	/* Allow subsequent VF requests */
	vf->busy = false;
	smp_wmb();

	/* Respond to the request */
	req->rc = rc;
	req->op = VFDI_OP_RESPONSE;

	memset(copy, '\0', sizeof(copy));
	copy[0].from_buf = &req->rc;
	copy[0].to_rid = vf->pci_rid;
	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
	copy[0].length = sizeof(req->rc);
	copy[1].from_buf = &req->op;
	copy[1].to_rid = vf->pci_rid;
	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
	copy[1].length = sizeof(req->op);

	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
}



/* After a reset the event queues inside the guests no longer exist. Fill the
 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 * event queue to raise an interrupt. The guest driver will then recover.
 */
static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
{
	struct efx_nic *efx = vf->efx;
	struct efx_memcpy_req copy_req[4];
	efx_qword_t event;
	unsigned int pos, count, k, buftbl, abs_evq;
	efx_oword_t reg;
	efx_dword_t ptr;
	int rc;

	BUG_ON(buffer->len != EFX_PAGE_SIZE);

	if (!vf->evq0_count)
		return;
	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));

	mutex_lock(&vf->status_lock);
	EFX_POPULATE_QWORD_3(event,
			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
			     VFDI_EV_SEQ, vf->msg_seqno,
			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
	vf->msg_seqno++;
	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
		memcpy(buffer->addr + pos, &event, sizeof(event));

	for (pos = 0; pos < vf->evq0_count; pos += count) {
		count = min_t(unsigned, vf->evq0_count - pos,
			      ARRAY_SIZE(copy_req));
		for (k = 0; k < count; k++) {
			copy_req[k].from_buf = NULL;
			copy_req[k].from_rid = efx->pci_dev->devfn;
			copy_req[k].from_addr = buffer->dma_addr;
			copy_req[k].to_rid = vf->pci_rid;
			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
			copy_req[k].length = EFX_PAGE_SIZE;
		}
		rc = efx_sriov_memcpy(efx, copy_req, count);
		if (rc) {
			if (net_ratelimit())
				netif_err(efx, hw, efx->net_dev,
					  "ERROR: Unable to notify %s of reset"
					  ": %d\n", vf->pci_name, -rc);
			break;
		}
	}

	/* Reinitialise, arm and trigger evq0 */
	abs_evq = abs_index(vf, 0);
	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);

	EFX_POPULATE_OWORD_3(reg,
			     FRF_CZ_TIMER_Q_EN, 1,
			     FRF_CZ_HOST_NOTIFY_MODE, 0,
			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1000
	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	mutex_unlock(&vf->status_lock);
}

static void efx_sriov_reset_vf_work(struct work_struct *work)
{
	struct efx_vf *vf = container_of(work, struct efx_vf, req);
	struct efx_nic *efx = vf->efx;
	struct efx_buffer buf;

1011
	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		efx_sriov_reset_vf(vf, &buf);
		efx_nic_free_buffer(efx, &buf);
	}
}

static void efx_sriov_handle_no_channel(struct efx_nic *efx)
{
	netif_err(efx, drv, efx->net_dev,
		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
		  "vector. IOV disabled\n");
	efx->vf_count = 0;
}

static int efx_sriov_probe_channel(struct efx_channel *channel)
{
1027 1028 1029
	struct siena_nic_data *nic_data = channel->efx->nic_data;
	nic_data->vfdi_channel = channel;

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return 0;
}

static void
efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	snprintf(buf, len, "%s-iov", channel->efx->name);
}

static const struct efx_channel_type efx_sriov_channel_type = {
	.handle_no_channel	= efx_sriov_handle_no_channel,
	.pre_probe		= efx_sriov_probe_channel,
1042
	.post_remove		= efx_channel_dummy_op_void,
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	.get_name		= efx_sriov_get_channel_name,
	/* no copy operation; channel must not be reallocated */
	.keep_eventq		= true,
};

void efx_sriov_probe(struct efx_nic *efx)
{
	unsigned count;

	if (!max_vfs)
		return;

