phy.c 55.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/delay.h>

#include "e1000.h"

static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 38 39
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] =
	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };

static const u16 e1000_igp_2_cable_length_table[] =
	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
	  124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
55
		ARRAY_SIZE(e1000_igp_2_cable_length_table)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

/**
 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Read the PHY management control register and check whether a PHY reset
 *  is blocked.  If a reset is not blocked return 0, otherwise
 *  return E1000_BLK_PHY_RESET (12).
 **/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
	u32 manc;

	manc = er32(MANC);

	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
	       E1000_BLK_PHY_RESET : 0;
}

/**
 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_id;

	ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
	if (ret_val)
		return ret_val;

	phy->id = (u32)(phy_id << 16);
	udelay(20);
	ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
	if (ret_val)
		return ret_val;

	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);

	return 0;
}

/**
 *  e1000e_phy_reset_dsp - Reset PHY DSP
 *  @hw: pointer to the HW structure
 *
 *  Reset the digital signal processor.
 **/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
	if (ret_val)
		return ret_val;

	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}

/**
122
 *  e1000e_read_phy_reg_mdic - Read MDI control register
123 124 125 126
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
127
 *  Reads the MDI control register in the PHY at offset and stores the
128 129
 *  information read to data.
 **/
130
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
131 132 133 134 135 136 137 138 139
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
		return -E1000_ERR_PARAM;
	}

140 141
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
142 143 144 145 146 147 148 149 150
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_READ));

	ew32(MDIC, mdic);

151 152 153 154 155
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
156
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
		udelay(50);
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		hw_dbg(hw, "MDI Read did not complete\n");
		return -E1000_ERR_PHY;
	}
	if (mdic & E1000_MDIC_ERROR) {
		hw_dbg(hw, "MDI Error\n");
		return -E1000_ERR_PHY;
	}
	*data = (u16) mdic;

	return 0;
}

/**
176
 *  e1000e_write_phy_reg_mdic - Write MDI control register
177 178 179 180 181 182
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
183
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
184 185 186 187 188 189 190 191 192
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, mdic = 0;

	if (offset > MAX_PHY_REG_ADDRESS) {
		hw_dbg(hw, "PHY Address %d is out of range\n", offset);
		return -E1000_ERR_PARAM;
	}

193 194
	/*
	 * Set up Op-code, Phy Address, and register offset in the MDI
195 196 197 198 199 200 201 202 203 204
	 * Control register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	mdic = (((u32)data) |
		(offset << E1000_MDIC_REG_SHIFT) |
		(phy->addr << E1000_MDIC_PHY_SHIFT) |
		(E1000_MDIC_OP_WRITE));

	ew32(MDIC, mdic);

205 206 207 208 209 210 211
	/*
	 * Poll the ready bit to see if the MDI read completed
	 * Increasing the time out as testing showed failures with
	 * the lower time out
	 */
	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
		udelay(50);
212 213 214 215 216 217 218 219
		mdic = er32(MDIC);
		if (mdic & E1000_MDIC_READY)
			break;
	}
	if (!(mdic & E1000_MDIC_READY)) {
		hw_dbg(hw, "MDI Write did not complete\n");
		return -E1000_ERR_PHY;
	}
220 221 222 223
	if (mdic & E1000_MDIC_ERROR) {
		hw_dbg(hw, "MDI Error\n");
		return -E1000_ERR_PHY;
	}
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	return 0;
}

/**
 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

246 247
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

271 272
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_read_phy_reg_igp - Read igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
298 299 300
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
301 302 303 304 305 306
		if (ret_val) {
			hw->phy.ops.release_phy(hw);
			return ret_val;
		}
	}

307 308
	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					   data);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_write_phy_reg_igp - Write igp PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
333 334 335
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (u16)offset);
336 337 338 339 340 341
		if (ret_val) {
			hw->phy.ops.release_phy(hw);
			return ret_val;
		}
	}

342 343
	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
					    data);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_read_kmrn_reg - Read kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 *  using the kumeran interface.  The information retrieved is stored in data.
 *  Release any acquired semaphores before exiting.
 **/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
	u32 kmrnctrlsta;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);

	kmrnctrlsta = er32(KMRNCTRLSTA);
	*data = (u16)kmrnctrlsta;

