mca_asm.S 21.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
//
// assembly portion of the IA64 MCA handling
//
// Mods by cfleck to integrate into kernel build
// 00/03/15 davidm Added various stop bits to get a clean compile
//
// 00/03/29 cfleck Added code to save INIT handoff state in pt_regs format, switch to temp
//		   kstack, switch modes, jump to C INIT handler
//
// 02/01/04 J.Hall <jenna.s.hall@intel.com>
//		   Before entering virtual mode code:
//		   1. Check for TLB CPU error
//		   2. Restore current thread pointer to kr6
//		   3. Move stack ptr 16 bytes to conform to C calling convention
//
// 04/11/12 Russ Anderson <rja@sgi.com>
//		   Added per cpu MCA/INIT stack save areas.
//
#include <linux/config.h>
#include <linux/threads.h>

#include <asm/asmmacro.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca_asm.h>
#include <asm/mca.h>

/*
 * When we get a machine check, the kernel stack pointer is no longer
 * valid, so we need to set a new stack pointer.
 */
#define	MINSTATE_PHYS	/* Make sure stack access is physical for MINSTATE */

/*
 * Needed for return context to SAL
 */
#define IA64_MCA_SAME_CONTEXT	0
#define IA64_MCA_COLD_BOOT	-2

#include "minstate.h"

/*
 * SAL_TO_OS_MCA_HANDOFF_STATE (SAL 3.0 spec)
 *		1. GR1 = OS GP
 *		2. GR8 = PAL_PROC physical address
 *		3. GR9 = SAL_PROC physical address
 *		4. GR10 = SAL GP (physical)
 *		5. GR11 = Rendez state
 *		6. GR12 = Return address to location within SAL_CHECK
 */
#define SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(_tmp)		\
	LOAD_PHYSICAL(p0, _tmp, ia64_sal_to_os_handoff_state);; \
	st8	[_tmp]=r1,0x08;;			\
	st8	[_tmp]=r8,0x08;;			\
	st8	[_tmp]=r9,0x08;;			\
	st8	[_tmp]=r10,0x08;;			\
	st8	[_tmp]=r11,0x08;;			\
	st8	[_tmp]=r12,0x08;;			\
	st8	[_tmp]=r17,0x08;;			\
	st8	[_tmp]=r18,0x08

/*
 * OS_MCA_TO_SAL_HANDOFF_STATE (SAL 3.0 spec)
 * (p6) is executed if we never entered virtual mode (TLB error)
 * (p7) is executed if we entered virtual mode as expected (normal case)
 *	1. GR8 = OS_MCA return status
 *	2. GR9 = SAL GP (physical)
 *	3. GR10 = 0/1 returning same/new context
 *	4. GR22 = New min state save area pointer
 *	returns ptr to SAL rtn save loc in _tmp
 */
#define OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(_tmp)	\
	movl	_tmp=ia64_os_to_sal_handoff_state;;	\
	DATA_VA_TO_PA(_tmp);;				\
	ld8	r8=[_tmp],0x08;;			\
	ld8	r9=[_tmp],0x08;;			\
	ld8	r10=[_tmp],0x08;;			\
	ld8	r22=[_tmp],0x08;;
	// now _tmp is pointing to SAL rtn save location

/*
 * COLD_BOOT_HANDOFF_STATE() sets ia64_mca_os_to_sal_state
 *	imots_os_status=IA64_MCA_COLD_BOOT
 *	imots_sal_gp=SAL GP
 *	imots_context=IA64_MCA_SAME_CONTEXT
 *	imots_new_min_state=Min state save area pointer
 *	imots_sal_check_ra=Return address to location within SAL_CHECK
 *
 */
#define COLD_BOOT_HANDOFF_STATE(sal_to_os_handoff,os_to_sal_handoff,tmp)\
	movl	tmp=IA64_MCA_COLD_BOOT;					\
	movl	sal_to_os_handoff=__pa(ia64_sal_to_os_handoff_state);	\
	movl	os_to_sal_handoff=__pa(ia64_os_to_sal_handoff_state);;	\
	st8	[os_to_sal_handoff]=tmp,8;;				\
	ld8	tmp=[sal_to_os_handoff],48;;				\
	st8	[os_to_sal_handoff]=tmp,8;;				\
	movl	tmp=IA64_MCA_SAME_CONTEXT;;				\
	st8	[os_to_sal_handoff]=tmp,8;;				\
	ld8	tmp=[sal_to_os_handoff],-8;;				\
	st8     [os_to_sal_handoff]=tmp,8;;				\
	ld8	tmp=[sal_to_os_handoff];;				\
	st8     [os_to_sal_handoff]=tmp;;

#define GET_IA64_MCA_DATA(reg)						\
	GET_THIS_PADDR(reg, ia64_mca_data)				\
	;;								\
	ld8 reg=[reg]