	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
		return;
	if (count > 0 && count > max_vfs)
		count = max_vfs;

	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
	efx->vf_count = count;

	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
}

/* Copy the list of individual addresses into the vfdi_status.peers
 * array and auxillary pages, protected by %local_lock. Drop that lock
 * and then broadcast the address list to every VF.
 */
static void efx_sriov_peer_work(struct work_struct *data)
{
1072 1073 1074 1075 1076
	struct siena_nic_data *nic_data = container_of(data,
						       struct siena_nic_data,
						       peer_work);
	struct efx_nic *efx = nic_data->efx;
	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1077 1078 1079 1080 1081 1082 1083 1084 1085
	struct efx_vf *vf;
	struct efx_local_addr *local_addr;
	struct vfdi_endpoint *peer;
	struct efx_endpoint_page *epp;
	struct list_head pages;
	unsigned int peer_space;
	unsigned int peer_count;
	unsigned int pos;

1086
	mutex_lock(&nic_data->local_lock);
1087 1088 1089

	/* Move the existing peer pages off %local_page_list */
	INIT_LIST_HEAD(&pages);
1090
	list_splice_tail_init(&nic_data->local_page_list, &pages);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	/* Populate the VF addresses starting from entry 1 (entry 0 is
	 * the PF address)
	 */
	peer = vfdi_status->peers + 1;
	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
	peer_count = 1;
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		mutex_lock(&vf->status_lock);
		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
			*peer++ = vf->addr;
			++peer_count;
			--peer_space;
			BUG_ON(peer_space == 0);
		}
		mutex_unlock(&vf->status_lock);
	}

	/* Fill the remaining addresses */
1112
	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1113
		ether_addr_copy(peer->mac_addr, local_addr->addr);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		peer->tci = 0;
		++peer;
		++peer_count;
		if (--peer_space == 0) {
			if (list_empty(&pages)) {
				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
				if (!epp)
					break;
				epp->ptr = dma_alloc_coherent(
					&efx->pci_dev->dev, EFX_PAGE_SIZE,
					&epp->addr, GFP_KERNEL);
				if (!epp->ptr) {
					kfree(epp);
					break;
				}
			} else {
				epp = list_first_entry(
					&pages, struct efx_endpoint_page, link);
				list_del(&epp->link);
			}

1135
			list_add_tail(&epp->link, &nic_data->local_page_list);
1136 1137 1138 1139 1140
			peer = (struct vfdi_endpoint *)epp->ptr;
			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
		}
	}
	vfdi_status->peer_count = peer_count;
1141
	mutex_unlock(&nic_data->local_lock);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	/* Free any now unused endpoint pages */
	while (!list_empty(&pages)) {
		epp = list_first_entry(
			&pages, struct efx_endpoint_page, link);
		list_del(&epp->link);
		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
				  epp->ptr, epp->addr);
		kfree(epp);
	}

	/* Finally, push the pages */
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		mutex_lock(&vf->status_lock);
		if (vf->status_addr)
			__efx_sriov_push_vf_status(vf);
		mutex_unlock(&vf->status_lock);
	}
}

static void efx_sriov_free_local(struct efx_nic *efx)
{
1166
	struct siena_nic_data *nic_data = efx->nic_data;
1167 1168 1169
	struct efx_local_addr *local_addr;
	struct efx_endpoint_page *epp;

1170 1171
	while (!list_empty(&nic_data->local_addr_list)) {
		local_addr = list_first_entry(&nic_data->local_addr_list,
1172 1173 1174 1175 1176
					      struct efx_local_addr, link);
		list_del(&local_addr->link);
		kfree(local_addr);
	}

