cx24123.c 22.3 KB
Newer Older
1 2 3 4 5
/*
    Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver

    Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>

6 7
    Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>

#include "dvb_frontend.h"
#include "cx24123.h"

static int debug;
#define dprintk(args...) \
	do { \
		if (debug) printk (KERN_DEBUG "cx24123: " args); \
	} while (0)

38 39
struct cx24123_state
{
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
	struct i2c_adapter* i2c;
	struct dvb_frontend_ops ops;
	const struct cx24123_config* config;

	struct dvb_frontend frontend;

	u32 lastber;
	u16 snr;
	u8  lnbreg;

	/* Some PLL specifics for tuning */
	u32 VCAarg;
	u32 VGAarg;
	u32 bandselectarg;
	u32 pllarg;

	/* The Demod/Tuner can't easily provide these, we cache them */
	u32 currentfreq;
	u32 currentsymbolrate;
};

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/* Various tuner defaults need to be established for a given symbol rate Sps */
static struct
{
	u32 symbolrate_low;
	u32 symbolrate_high;
	u32 VCAslope;
	u32 VCAoffset;
	u32 VGA1offset;
	u32 VGA2offset;
	u32 VCAprogdata;
	u32 VGAprogdata;
} cx24123_AGC_vals[] =
{
	{
		.symbolrate_low		= 1000000,
		.symbolrate_high	= 4999999,
		.VCAslope		= 0x07,
		.VCAoffset		= 0x0f,
		.VGA1offset		= 0x1f8,
		.VGA2offset		= 0x1f8,
		.VGAprogdata		= (2 << 18) | (0x1f8 << 9) | 0x1f8,
		.VCAprogdata		= (4 << 18) | (0x07 << 9) | 0x07,
	},
	{
		.symbolrate_low		=  5000000,
		.symbolrate_high	= 14999999,
		.VCAslope		= 0x1f,
		.VCAoffset		= 0x1f,
		.VGA1offset		= 0x1e0,
		.VGA2offset		= 0x180,
		.VGAprogdata		= (2 << 18) | (0x180 << 9) | 0x1e0,
		.VCAprogdata		= (4 << 18) | (0x07 << 9) | 0x1f,
	},
	{
		.symbolrate_low		= 15000000,
		.symbolrate_high	= 45000000,
		.VCAslope		= 0x3f,
		.VCAoffset		= 0x3f,
		.VGA1offset		= 0x180,
		.VGA2offset		= 0x100,
		.VGAprogdata		= (2 << 18) | (0x100 << 9) | 0x180,
		.VCAprogdata		= (4 << 18) | (0x07 << 9) | 0x3f,
	},
};