	.global ia64_os_mca_dispatch
	.global ia64_os_mca_dispatch_end
	.global ia64_sal_to_os_handoff_state
	.global	ia64_os_to_sal_handoff_state
113
	.global ia64_do_tlb_purge
L
Linus Torvalds 已提交
114 115 116 117

	.text
	.align 16

118 119 120 121 122 123
/*
 * Just the TLB purge part is moved to a separate function
 * so we can re-use the code for cpu hotplug code as well
 * Caller should now setup b1, so we can branch once the
 * tlb flush is complete.
 */
L
Linus Torvalds 已提交
124

125
ia64_do_tlb_purge:
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define O(member)	IA64_CPUINFO_##member##_OFFSET

	GET_THIS_PADDR(r2, cpu_info)	// load phys addr of cpu_info into r2
	;;
	addl r17=O(PTCE_STRIDE),r2
	addl r2=O(PTCE_BASE),r2
	;;
	ld8 r18=[r2],(O(PTCE_COUNT)-O(PTCE_BASE));;	// r18=ptce_base
	ld4 r19=[r2],4					// r19=ptce_count[0]
	ld4 r21=[r17],4					// r21=ptce_stride[0]
	;;
	ld4 r20=[r2]					// r20=ptce_count[1]
	ld4 r22=[r17]					// r22=ptce_stride[1]
	mov r24=0
	;;
	adds r20=-1,r20
	;;
#undef O

2:
	cmp.ltu p6,p7=r24,r19
(p7)	br.cond.dpnt.few 4f
	mov ar.lc=r20
3:
	ptc.e r18
	;;
	add r18=r22,r18
	br.cloop.sptk.few 3b
	;;
	add r18=r21,r18
	add r24=1,r24
	;;
	br.sptk.few 2b
4:
	srlz.i 			// srlz.i implies srlz.d
	;;

        // Now purge addresses formerly mapped by TR registers
	// 1. Purge ITR&DTR for kernel.
	movl r16=KERNEL_START
	mov r18=KERNEL_TR_PAGE_SHIFT<<2
	;;
	ptr.i r16, r18
	ptr.d r16, r18
	;;
	srlz.i
	;;
	srlz.d
	;;
	// 2. Purge DTR for PERCPU data.
	movl r16=PERCPU_ADDR
	mov r18=PERCPU_PAGE_SHIFT<<2
	;;
	ptr.d r16,r18
	;;
	srlz.d
	;;
	// 3. Purge ITR for PAL code.
	GET_THIS_PADDR(r2, ia64_mca_pal_base)
	;;
	ld8 r16=[r2]
	mov r18=IA64_GRANULE_SHIFT<<2
	;;
	ptr.i r16,r18
	;;
	srlz.i
	;;
	// 4. Purge DTR for stack.
	mov r16=IA64_KR(CURRENT_STACK)
	;;
	shl r16=r16,IA64_GRANULE_SHIFT
	movl r19=PAGE_OFFSET
	;;
	add r16=r19,r16
	mov r18=IA64_GRANULE_SHIFT<<2
	;;
	ptr.d r16,r18
	;;
	srlz.i
	;;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	// Now branch away to caller.
	br.sptk.many b1
	;;

ia64_os_mca_dispatch:

	// Serialize all MCA processing
	mov	r3=1;;
	LOAD_PHYSICAL(p0,r2,ia64_mca_serialize);;
ia64_os_mca_spin:
	xchg8	r4=[r2],r3;;
	cmp.ne	p6,p0=r4,r0
(p6)	br ia64_os_mca_spin

	// Save the SAL to OS MCA handoff state as defined
	// by SAL SPEC 3.0
	// NOTE : The order in which the state gets saved
	//	  is dependent on the way the C-structure
	//	  for ia64_mca_sal_to_os_state_t has been
	//	  defined in include/asm/mca.h
	SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
	;;

	// LOG PROCESSOR STATE INFO FROM HERE ON..
begin_os_mca_dump:
	br	ia64_os_mca_proc_state_dump;;

ia64_os_mca_done_dump:

	LOAD_PHYSICAL(p0,r16,ia64_sal_to_os_handoff_state+56)
	;;
	ld8 r18=[r16]		// Get processor state parameter on existing PALE_CHECK.
	;;
	tbit.nz p6,p7=r18,60
(p7)	br.spnt done_tlb_purge_and_reload