	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_write_kmrn_reg - Write kumeran register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 *  at the offset using the kumeran interface.  Release any acquired semaphores
 *  before exiting.
 **/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
	u32 kmrnctrlsta;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
		       E1000_KMRNCTRLSTA_OFFSET) | data;
	ew32(KMRNCTRLSTA, kmrnctrlsta);

	udelay(2);
	hw->phy.ops.release_phy(hw);

	return ret_val;
}

/**
 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 *  and downshift values are set also.
 **/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;

425
	/* Enable CRS on Tx. This must be set for half-duplex operation. */
426 427 428 429
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

430 431 432
	/* For newer PHYs this bit is downshift enable */
	if (phy->type == e1000_phy_m88)
		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
433

434 435
	/*
	 * Options:
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (phy->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

460 461
	/*
	 * Options:
462 463 464 465 466 467 468 469 470
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	if (phy->disable_polarity_correction == 1)
		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;

471 472 473 474
	/* Enable downshift on BM (disabled by default) */
	if (phy->type == e1000_phy_bm)
		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;

475 476 477 478
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

479
	if ((phy->type == e1000_phy_m88) && (phy->revision < 4)) {
480 481
		/*
		 * Force TX_CLK in the Extended PHY Specific Control Register
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		 * to 25MHz clock.
		 */
		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((phy->revision == 2) &&
		    (phy->id == M88E1111_I_PHY_ID)) {
			/* 82573L PHY - set the downshift counter to 5x. */
			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
		}
		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

	/* Commit the changes. */
	ret_val = e1000e_commit_phy(hw);
	if (ret_val)
		hw_dbg(hw, "Error committing the PHY changes\n");

	return ret_val;
}

/**
 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 *  @hw: pointer to the HW structure
 *
 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 *  igp PHY's.
 **/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1000_phy_hw_reset(hw);
	if (ret_val) {
		hw_dbg(hw, "Error resetting the PHY.\n");
		return ret_val;
	}

534 535 536 537 538
	/*
	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
	 * timeout issues when LFS is enabled.
	 */
	msleep(100);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	/* disable lplu d0 during driver init */
	ret_val = e1000_set_d0_lplu_state(hw, 0);
	if (ret_val) {
		hw_dbg(hw, "Error Disabling LPLU D0\n");
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
	if (ret_val)
		return ret_val;

	data &= ~IGP01E1000_PSCR_AUTO_MDIX;

	switch (phy->mdix) {
	case 1:
		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 2:
		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
		break;
	case 0:
	default:
		data |= IGP01E1000_PSCR_AUTO_MDIX;
		break;
	}
	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->mac.autoneg) {
571 572
		/*
		 * when autonegotiation advertisement is only 1000Mbps then we
573
		 * should disable SmartSpeed and enable Auto MasterSlave
574 575
		 * resolution as hardware default.
		 */
576 577 578
		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
579
					   &data);
580 581 582 583 584
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
585
					   data);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
			if (ret_val)
				return ret_val;

			/* Set auto Master/Slave resolution process */
			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
			if (ret_val)
				return ret_val;

			data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
			((data & CR_1000T_MS_VALUE) ?
			e1000_ms_force_master :
			e1000_ms_force_slave) :
			e1000_ms_auto;

		switch (phy->ms_type) {
		case e1000_ms_force_master:
			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			data |= CR_1000T_MS_ENABLE;
			data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
	}

	return ret_val;
}

/**
 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 *  @hw: pointer to the HW structure
 *
 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 *  register and if the PHY is already setup for auto-negotiation, then
 *  return successful.  Otherwise, setup advertisement and flow control to
 *  the appropriate values for the wanted auto-negotiation.
 **/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg = 0;

	phy->autoneg_advertised &= phy->autoneg_mask;

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

660 661
	/*
	 * Need to parse both autoneg_advertised and fc and set up
662 663 664 665 666 667
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