1177 1178
	while (!list_empty(&nic_data->local_page_list)) {
		epp = list_first_entry(&nic_data->local_page_list,
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
				       struct efx_endpoint_page, link);
		list_del(&epp->link);
		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
				  epp->ptr, epp->addr);
		kfree(epp);
	}
}

static int efx_sriov_vf_alloc(struct efx_nic *efx)
{
	unsigned index;
	struct efx_vf *vf;

	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
	if (!efx->vf)
		return -ENOMEM;

	for (index = 0; index < efx->vf_count; ++index) {
		vf = efx->vf + index;

		vf->efx = efx;
		vf->index = index;
		vf->rx_filter_id = -1;
		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
		vf->tx_filter_id = -1;
		INIT_WORK(&vf->req, efx_sriov_vfdi);
		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
		init_waitqueue_head(&vf->flush_waitq);
		mutex_init(&vf->status_lock);
		mutex_init(&vf->txq_lock);
	}

	return 0;
}

static void efx_sriov_vfs_fini(struct efx_nic *efx)
{
	struct efx_vf *vf;
	unsigned int pos;

	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		efx_nic_free_buffer(efx, &vf->buf);
		kfree(vf->peer_page_addrs);
		vf->peer_page_addrs = NULL;
		vf->peer_page_count = 0;

		vf->evq0_count = 0;
	}
}

static int efx_sriov_vfs_init(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
1234
	struct siena_nic_data *nic_data = efx->nic_data;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	unsigned index, devfn, sriov, buftbl_base;
	u16 offset, stride;
	struct efx_vf *vf;
	int rc;

	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
	if (!sriov)
		return -ENOENT;

	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);

1247
	buftbl_base = nic_data->vf_buftbl_base;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	devfn = pci_dev->devfn + offset;
	for (index = 0; index < efx->vf_count; ++index) {
		vf = efx->vf + index;

		/* Reserve buffer entries */
		vf->buftbl_base = buftbl_base;
		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);

		vf->pci_rid = devfn;
		snprintf(vf->pci_name, sizeof(vf->pci_name),
			 "%04x:%02x:%02x.%d",
			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
			 PCI_SLOT(devfn), PCI_FUNC(devfn));

1262 1263
		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
					  GFP_KERNEL);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		if (rc)
			goto fail;

		devfn += stride;
	}

	return 0;

fail:
	efx_sriov_vfs_fini(efx);
	return rc;
}

int efx_sriov_init(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1280
	struct siena_nic_data *nic_data = efx->nic_data;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	struct vfdi_status *vfdi_status;
	int rc;

	/* Ensure there's room for vf_channel */
	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
	/* Ensure that VI_BASE is aligned on VI_SCALE */
	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));

	if (efx->vf_count == 0)
		return 0;

	rc = efx_sriov_cmd(efx, true, NULL, NULL);
	if (rc)
		goto fail_cmd;

1296 1297
	rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
				  sizeof(*vfdi_status), GFP_KERNEL);
1298 1299
	if (rc)
		goto fail_status;
1300
	vfdi_status = nic_data->vfdi_status.addr;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	memset(vfdi_status, 0, sizeof(*vfdi_status));
	vfdi_status->version = 1;
	vfdi_status->length = sizeof(*vfdi_status);
	vfdi_status->max_tx_channels = vf_max_tx_channels;
	vfdi_status->vi_scale = efx->vi_scale;
	vfdi_status->rss_rxq_count = efx->rss_spread;
	vfdi_status->peer_count = 1 + efx->vf_count;
	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;

	rc = efx_sriov_vf_alloc(efx);
	if (rc)
		goto fail_alloc;

1314 1315 1316 1317
	mutex_init(&nic_data->local_lock);
	INIT_WORK(&nic_data->peer_work, efx_sriov_peer_work);
	INIT_LIST_HEAD(&nic_data->local_addr_list);
	INIT_LIST_HEAD(&nic_data->local_page_list);
1318 1319 1320 1321 1322 1323

	rc = efx_sriov_vfs_init(efx);
	if (rc)
		goto fail_vfs;

	rtnl_lock();
1324
	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	efx->vf_init_count = efx->vf_count;
	rtnl_unlock();

	efx_sriov_usrev(efx, true);