/*
 * Various tuner defaults need to be established for a given frequency kHz.
 * fixme: The bounds on the bands do not match the doc in real life.
 * fixme: Some of them have been moved, other might need adjustment.
 */
static struct
{
	u32 freq_low;
	u32 freq_high;
	u32 bandselect;
	u32 VCOdivider;
	u32 VCOnumber;
	u32 progdata;
} cx24123_bandselect_vals[] =
{
	{
		.freq_low	= 950000,
		.freq_high	= 1018999,
		.bandselect	= 0x40,
		.VCOdivider	= 4,
		.VCOnumber	= 7,
		.progdata	= (0 << 18) | (0 << 9) | 0x40,
	},
	{
		.freq_low	= 1019000,
		.freq_high	= 1074999,
		.bandselect	= 0x80,
		.VCOdivider	= 4,
		.VCOnumber	= 8,
		.progdata	= (0 << 18) | (0 << 9) | 0x80,
	},
	{
		.freq_low	= 1075000,
		.freq_high	= 1227999,
		.bandselect	= 0x01,
		.VCOdivider	= 2,
		.VCOnumber	= 1,
		.progdata	= (0 << 18) | (1 << 9) | 0x01,
	},
	{
		.freq_low	= 1228000,
		.freq_high	= 1349999,
		.bandselect	= 0x02,
		.VCOdivider	= 2,
		.VCOnumber	= 2,
		.progdata	= (0 << 18) | (1 << 9) | 0x02,
	},
	{
		.freq_low	= 1350000,
		.freq_high	= 1481999,
		.bandselect	= 0x04,
		.VCOdivider	= 2,
		.VCOnumber	= 3,
		.progdata	= (0 << 18) | (1 << 9) | 0x04,
	},
	{
		.freq_low	= 1482000,
		.freq_high	= 1595999,
		.bandselect	= 0x08,
		.VCOdivider	= 2,
		.VCOnumber	= 4,
		.progdata	= (0 << 18) | (1 << 9) | 0x08,
	},
	{
		.freq_low	= 1596000,
		.freq_high	= 1717999,
		.bandselect	= 0x10,
		.VCOdivider	= 2,
		.VCOnumber	= 5,
		.progdata	= (0 << 18) | (1 << 9) | 0x10,
	},
	{
		.freq_low	= 1718000,
		.freq_high	= 1855999,
		.bandselect	= 0x20,
		.VCOdivider	= 2,
		.VCOnumber	= 6,
		.progdata	= (0 << 18) | (1 << 9) | 0x20,
	},
	{
		.freq_low	= 1856000,
		.freq_high	= 2035999,
		.bandselect	= 0x40,
		.VCOdivider	= 2,
		.VCOnumber	= 7,
		.progdata	= (0 << 18) | (1 << 9) | 0x40,
	},
	{
		.freq_low	= 2036000,
		.freq_high	= 2149999,
		.bandselect	= 0x80,
		.VCOdivider	= 2,
		.VCOnumber	= 8,
		.progdata	= (0 << 18) | (1 << 9) | 0x80,
	},
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static struct {
	u8 reg;
	u8 data;
} cx24123_regdata[] =
{
	{0x00, 0x03}, /* Reset system */
	{0x00, 0x00}, /* Clear reset */
	{0x01, 0x3b}, /* Apply sensible defaults, from an i2c sniffer */
	{0x03, 0x07},
	{0x04, 0x10},
	{0x05, 0x04},
	{0x06, 0x31},
	{0x0d, 0x02},
	{0x0e, 0x03},
	{0x0f, 0xfe},
	{0x10, 0x01},
	{0x14, 0x01},
	{0x15, 0x98},
	{0x16, 0x00},
	{0x17, 0x01},
	{0x1b, 0x05},
	{0x1c, 0x80},
	{0x1d, 0x00},
	{0x1e, 0x00},
	{0x20, 0x41},
	{0x21, 0x15},
	{0x27, 0x14},
	{0x28, 0x46},
	{0x29, 0x00},
	{0x2a, 0xb0},
	{0x2b, 0x73},
	{0x2c, 0x00},
	{0x2d, 0x00},
	{0x2e, 0x00},
	{0x2f, 0x00},
	{0x30, 0x00},
	{0x31, 0x00},
	{0x32, 0x8c},
	{0x33, 0x00},
	{0x34, 0x00},
	{0x35, 0x03},
	{0x36, 0x02},
	{0x37, 0x3a},
	{0x3a, 0x00},	/* Enable AGC accumulator */
	{0x44, 0x00},
	{0x45, 0x00},
	{0x46, 0x05},
	{0x56, 0x41},
	{0x57, 0xff},
	{0x67, 0x83},
};

static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
	int err;

	if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
		printk("%s: writereg error(err == %i, reg == 0x%02x,"
			 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	return 0;
}

static int cx24123_writelnbreg(struct cx24123_state* state, int reg, int data)
{
	u8 buf[] = { reg, data };
	/* fixme: put the intersil addr int the config */
	struct i2c_msg msg = { .addr = 0x08, .flags = 0, .buf = buf, .len = 2 };
	int err;

	if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
		printk("%s: writelnbreg error (err == %i, reg == 0x%02x,"
			 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	/* cache the write, no way to read back */
	state->lnbreg = data;