668 669
	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
				 NWAY_AR_100TX_HD_CAPS |
				 NWAY_AR_10T_FD_CAPS   |
				 NWAY_AR_10T_HD_CAPS);
	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);

	hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
		hw_dbg(hw, "Advertise 10mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
		hw_dbg(hw, "Advertise 10mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
		hw_dbg(hw, "Advertise 100mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
		hw_dbg(hw, "Advertise 100mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
		hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
		hw_dbg(hw, "Advertise 1000mb Full duplex\n");
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

715 716
	/*
	 * Check for a software override of the flow control settings, and
717 718 719 720 721 722 723 724 725 726 727 728
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
	 * negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames
	 *	  but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *	  but we do not support receiving pause frames).
729
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
730 731 732
	 *  other:  No software override.  The flow control configuration
	 *	  in the EEPROM is used.
	 */
733
	switch (hw->fc.type) {
734
	case e1000_fc_none:
735 736
		/*
		 * Flow control (Rx & Tx) is completely disabled by a
737 738 739 740 741
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:
742 743
		/*
		 * Rx Flow control is enabled, and Tx Flow control is
744
		 * disabled, by a software over-ride.
745 746 747 748
		 *
		 * Since there really isn't a way to advertise that we are
		 * capable of Rx Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric Rx PAUSE.  Later
749 750 751 752 753 754
		 * (in e1000e_config_fc_after_link_up) we will disable the
		 * hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:
755 756
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
757 758 759 760 761 762
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:
763 764
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
		ret_val = -E1000_ERR_CONFIG;
		return ret_val;
	}

	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
	}

	return ret_val;
}

/**
 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
 *  @hw: pointer to the HW structure
 *
 *  Performs initial bounds checking on autoneg advertisement parameter, then
 *  configure to advertise the full capability.  Setup the PHY to autoneg
 *  and restart the negotiation process between the link partner.  If
795
 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
796 797 798 799 800 801 802
 **/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_ctrl;

803 804
	/*
	 * Perform some bounds checking on the autoneg advertisement
805 806 807 808
	 * parameter.
	 */
	phy->autoneg_advertised &= phy->autoneg_mask;

809 810
	/*
	 * If autoneg_advertised is zero, we assume it was not defaulted
811 812 813 814 815 816 817 818 819 820 821 822 823
	 * by the calling code so we set to advertise full capability.
	 */
	if (phy->autoneg_advertised == 0)
		phy->autoneg_advertised = phy->autoneg_mask;

	hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
		hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
		return ret_val;
	}
	hw_dbg(hw, "Restarting Auto-Neg\n");

824 825
	/*
	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
826 827 828 829 830 831 832 833 834 835 836
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

837 838
	/*
	 * Does the user want to wait for Auto-Neg to complete here, or
839 840
	 * check at a later time (for example, callback routine).
	 */
841
	if (phy->autoneg_wait_to_complete) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
			hw_dbg(hw, "Error while waiting for "
				 "autoneg to complete\n");
			return ret_val;
		}
	}

	hw->mac.get_link_status = 1;

	return ret_val;
}

/**
 *  e1000e_setup_copper_link - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Calls the appropriate function to configure the link for auto-neg or forced
 *  speed and duplex.  Then we check for link, once link is established calls
 *  to configure collision distance and flow control are called.  If link is
 *  not established, we return -E1000_ERR_PHY (-2).
 **/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
	s32 ret_val;
	bool link;

	if (hw->mac.autoneg) {
870 871 872 873
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
874 875 876 877
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			return ret_val;
	} else {
878 879 880 881
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
882 883 884 885 886 887 888 889
		hw_dbg(hw, "Forcing Speed and Duplex\n");
		ret_val = e1000_phy_force_speed_duplex(hw);
		if (ret_val) {
			hw_dbg(hw, "Error Forcing Speed and Duplex\n");
			return ret_val;
		}
	}

890 891
	/*
	 * Check link status. Wait up to 100 microseconds for link to become
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	 * valid.
	 */
	ret_val = e1000e_phy_has_link_generic(hw,
					     COPPER_LINK_UP_LIMIT,
					     10,
					     &link);
	if (ret_val)
		return ret_val;

	if (link) {
		hw_dbg(hw, "Valid link established!!!\n");
		e1000e_config_collision_dist(hw);
		ret_val = e1000e_config_fc_after_link_up(hw);
	} else {
		hw_dbg(hw, "Unable to establish link!!!\n");
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Waits for link and returns
 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 **/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