	/* At this point we must be ready to accept VFDI requests */

	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
	if (rc)
		goto fail_pci;

	netif_info(efx, probe, net_dev,
		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
		   efx->vf_count, efx_vf_size(efx));
	return 0;

fail_pci:
	efx_sriov_usrev(efx, false);
	rtnl_lock();
	efx->vf_init_count = 0;
	rtnl_unlock();
	efx_sriov_vfs_fini(efx);
fail_vfs:
1348
	cancel_work_sync(&nic_data->peer_work);
1349 1350 1351
	efx_sriov_free_local(efx);
	kfree(efx->vf);
fail_alloc:
1352
	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
fail_status:
	efx_sriov_cmd(efx, false, NULL, NULL);
fail_cmd:
	return rc;
}

void efx_sriov_fini(struct efx_nic *efx)
{
	struct efx_vf *vf;
	unsigned int pos;
1363
	struct siena_nic_data *nic_data = efx->nic_data;
1364 1365 1366 1367 1368

	if (efx->vf_init_count == 0)
		return;

	/* Disable all interfaces to reconfiguration */
1369
	BUG_ON(nic_data->vfdi_channel->enabled);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	efx_sriov_usrev(efx, false);
	rtnl_lock();
	efx->vf_init_count = 0;
	rtnl_unlock();

	/* Flush all reconfiguration work */
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;
		cancel_work_sync(&vf->req);
		cancel_work_sync(&vf->reset_work);
	}
1381
	cancel_work_sync(&nic_data->peer_work);
1382 1383 1384 1385 1386 1387 1388

	pci_disable_sriov(efx->pci_dev);

	/* Tear down back-end state */
	efx_sriov_vfs_fini(efx);
	efx_sriov_free_local(efx);
	kfree(efx->vf);
1389
	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	efx_sriov_cmd(efx, false, NULL, NULL);
}

void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_vf *vf;
	unsigned qid, seq, type, data;

	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);

	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);

	netif_vdbg(efx, hw, efx->net_dev,
		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
		   qid, seq, type, data);

	if (map_vi_index(efx, qid, &vf, NULL))
		return;
	if (vf->busy)
		goto error;

	if (type == VFDI_EV_TYPE_REQ_WORD0) {
		/* Resynchronise */
		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
		vf->req_seqno = seq + 1;
		vf->req_addr = 0;
	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
		goto error;

	switch (vf->req_type) {
	case VFDI_EV_TYPE_REQ_WORD0:
	case VFDI_EV_TYPE_REQ_WORD1:
	case VFDI_EV_TYPE_REQ_WORD2:
		vf->req_addr |= (u64)data << (vf->req_type << 4);
		++vf->req_type;
		return;

	case VFDI_EV_TYPE_REQ_WORD3:
		vf->req_addr |= (u64)data << 48;
		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
		vf->busy = true;
		queue_work(vfdi_workqueue, &vf->req);
		return;
	}

error:
	if (net_ratelimit())
		netif_err(efx, hw, efx->net_dev,
			  "ERROR: Screaming VFDI request from %s\n",
			  vf->pci_name);
	/* Reset the request and sequence number */
	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
	vf->req_seqno = seq + 1;
}

void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
{
	struct efx_vf *vf;

	if (vf_i > efx->vf_init_count)
		return;
	vf = efx->vf + vf_i;
	netif_info(efx, hw, efx->net_dev,
		   "FLR on VF %s\n", vf->pci_name);

	vf->status_addr = 0;
	efx_vfdi_remove_all_filters(vf);
	efx_vfdi_flush_clear(vf);

	vf->evq0_count = 0;
}

void efx_sriov_mac_address_changed(struct efx_nic *efx)
{
1469 1470
	struct siena_nic_data *nic_data = efx->nic_data;
	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1471 1472 1473

	if (!efx->vf_init_count)
		return;
1474 1475
	ether_addr_copy(vfdi_status->peers[0].mac_addr,
			efx->net_dev->dev_addr);
1476
	queue_work(vfdi_workqueue, &nic_data->peer_work);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_vf *vf;
	unsigned queue, qid;