	return 0;
}

static int cx24123_readreg(struct cx24123_state* state, u8 reg)
{
	int ret;
	u8 b0[] = { reg };
	u8 b1[] = { 0 };
	struct i2c_msg msg[] = {
		{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
	};

	ret = i2c_transfer(state->i2c, msg, 2);

	if (ret != 2) {
		printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
		return ret;
	}

	return b1[0];
}

static int cx24123_readlnbreg(struct cx24123_state* state, u8 reg)
{
	return state->lnbreg;
}

static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
{
	switch (inversion) {
	case INVERSION_OFF:
		cx24123_writereg(state, 0x0e, cx24123_readreg(state, 0x0e) & 0x7f);
		cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) | 0x80);
		break;
	case INVERSION_ON:
		cx24123_writereg(state, 0x0e, cx24123_readreg(state, 0x0e) | 0x80);
		cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) | 0x80);
		break;
	case INVERSION_AUTO:
		cx24123_writereg(state, 0x10, cx24123_readreg(state, 0x10) & 0x7f);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
{
	u8 val;

	val = cx24123_readreg(state, 0x1b) >> 7;

	if (val == 0)
342
		*inversion = INVERSION_OFF;
343
	else
344
		*inversion = INVERSION_ON;
345 346 347 348 349 350 351

	return 0;
}

static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
{
	if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
352
		fec = FEC_AUTO;
353 354 355 356

	/* Hardware has 5/11 and 3/5 but are never unused */
	switch (fec) {
	case FEC_NONE:
357
		return cx24123_writereg(state, 0x0f, 0x01);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	case FEC_1_2:
		return cx24123_writereg(state, 0x0f, 0x02);
	case FEC_2_3:
		return cx24123_writereg(state, 0x0f, 0x04);
	case FEC_3_4:
		return cx24123_writereg(state, 0x0f, 0x08);
	case FEC_5_6:
		return cx24123_writereg(state, 0x0f, 0x20);
	case FEC_7_8:
		return cx24123_writereg(state, 0x0f, 0x80);
	case FEC_AUTO:
		return cx24123_writereg(state, 0x0f, 0xae);
	default:
		return -EOPNOTSUPP;
	}
}

static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
{
377
	int ret;
378 379
	u8 val;

380 381 382 383
	ret = cx24123_readreg (state, 0x1b);
	if (ret < 0)
		return ret;
	val = ret & 0x07;
384 385
	switch (val) {
	case 1:
386 387
		*fec = FEC_1_2;
		break;
388
	case 3:
389 390
		*fec = FEC_2_3;
		break;
391
	case 4:
392 393
		*fec = FEC_3_4;
		break;
394
	case 5:
395 396
		*fec = FEC_4_5;
		break;
397
	case 6:
398 399
		*fec = FEC_5_6;
		break;
400
	case 7:
401 402 403 404 405 406
		*fec = FEC_7_8;
		break;
	case 2:	/* *fec = FEC_3_5; break; */
	case 0:	/* *fec = FEC_5_11; break; */
		*fec = FEC_AUTO;
		break;
407
	default:
408
		*fec = FEC_NONE; // can't happen
409 410
	}

411
	return 0;
412 413 414 415 416 417 418
}

/* fixme: Symbol rates < 3MSps may not work because of precision loss */
static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
{
	u32 val;

419
	val = (srate / 1185) * 100;
420 421

	/* Compensate for scaling up, by removing 17 symbols per 1Msps */
422
	val = val - (17 * (srate / 1000000));
423

424 425 426
	cx24123_writereg(state, 0x08, (val >> 16) & 0xff );
	cx24123_writereg(state, 0x09, (val >>  8) & 0xff );
	cx24123_writereg(state, 0x0a, (val      ) & 0xff );
427 428 429 430 431 432 433 434 435 436 437

	return 0;
}

/*
 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
 * and the correct band selected. Calculate those values
 */
static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;
438 439
	u32 ndiv = 0, adiv = 0, vco_div = 0;
	int i = 0;
440 441 442 443 444 445 446 447