937 938
	/*
	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;

	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	hw_dbg(hw, "IGP PSCR: %X\n", phy_data);

	udelay(1);

956
	if (phy->autoneg_wait_to_complete) {
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;

		if (!link)
			hw_dbg(hw, "Link taking longer than expected.\n");

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw,
						     PHY_FORCE_LIMIT,
						     100000,
						     &link);
		if (ret_val)
			return ret_val;
	}

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the PHY setup function to force speed and duplex.  Clears the
 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 *  changes.  If time expires while waiting for link up, we reset the DSP.
988
 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
989 990 991 992 993 994 995 996 997
 *  successful completion, else return corresponding error code.
 **/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data;
	bool link;

998 999
	/*
	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		return ret_val;

	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);

	/* Reset the phy to commit changes. */
	phy_data |= MII_CR_RESET;

	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		return ret_val;

	udelay(1);

1028
	if (phy->autoneg_wait_to_complete) {
1029 1030 1031 1032 1033 1034 1035 1036
		hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");

		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;

		if (!link) {
1037 1038
			/*
			 * We didn't get link.
1039 1040
			 * Reset the DSP and cross our fingers.
			 */
1041 1042
			ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
					   0x001d);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			if (ret_val)
				return ret_val;
			ret_val = e1000e_phy_reset_dsp(hw);
			if (ret_val)
				return ret_val;
		}

		/* Try once more */
		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
						     100000, &link);
		if (ret_val)
			return ret_val;
	}

	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

1061 1062
	/*
	 * Resetting the phy means we need to re-force TX_CLK in the
1063 1064 1065 1066 1067 1068 1069 1070
	 * Extended PHY Specific Control Register to 25MHz clock from
	 * the reset value of 2.5MHz.
	 */
	phy_data |= M88E1000_EPSCR_TX_CLK_25;
	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

1071 1072
	/*
	 * In addition, we must re-enable CRS on Tx for both half and full
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	 * duplex.
	 */
	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);

	return ret_val;
}

/**
 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 *  @hw: pointer to the HW structure
 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 *
 *  Forces speed and duplex on the PHY by doing the following: disable flow
 *  control, force speed/duplex on the MAC, disable auto speed detection,
 *  disable auto-negotiation, configure duplex, configure speed, configure
 *  the collision distance, write configuration to CTRL register.  The
 *  caller must write to the PHY_CONTROL register for these settings to
 *  take affect.
 **/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl;

	/* Turn off flow control when forcing speed/duplex */
1103
	hw->fc.type = e1000_fc_none;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	/* Force speed/duplex on the mac */
	ctrl = er32(CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~E1000_CTRL_SPD_SEL;

	/* Disable Auto Speed Detection */
	ctrl &= ~E1000_CTRL_ASDE;

	/* Disable autoneg on the phy */
	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;

	/* Forcing Full or Half Duplex? */
	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
		ctrl &= ~E1000_CTRL_FD;
		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
		hw_dbg(hw, "Half Duplex\n");
	} else {
		ctrl |= E1000_CTRL_FD;
		*phy_ctrl |= MII_CR_FULL_DUPLEX;
		hw_dbg(hw, "Full Duplex\n");
	}

	/* Forcing 10mb or 100mb? */
	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
		ctrl |= E1000_CTRL_SPD_100;
		*phy_ctrl |= MII_CR_SPEED_100;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
		hw_dbg(hw, "Forcing 100mb\n");
	} else {
		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
		*phy_ctrl |= MII_CR_SPEED_10;
		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
		hw_dbg(hw, "Forcing 10mb\n");
	}

	e1000e_config_collision_dist(hw);

	ew32(CTRL, ctrl);
}

/**
 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (!active) {
		data &= ~IGP02E1000_PM_D3_LPLU;
1171
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1172 1173
		if (ret_val)
			return ret_val;
1174 1175
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1176 1177
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1178 1179
		 * SmartSpeed, so performance is maintained.
		 */
1180 1181
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1182
					   &data);
1183 1184 1185 1186 1187
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1188
					   data);
1189 1190 1191 1192
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1193
					   &data);
1194 1195 1196 1197 1198
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1199
					   data);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= IGP02E1000_PM_D3_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return ret_val;
}