	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
	if (map_vi_index(efx, queue, &vf, &qid))
		return;
	/* Ignore flush completions triggered by an FLR */
	if (!test_bit(qid, vf->txq_mask))
		return;

	__clear_bit(qid, vf->txq_mask);
	--vf->txq_count;

	if (efx_vfdi_flush_wake(vf))
		wake_up(&vf->flush_waitq);
}

void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_vf *vf;
	unsigned ev_failed, queue, qid;

	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
	ev_failed = EFX_QWORD_FIELD(*event,
				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
	if (map_vi_index(efx, queue, &vf, &qid))
		return;
	if (!test_bit(qid, vf->rxq_mask))
		return;

	if (ev_failed) {
		set_bit(qid, vf->rxq_retry_mask);
		atomic_inc(&vf->rxq_retry_count);
	} else {
		__clear_bit(qid, vf->rxq_mask);
		--vf->rxq_count;
	}
	if (efx_vfdi_flush_wake(vf))
		wake_up(&vf->flush_waitq);
}

/* Called from napi. Schedule the reset work item */
void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
{
	struct efx_vf *vf;
	unsigned int rel;

	if (map_vi_index(efx, dmaq, &vf, &rel))
		return;

	if (net_ratelimit())
		netif_err(efx, hw, efx->net_dev,
			  "VF %d DMA Q %d reports descriptor fetch error.\n",
			  vf->index, rel);
	queue_work(vfdi_workqueue, &vf->reset_work);
}

/* Reset all VFs */
void efx_sriov_reset(struct efx_nic *efx)
{
	unsigned int vf_i;
	struct efx_buffer buf;
	struct efx_vf *vf;

	ASSERT_RTNL();

	if (efx->vf_init_count == 0)
		return;

	efx_sriov_usrev(efx, true);
	(void)efx_sriov_cmd(efx, true, NULL, NULL);

1553
	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		return;

	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
		vf = efx->vf + vf_i;
		efx_sriov_reset_vf(vf, &buf);
	}

	efx_nic_free_buffer(efx, &buf);
}

int efx_init_sriov(void)
{
	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
	 * efx_sriov_peer_work() spend almost all their time sleeping for
	 * MCDI to complete anyway
	 */
	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
	if (!vfdi_workqueue)
		return -ENOMEM;

	return 0;
}

void efx_fini_sriov(void)
{
	destroy_workqueue(vfdi_workqueue);
}

int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->status_lock);
1592
	ether_addr_copy(vf->addr.mac_addr, mac);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	__efx_sriov_update_vf_addr(vf);
	mutex_unlock(&vf->status_lock);

	return 0;
}

int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
			  u16 vlan, u8 qos)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	u16 tci;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->status_lock);
	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
	vf->addr.tci = htons(tci);
	__efx_sriov_update_vf_addr(vf);
	mutex_unlock(&vf->status_lock);

	return 0;
}

int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
			      bool spoofchk)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	int rc;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->txq_lock);
	if (vf->txq_count == 0) {
		vf->tx_filter_mode =
			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
		rc = 0;
	} else {
		/* This cannot be changed while TX queues are running */
		rc = -EBUSY;
	}
	mutex_unlock(&vf->txq_lock);
	return rc;
}

int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
			    struct ifla_vf_info *ivi)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	u16 tci;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	ivi->vf = vf_i;
1655
	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1656 1657
	ivi->max_tx_rate = 0;
	ivi->min_tx_rate = 0;
1658 1659 1660 1661 1662 1663 1664 1665
	tci = ntohs(vf->addr.tci);
	ivi->vlan = tci & VLAN_VID_MASK;
	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;

	return 0;
}