	/* Defaults for low freq, low rate */
	state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
	state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
	state->bandselectarg = cx24123_bandselect_vals[0].progdata;
	vco_div = cx24123_bandselect_vals[0].VCOdivider;

	/* For the given symbolerate, determine the VCA and VGA programming bits */
448
	for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
449 450 451 452 453 454 455 456 457
	{
		if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
				(cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
			state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
			state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
		}
	}

	/* For the given frequency, determine the bandselect programming bits */
458
	for (i = 0; i < sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]); i++)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	{
		if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
				(cx24123_bandselect_vals[i].freq_high >= p->frequency) ) {
			state->bandselectarg = cx24123_bandselect_vals[i].progdata;
			vco_div = cx24123_bandselect_vals[i].VCOdivider;
		}
	}

	/* Determine the N/A dividers for the requested lband freq (in kHz). */
	/* Note: 10111 (kHz) is the Crystal Freq and divider of 10. */
	ndiv = ( ((p->frequency * vco_div) / (10111 / 10) / 2) / 32) & 0x1ff;
	adiv = ( ((p->frequency * vco_div) / (10111 / 10) / 2) % 32) & 0x1f;

	if (adiv == 0)
		adiv++;

	/* determine the correct pll frequency values. */
	/* Command 11, refdiv 11, cpump polarity 1, cpump current 3mA 10. */
	state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (2 << 14);
	state->pllarg |= (ndiv << 5) | adiv;

	return 0;
}

/*
 * Tuner data is 21 bits long, must be left-aligned in data.
 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
 */
static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
{
	struct cx24123_state *state = fe->demodulator_priv;

491
	u8 timeout = 0;
492 493 494 495 496 497 498

	/* align the 21 bytes into to bit23 boundary */
	data = data << 3;

	/* Reset the demod pll word length to 0x15 bits */
	cx24123_writereg(state, 0x21, 0x15);

499
	timeout = 0;
500
	/* write the msb 8 bits, wait for the send to be completed */
501
	cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
502 503 504 505 506 507 508 509 510 511
	while ( ( cx24123_readreg(state, 0x20) & 0x40 ) == 0 )
	{
		/* Safety - No reason why the write should not complete, and we never get here, avoid hang */
		if (timeout++ >= 4) {
			printk("%s:  demodulator is no longer responding, aborting.\n",__FUNCTION__);
			return -EREMOTEIO;
		}
		msleep(500);
	}

512
	timeout = 0;
513 514 515 516 517 518 519 520 521 522 523 524
	/* send another 8 bytes, wait for the send to be completed */
	cx24123_writereg(state, 0x22, (data>>8) & 0xff );
	while ( (cx24123_readreg(state, 0x20) & 0x40 ) == 0 )
	{
		/* Safety - No reason why the write should not complete, and we never get here, avoid hang */
		if (timeout++ >= 4) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n",__FUNCTION__);
			return -EREMOTEIO;
		}
		msleep(500);
	}

525
	timeout = 0;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	/* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
	cx24123_writereg(state, 0x22, (data) & 0xff );
	while ((cx24123_readreg(state, 0x20) & 0x80))
	{
		/* Safety - No reason why the write should not complete, and we never get here, avoid hang */
		if (timeout++ >= 4) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n",__FUNCTION__);
			return -EREMOTEIO;
		}
		msleep(500);
	}

	/* Trigger the demod to configure the tuner */
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);

	return 0;
}

static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

549
	if (cx24123_pll_calculate(fe, p) != 0) {
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
		printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
		return -EINVAL;
	}

	/* Write the new VCO/VGA */
	cx24123_pll_writereg(fe, p, state->VCAarg);
	cx24123_pll_writereg(fe, p, state->VGAarg);