/**
1224
 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns 1
 *
 *  A downshift is detected by querying the PHY link health.
 **/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, offset, mask;

	switch (phy->type) {
	case e1000_phy_m88:
	case e1000_phy_gg82563:
		offset	= M88E1000_PHY_SPEC_STATUS;
		mask	= M88E1000_PSSR_DOWNSHIFT;
		break;
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
		offset	= IGP01E1000_PHY_LINK_HEALTH;
		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
		break;
	default:
		/* speed downshift not supported */
		phy->speed_downgraded = 0;
		return 0;
	}

	ret_val = e1e_rphy(hw, offset, &phy_data);

	if (!ret_val)
		phy->speed_downgraded = (phy_data & mask);

	return ret_val;
}

/**
 *  e1000_check_polarity_m88 - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY specific status register.
 **/
static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);

	if (!ret_val)
		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
 *  e1000_check_polarity_igp - Checks the polarity.
 *  @hw: pointer to the HW structure
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 *
 *  Polarity is determined based on the PHY port status register, and the
 *  current speed (since there is no polarity at 100Mbps).
 **/
static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data, offset, mask;

1301 1302 1303 1304
	/*
	 * Polarity is determined based on the speed of
	 * our connection.
	 */
1305 1306 1307 1308 1309 1310 1311 1312 1313
	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		offset	= IGP01E1000_PHY_PCS_INIT_REG;
		mask	= IGP01E1000_PHY_POLARITY_MASK;
	} else {
1314 1315
		/*
		 * This really only applies to 10Mbps since
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		 * there is no polarity for 100Mbps (always 0).
		 */
		offset	= IGP01E1000_PHY_PORT_STATUS;
		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
	}

	ret_val = e1e_rphy(hw, offset, &data);

	if (!ret_val)
		phy->cable_polarity = (data & mask)
				      ? e1000_rev_polarity_reversed
				      : e1000_rev_polarity_normal;

	return ret_val;
}

/**
1333
 *  e1000_wait_autoneg - Wait for auto-neg completion
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
 *  @hw: pointer to the HW structure
 *
 *  Waits for auto-negotiation to complete or for the auto-negotiation time
 *  limit to expire, which ever happens first.
 **/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_AUTONEG_COMPLETE)
			break;
		msleep(100);
	}

1357 1358
	/*
	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	 * has completed.
	 */
	return ret_val;
}

/**
 *  e1000e_phy_has_link_generic - Polls PHY for link
 *  @hw: pointer to the HW structure
 *  @iterations: number of times to poll for link
 *  @usec_interval: delay between polling attempts
 *  @success: pointer to whether polling was successful or not
 *
 *  Polls the PHY status register for link, 'iterations' number of times.
 **/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
			       u32 usec_interval, bool *success)
{
	s32 ret_val = 0;
	u16 i, phy_status;

	for (i = 0; i < iterations; i++) {
1380 1381
		/*
		 * Some PHYs require the PHY_STATUS register to be read
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		 * twice due to the link bit being sticky.  No harm doing
		 * it across the board.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
		if (ret_val)
			break;
		if (phy_status & MII_SR_LINK_STATUS)
			break;
		if (usec_interval >= 1000)
			mdelay(usec_interval/1000);
		else
			udelay(usec_interval);
	}

	*success = (i < iterations);

	return ret_val;
}

/**
 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY specific status register to retrieve the cable length
 *  information.  The cable length is determined by averaging the minimum and
 *  maximum values to get the "average" cable length.  The m88 PHY has four
 *  possible cable length values, which are:
 *	Register Value		Cable Length
 *	0			< 50 meters
 *	1			50 - 80 meters
 *	2			80 - 110 meters
 *	3			110 - 140 meters
 *	4			> 140 meters
 **/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
	phy->min_cable_length = e1000_m88_cable_length_table[index];
	phy->max_cable_length = e1000_m88_cable_length_table[index+1];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return ret_val;
}