	// The following code purges TC and TR entries. Then reload all TC entries.
	// Purge percpu data TC entries.
begin_tlb_purge_and_reload:
	movl r18=ia64_reload_tr;;
	LOAD_PHYSICAL(p0,r18,ia64_reload_tr);;
	mov b1=r18;;
	br.sptk.many ia64_do_tlb_purge;;

ia64_reload_tr:
L
Linus Torvalds 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	// Finally reload the TR registers.
	// 1. Reload DTR/ITR registers for kernel.
	mov r18=KERNEL_TR_PAGE_SHIFT<<2
	movl r17=KERNEL_START
	;;
	mov cr.itir=r18
	mov cr.ifa=r17
        mov r16=IA64_TR_KERNEL
	mov r19=ip
	movl r18=PAGE_KERNEL
	;;
        dep r17=0,r19,0, KERNEL_TR_PAGE_SHIFT
	;;
	or r18=r17,r18
	;;
        itr.i itr[r16]=r18
	;;
        itr.d dtr[r16]=r18
        ;;
	srlz.i
	srlz.d
	;;
	// 2. Reload DTR register for PERCPU data.
	GET_THIS_PADDR(r2, ia64_mca_per_cpu_pte)
	;;
	movl r16=PERCPU_ADDR		// vaddr
	movl r18=PERCPU_PAGE_SHIFT<<2
	;;
	mov cr.itir=r18
	mov cr.ifa=r16
	;;
	ld8 r18=[r2]			// load per-CPU PTE
	mov r16=IA64_TR_PERCPU_DATA;
	;;
	itr.d dtr[r16]=r18
	;;
	srlz.d
	;;
	// 3. Reload ITR for PAL code.
	GET_THIS_PADDR(r2, ia64_mca_pal_pte)
	;;
	ld8 r18=[r2]			// load PAL PTE
	;;
	GET_THIS_PADDR(r2, ia64_mca_pal_base)
	;;
	ld8 r16=[r2]			// load PAL vaddr
	mov r19=IA64_GRANULE_SHIFT<<2
	;;
	mov cr.itir=r19
	mov cr.ifa=r16
	mov r20=IA64_TR_PALCODE
	;;
	itr.i itr[r20]=r18
	;;
	srlz.i
	;;
	// 4. Reload DTR for stack.
	mov r16=IA64_KR(CURRENT_STACK)
	;;
	shl r16=r16,IA64_GRANULE_SHIFT
	movl r19=PAGE_OFFSET
	;;
	add r18=r19,r16
	movl r20=PAGE_KERNEL
	;;
	add r16=r20,r16
	mov r19=IA64_GRANULE_SHIFT<<2
	;;
	mov cr.itir=r19
	mov cr.ifa=r18
	mov r20=IA64_TR_CURRENT_STACK
	;;
	itr.d dtr[r20]=r16
	;;
	srlz.d
	;;
	br.sptk.many done_tlb_purge_and_reload
err:
	COLD_BOOT_HANDOFF_STATE(r20,r21,r22)
	br.sptk.many ia64_os_mca_done_restore

done_tlb_purge_and_reload:

	// Setup new stack frame for OS_MCA handling
	GET_IA64_MCA_DATA(r2)
	;;
	add r3 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
	add r2 = IA64_MCA_CPU_RBSTORE_OFFSET, r2
	;;
	rse_switch_context(r6,r3,r2);;	// RSC management in this new context

	GET_IA64_MCA_DATA(r2)
	;;
	add r2 = IA64_MCA_CPU_STACK_OFFSET+IA64_MCA_STACK_SIZE-16, r2
	;;
	mov r12=r2		// establish new stack-pointer

        // Enter virtual mode from physical mode
	VIRTUAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_begin, r4)
ia64_os_mca_virtual_begin:

	// Call virtual mode handler
	movl		r2=ia64_mca_ucmc_handler;;
	mov		b6=r2;;
	br.call.sptk.many    b0=b6;;
.ret0:
	// Revert back to physical mode before going back to SAL
	PHYSICAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_end, r4)
ia64_os_mca_virtual_end:

	// restore the original stack frame here
	GET_IA64_MCA_DATA(r2)
	;;
	add r2 = IA64_MCA_CPU_STACKFRAME_OFFSET, r2
	;;
	movl    r4=IA64_PSR_MC
	;;
	rse_return_context(r4,r3,r2)	// switch from interrupt context for RSE

	// let us restore all the registers from our PSI structure
	mov	r8=gp
	;;
begin_os_mca_restore:
	br	ia64_os_mca_proc_state_restore;;

ia64_os_mca_done_restore:
	OS_MCA_TO_SAL_HANDOFF_STATE_RESTORE(r2);;
	// branch back to SALE_CHECK
	ld8		r3=[r2];;
	mov		b0=r3;;		// SAL_CHECK return address

	// release lock
	movl		r3=ia64_mca_serialize;;
	DATA_VA_TO_PA(r3);;
	st8.rel		[r3]=r0

	br		b0
	;;
ia64_os_mca_dispatch_end:
//EndMain//////////////////////////////////////////////////////////////////////