	/* Write the new bandselect and pll args */
	cx24123_pll_writereg(fe, p, state->bandselectarg);
	cx24123_pll_writereg(fe, p, state->pllarg);

	return 0;
}

static int cx24123_initfe(struct dvb_frontend* fe)
{
	struct cx24123_state *state = fe->demodulator_priv;
	int i;

	/* Configure the demod to a good set of defaults */
571
	for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
572 573 574 575 576 577
		cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);

	if (state->config->pll_init)
		state->config->pll_init(fe);

	/* Configure the LNB for 14V */
578 579
	if (state->config->use_isl6421)
		cx24123_writelnbreg(state, 0x0, 0x2a);
580 581 582 583 584 585 586 587 588

	return 0;
}

static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

589
	switch (state->config->use_isl6421) {
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	case 1:

		val = cx24123_readlnbreg(state, 0x0);

		switch (voltage) {
		case SEC_VOLTAGE_13:
			return cx24123_writelnbreg(state, 0x0, val & 0x32); /* V 13v */
		case SEC_VOLTAGE_18:
			return cx24123_writelnbreg(state, 0x0, val | 0x04); /* H 18v */
		case SEC_VOLTAGE_OFF:
			return cx24123_writelnbreg(state, 0x0, val & 0x30);
		default:
			return -EINVAL;
		};

	case 0:

		val = cx24123_readreg(state, 0x29);

		switch (voltage) {
		case SEC_VOLTAGE_13:
			dprintk("%s: setting voltage 13V\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 1);
			return cx24123_writereg(state, 0x29, val | 0x80);
		case SEC_VOLTAGE_18:
			dprintk("%s: setting voltage 18V\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 1);
			return cx24123_writereg(state, 0x29, val & 0x7f);
		case SEC_VOLTAGE_OFF:
			dprintk("%s: setting voltage off\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 0);
			return 0;
		default:
			return -EINVAL;
		};
	}

	return 0;
632 633 634
}

static int cx24123_send_diseqc_msg(struct dvb_frontend* fe,
635
				   struct dvb_diseqc_master_cmd *cmd)
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
{
	/* fixme: Implement diseqc */
	printk("%s: No support yet\n",__FUNCTION__);

	return -ENOTSUPP;
}

static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
	struct cx24123_state *state = fe->demodulator_priv;

	int sync = cx24123_readreg(state, 0x14);
	int lock = cx24123_readreg(state, 0x20);

	*status = 0;
	if (lock & 0x01)
		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
	if (sync & 0x04)
		*status |= FE_HAS_VITERBI;
	if (sync & 0x08)
		*status |= FE_HAS_CARRIER;
	if (sync & 0x80)
		*status |= FE_HAS_SYNC | FE_HAS_LOCK;

	return 0;
}

/*
 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
 * is available, so this value doubles up to satisfy both measurements
 */
static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
{
	struct cx24123_state *state = fe->demodulator_priv;

	state->lastber =
		((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
		(cx24123_readreg(state, 0x1d) << 8 |
		cx24123_readreg(state, 0x1e));

	/* Do the signal quality processing here, it's derived from the BER. */
	/* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
	if (state->lastber < 5000)
		state->snr = 655*100;
	else if ( (state->lastber >=   5000) && (state->lastber <  55000) )
		state->snr = 655*90;
	else if ( (state->lastber >=  55000) && (state->lastber < 150000) )
		state->snr = 655*80;
	else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
		state->snr = 655*70;
	else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
		state->snr = 655*65;
	else
		state->snr = 0;

	*ber = state->lastber;

	return 0;
}

static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */

	return 0;
}

static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*snr = state->snr;

	return 0;
}

static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*ucblocks = state->lastber;

	return 0;
}

static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

	if (state->config->set_ts_params)
		state->config->set_ts_params(fe, 0);

	state->currentfreq=p->frequency;
728
	state->currentsymbolrate = p->u.qpsk.symbol_rate;
729 730 731 732 733 734 735

	cx24123_set_inversion(state, p->inversion);
	cx24123_set_fec(state, p->u.qpsk.fec_inner);
	cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
	cx24123_pll_tune(fe, p);