/**
 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
 *  @hw: pointer to the HW structure
 *
 *  The automatic gain control (agc) normalizes the amplitude of the
 *  received signal, adjusting for the attenuation produced by the
1445 1446
 *  cable.  By reading the AGC registers, which represent the
 *  combination of course and fine gain value, the value can be put
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
 *  into a lookup table to obtain the approximate cable length
 *  for each channel.
 **/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, i, agc_value = 0;
	u16 cur_agc_index, max_agc_index = 0;
	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
							 {IGP02E1000_PHY_AGC_A,
							  IGP02E1000_PHY_AGC_B,
							  IGP02E1000_PHY_AGC_C,
							  IGP02E1000_PHY_AGC_D};

	/* Read the AGC registers for all channels */
	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
		if (ret_val)
			return ret_val;

1469 1470
		/*
		 * Getting bits 15:9, which represent the combination of
1471 1472
		 * course and fine gain values.  The result is a number
		 * that can be put into the lookup table to obtain the
1473 1474
		 * approximate cable length.
		 */
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
				IGP02E1000_AGC_LENGTH_MASK;

		/* Array index bound check. */
		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
		    (cur_agc_index == 0))
			return -E1000_ERR_PHY;

		/* Remove min & max AGC values from calculation. */
		if (e1000_igp_2_cable_length_table[min_agc_index] >
		    e1000_igp_2_cable_length_table[cur_agc_index])
			min_agc_index = cur_agc_index;
		if (e1000_igp_2_cable_length_table[max_agc_index] <
		    e1000_igp_2_cable_length_table[cur_agc_index])
			max_agc_index = cur_agc_index;

		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
	}

	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
		      e1000_igp_2_cable_length_table[max_agc_index]);
	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);

	/* Calculate cable length with the error range of +/- 10 meters. */
	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

	return ret_val;
}

/**
 *  e1000e_get_phy_info_m88 - Retrieve PHY information
 *  @hw: pointer to the HW structure
 *
 *  Valid for only copper links.  Read the PHY status register (sticky read)
 *  to verify that link is up.  Read the PHY special control register to
 *  determine the polarity and 10base-T extended distance.  Read the PHY
 *  special status register to determine MDI/MDIx and current speed.  If
 *  speed is 1000, then determine cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u16 phy_data;
	bool link;

1525
	if (hw->phy.media_type != e1000_media_type_copper) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		hw_dbg(hw, "Phy info is only valid for copper media\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		hw_dbg(hw, "Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy->polarity_correction = (phy_data &
				    M88E1000_PSCR_POLARITY_REVERSAL);

	ret_val = e1000_check_polarity_m88(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);

	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		/* Set values to "undefined" */
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
 *  @hw: pointer to the HW structure
 *
 *  Read PHY status to determine if link is up.  If link is up, then
 *  set/determine 10base-T extended distance and polarity correction.  Read
 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
 *  determine on the cable length, local and remote receiver.
 **/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	bool link;

	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link) {
		hw_dbg(hw, "Phy info is only valid if link is up\n");
		return -E1000_ERR_CONFIG;
	}

	phy->polarity_correction = 1;

	ret_val = e1000_check_polarity_igp(hw);
	if (ret_val)
		return ret_val;

	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
	if (ret_val)
		return ret_val;

	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);

	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
	    IGP01E1000_PSSR_SPEED_1000MBPS) {
		ret_val = e1000_get_cable_length(hw);
		if (ret_val)
			return ret_val;

		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
		if (ret_val)
			return ret_val;

		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
				? e1000_1000t_rx_status_ok
				: e1000_1000t_rx_status_not_ok;

		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
				 ? e1000_1000t_rx_status_ok
				 : e1000_1000t_rx_status_not_ok;
	} else {
		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
		phy->local_rx = e1000_1000t_rx_status_undefined;
		phy->remote_rx = e1000_1000t_rx_status_undefined;
	}

	return ret_val;
}

/**
 *  e1000e_phy_sw_reset - PHY software reset
 *  @hw: pointer to the HW structure
 *
 *  Does a software reset of the PHY by reading the PHY control register and
 *  setting/write the control register reset bit to the PHY.
 **/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_ctrl;

	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
	if (ret_val)
		return ret_val;

	phy_ctrl |= MII_CR_RESET;
	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
	if (ret_val)
		return ret_val;

	udelay(1);

	return ret_val;
}

/**
 *  e1000e_phy_hw_reset_generic - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Verify the reset block is not blocking us from resetting.  Acquire
 *  semaphore (if necessary) and read/set/write the device control reset
 *  bit in the PHY.  Wait the appropriate delay time for the device to
1678
 *  reset and release the semaphore (if necessary).
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 **/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 ctrl;

	ret_val = e1000_check_reset_block(hw);
	if (ret_val)
		return 0;

	ret_val = phy->ops.acquire_phy(hw);
	if (ret_val)
		return ret_val;

	ctrl = er32(CTRL);
	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
	e1e_flush();

	udelay(phy->reset_delay_us);

	ew32(CTRL, ctrl);
	e1e_flush();

	udelay(150);

	phy->ops.release_phy(hw);

	return e1000_get_phy_cfg_done(hw);
}

/**
 *  e1000e_get_cfg_done - Generic configuration done
 *  @hw: pointer to the HW structure
 *
 *  Generic function to wait 10 milli-seconds for configuration to complete
 *  and return success.
 **/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
	mdelay(10);
	return 0;
}

/* Internal function pointers */

/**
 *  e1000_get_phy_cfg_done - Generic PHY configuration done
 *  @hw: pointer to the HW structure
 *
 *  Return success if silicon family did not implement a family specific
 *  get_cfg_done function.
 **/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	if (hw->phy.ops.get_cfg_done)
		return hw->phy.ops.get_cfg_done(hw);

	return 0;
}

/**
 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
 *  @hw: pointer to the HW structure
 *
 *  When the silicon family has not implemented a forced speed/duplex
 *  function for the PHY, simply return 0.
 **/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
	if (hw->phy.ops.force_speed_duplex)
		return hw->phy.ops.force_speed_duplex(hw);

	return 0;
}

/**
 *  e1000e_get_phy_type_from_id - Get PHY type from id
 *  @phy_id: phy_id read from the phy
 *
 *  Returns the phy type from the id.
 **/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	switch (phy_id) {
	case M88E1000_I_PHY_ID:
	case M88E1000_E_PHY_ID:
	case M88E1111_I_PHY_ID:
	case M88E1011_I_PHY_ID:
		phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
		phy_type = e1000_phy_igp_2;
		break;
	case GG82563_E_PHY_ID:
		phy_type = e1000_phy_gg82563;
		break;
	case IGP03E1000_E_PHY_ID:
		phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy_type = e1000_phy_ife;
		break;
1786 1787 1788 1789
	case BME1000_E_PHY_ID:
	case BME1000_E_PHY_ID_R2:
		phy_type = e1000_phy_bm;
		break;
1790 1791 1792 1793 1794 1795 1796
	default:
		phy_type = e1000_phy_unknown;
		break;
	}
	return phy_type;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 *  e1000e_determine_phy_address - Determines PHY address.
 *  @hw: pointer to the HW structure
 *
 *  This uses a trial and error method to loop through possible PHY
 *  addresses. It tests each by reading the PHY ID registers and
 *  checking for a match.
 **/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_PHY_TYPE;
	u32 phy_addr= 0;
	u32 i = 0;
	enum e1000_phy_type phy_type = e1000_phy_unknown;

	do {
		for (phy_addr = 0; phy_addr < 4; phy_addr++) {
			hw->phy.addr = phy_addr;
			e1000e_get_phy_id(hw);
			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);

			/* 
			 * If phy_type is valid, break - we found our
			 * PHY address
			 */
			if (phy_type  != e1000_phy_unknown) {
				ret_val = 0;
				break;
			}
		}
		i++;
	} while ((ret_val != 0) && (i < 100));

	return ret_val;
}

/**
 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
 *  @page: page to access
 *
 *  Returns the phy address for the page requested.
 **/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
	u32 phy_addr = 2;