	/* Enable automatic aquisition and reset cycle */
736
	cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	cx24123_writereg(state, 0x00, 0x10);
	cx24123_writereg(state, 0x00, 0);

	return 0;
}

static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

	if (cx24123_get_inversion(state, &p->inversion) != 0) {
		printk("%s: Failed to get inversion status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
		printk("%s: Failed to get fec status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	p->frequency = state->currentfreq;
	p->u.qpsk.symbol_rate = state->currentsymbolrate;

	return 0;
}

static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

766 767 768 769
	switch (state->config->use_isl6421) {
	case 1:

		val = cx24123_readlnbreg(state, 0x0);
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		switch (tone) {
		case SEC_TONE_ON:
			return cx24123_writelnbreg(state, 0x0, val | 0x10);
		case SEC_TONE_OFF:
			return cx24123_writelnbreg(state, 0x0, val & 0x2f);
		default:
			printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
			return -EINVAL;
		}

	case 0:

		val = cx24123_readreg(state, 0x29);

		switch (tone) {
		case SEC_TONE_ON:
			dprintk("%s: setting tone on\n", __FUNCTION__);
			return cx24123_writereg(state, 0x29, val | 0x10);
		case SEC_TONE_OFF:
			dprintk("%s: setting tone off\n",__FUNCTION__);
			return cx24123_writereg(state, 0x29, val & 0xef);
		default:
			printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
			return -EINVAL;
		}
796
	}
797 798

	return 0;
799 800 801 802 803 804 805 806 807 808 809
}

static void cx24123_release(struct dvb_frontend* fe)
{
	struct cx24123_state* state = fe->demodulator_priv;
	dprintk("%s\n",__FUNCTION__);
	kfree(state);
}

static struct dvb_frontend_ops cx24123_ops;

810 811
struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
				    struct i2c_adapter* i2c)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
	struct cx24123_state* state = NULL;
	int ret;

	dprintk("%s\n",__FUNCTION__);

	/* allocate memory for the internal state */
	state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
	if (state == NULL) {
		printk("Unable to kmalloc\n");
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;
	memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
	state->lastber = 0;
	state->snr = 0;
	state->lnbreg = 0;
	state->VCAarg = 0;
	state->VGAarg = 0;
	state->bandselectarg = 0;
	state->pllarg = 0;
	state->currentfreq = 0;
	state->currentsymbolrate = 0;

	/* check if the demod is there */
	ret = cx24123_readreg(state, 0x00);
	if ((ret != 0xd1) && (ret != 0xe1)) {
		printk("Version != d1 or e1\n");
		goto error;
	}

	/* create dvb_frontend */
	state->frontend.ops = &state->ops;
	state->frontend.demodulator_priv = state;
	return &state->frontend;

error:
	kfree(state);

	return NULL;
}

static struct dvb_frontend_ops cx24123_ops = {

	.info = {
		.name = "Conexant CX24123/CX24109",
		.type = FE_QPSK,
		.frequency_min = 950000,
		.frequency_max = 2150000,
		.frequency_stepsize = 1011, /* kHz for QPSK frontends */
		.frequency_tolerance = 29500,
		.symbol_rate_min = 1000000,
		.symbol_rate_max = 45000000,
		.caps = FE_CAN_INVERSION_AUTO |
			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
			FE_CAN_QPSK | FE_CAN_RECOVER
	},

	.release = cx24123_release,

	.init = cx24123_initfe,
	.set_frontend = cx24123_set_frontend,
	.get_frontend = cx24123_get_frontend,
	.read_status = cx24123_read_status,
	.read_ber = cx24123_read_ber,
	.read_signal_strength = cx24123_read_signal_strength,
	.read_snr = cx24123_read_snr,
	.read_ucblocks = cx24123_read_ucblocks,
	.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
	.set_tone = cx24123_set_tone,
	.set_voltage = cx24123_set_voltage,
};

module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");

MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(cx24123_attach);