	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
		phy_addr = 1;

	return phy_addr;
}

/**
 *  e1000e_write_phy_reg_bm - Write BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Acquires semaphore, if necessary, then writes the data to PHY register
 *  at the offset.  Release any acquired semaphores before exiting.
 **/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;
	u32 page_select = 0;
	u32 page = offset >> IGP_PAGE_SHIFT;
	u32 page_shift = 0;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
							 false);
		goto out;
	}

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		goto out;

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
		if (ret_val) {
			hw->phy.ops.release_phy(hw);
			goto out;
		}
	}

	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                    data);

	hw->phy.ops.release_phy(hw);

out:
	return ret_val;
}

/**
 *  e1000e_read_phy_reg_bm - Read BM PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting.
 **/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;
	u32 page_select = 0;
	u32 page = offset >> IGP_PAGE_SHIFT;
	u32 page_shift = 0;

	/* Page 800 works differently than the rest so it has its own func */
	if (page == BM_WUC_PAGE) {
		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
							 true);
		goto out;
	}

	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val)
		goto out;

	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);

	if (offset > MAX_PHY_MULTI_PAGE_REG) {
		/*
		 * Page select is register 31 for phy address 1 and 22 for
		 * phy address 2 and 3. Page select is shifted only for
		 * phy address 1.
		 */
		if (hw->phy.addr == 1) {
			page_shift = IGP_PAGE_SHIFT;
			page_select = IGP01E1000_PHY_PAGE_SELECT;
		} else {
			page_shift = 0;
			page_select = BM_PHY_PAGE_SELECT;
		}

		/* Page is shifted left, PHY expects (page x 32) */
		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
		                                    (page << page_shift));
		if (ret_val) {
			hw->phy.ops.release_phy(hw);
			goto out;
		}
	}

	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
	                                   data);
	hw->phy.ops.release_phy(hw);

out:
	return ret_val;
}

/**
 *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read or written
 *  @data: pointer to the data to read or write
 *  @read: determines if operation is read or write
 *
 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 *  and storing the retrieved information in data.  Release any acquired
 *  semaphores before exiting. Note that procedure to read the wakeup
 *  registers are different. It works as such:
 *  1) Set page 769, register 17, bit 2 = 1
 *  2) Set page to 800 for host (801 if we were manageability)
 *  3) Write the address using the address opcode (0x11)
 *  4) Read or write the data using the data opcode (0x12)
 *  5) Restore 769_17.2 to its original value
 **/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
					  u16 *data, bool read)
{
	s32 ret_val;
	u16 reg = ((u16)offset) & PHY_REG_MASK;
	u16 phy_reg = 0;
	u8  phy_acquired = 1;


	ret_val = hw->phy.ops.acquire_phy(hw);
	if (ret_val) {
		phy_acquired = 0;
		goto out;
	}

	/* All operations in this function are phy address 1 */
	hw->phy.addr = 1;

	/* Set page 769 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (ret_val)
		goto out;

	/* First clear bit 4 to avoid a power state change */
	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (ret_val)
		goto out;

	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
	                                    phy_reg | BM_WUC_ENABLE_BIT);
	if (ret_val)
		goto out;

	/* Select page 800 */
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));

	/* Write the page 800 offset value using opcode 0x11 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
	if (ret_val)
		goto out;

	if (read) {
	        /* Read the page 800 value using opcode 0x12 */
		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
		                                   data);
	} else {
	        /* Read the page 800 value using opcode 0x12 */
		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
						    *data);
	}

	if (ret_val)
		goto out;

	/*
	 * Restore 769_17.2 to its original value
	 * Set page 769
	 */
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));

	/* Clear 769_17.2 */
	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);

out:
	if (phy_acquired == 1)
		hw->phy.ops.release_phy(hw);
	return ret_val;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/**
 *  e1000e_commit_phy - Soft PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Performs a soft PHY reset on those that apply. This is a function pointer
 *  entry point called by drivers.
 **/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
	if (hw->phy.ops.commit_phy)
		return hw->phy.ops.commit_phy(hw);

	return 0;
}

/**
 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D0
 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.  This is a function pointer entry point called by drivers.
 **/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	if (hw->phy.ops.set_d0_lplu_state)
		return hw->phy.ops.set_d0_lplu_state(hw, active);

	return 0;
}