//++
// Name:
//      ia64_os_mca_proc_state_dump()
//
// Stub Description:
//
//       This stub dumps the processor state during MCHK to a data area
//
//--

ia64_os_mca_proc_state_dump:
// Save bank 1 GRs 16-31 which will be used by c-language code when we switch
//  to virtual addressing mode.
	GET_IA64_MCA_DATA(r2)
	;;
	add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2
	;;
// save ar.NaT
	mov		r5=ar.unat                  // ar.unat

// save banked GRs 16-31 along with NaT bits
	bsw.1;;
	st8.spill	[r2]=r16,8;;
	st8.spill	[r2]=r17,8;;
	st8.spill	[r2]=r18,8;;
	st8.spill	[r2]=r19,8;;
	st8.spill	[r2]=r20,8;;
	st8.spill	[r2]=r21,8;;
	st8.spill	[r2]=r22,8;;
	st8.spill	[r2]=r23,8;;
	st8.spill	[r2]=r24,8;;
	st8.spill	[r2]=r25,8;;
	st8.spill	[r2]=r26,8;;
	st8.spill	[r2]=r27,8;;
	st8.spill	[r2]=r28,8;;
	st8.spill	[r2]=r29,8;;
	st8.spill	[r2]=r30,8;;
	st8.spill	[r2]=r31,8;;

	mov		r4=ar.unat;;
	st8		[r2]=r4,8                // save User NaT bits for r16-r31
	mov		ar.unat=r5                  // restore original unat
	bsw.0;;

//save BRs
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2                // duplicate r2 in r4

	mov		r3=b0
	mov		r5=b1
	mov		r7=b2;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=b3
	mov		r5=b4
	mov		r7=b5;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=b6
	mov		r5=b7;;
	st8		[r2]=r3,2*8
	st8		[r4]=r5,2*8;;

cSaveCRs:
// save CRs
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2                // duplicate r2 in r4

	mov		r3=cr.dcr
	mov		r5=cr.itm
	mov		r7=cr.iva;;

	st8		[r2]=r3,8*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;            // 48 byte rements

	mov		r3=cr.pta;;
	st8		[r2]=r3,8*8;;            // 64 byte rements

// if PSR.ic=0, reading interruption registers causes an illegal operation fault
	mov		r3=psr;;
	tbit.nz.unc	p6,p0=r3,PSR_IC;;           // PSI Valid Log bit pos. test
(p6)    st8     [r2]=r0,9*8+160             // increment by 232 byte inc.
begin_skip_intr_regs:
(p6)	br		SkipIntrRegs;;

	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2                // duplicate r2 in r6

	mov		r3=cr.ipsr
	mov		r5=cr.isr
	mov		r7=r0;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=cr.iip
	mov		r5=cr.ifa
	mov		r7=cr.itir;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=cr.iipa
	mov		r5=cr.ifs
	mov		r7=cr.iim;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=cr25;;                   // cr.iha
	st8		[r2]=r3,160;;               // 160 byte rement

SkipIntrRegs:
	st8		[r2]=r0,152;;               // another 152 byte .

	add		r4=8,r2                     // duplicate r2 in r4
	add		r6=2*8,r2                   // duplicate r2 in r6

	mov		r3=cr.lid
//	mov		r5=cr.ivr                     // cr.ivr, don't read it
	mov		r7=cr.tpr;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=r0                       // cr.eoi => cr67
	mov		r5=r0                       // cr.irr0 => cr68
	mov		r7=r0;;                     // cr.irr1 => cr69
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=r0                       // cr.irr2 => cr70
	mov		r5=r0                       // cr.irr3 => cr71
	mov		r7=cr.itv;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=cr.pmv
	mov		r5=cr.cmcv;;
	st8		[r2]=r3,7*8
	st8		[r4]=r5,7*8;;

	mov		r3=r0                       // cr.lrr0 => cr80
	mov		r5=r0;;                     // cr.lrr1 => cr81
	st8		[r2]=r3,23*8
	st8		[r4]=r5,23*8;;

	adds		r2=25*8,r2;;

cSaveARs:
// save ARs
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2                // duplicate r2 in r6

	mov		r3=ar.k0
	mov		r5=ar.k1
	mov		r7=ar.k2;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=ar.k3
	mov		r5=ar.k4
	mov		r7=ar.k5;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=ar.k6
	mov		r5=ar.k7
	mov		r7=r0;;                     // ar.kr8
	st8		[r2]=r3,10*8
	st8		[r4]=r5,10*8
	st8		[r6]=r7,10*8;;           // rement by 72 bytes

	mov		r3=ar.rsc
	mov		ar.rsc=r0			    // put RSE in enforced lazy mode
	mov		r5=ar.bsp
	;;
	mov		r7=ar.bspstore;;
	st8		[r2]=r3,3*8
	st8		[r4]=r5,3*8
	st8		[r6]=r7,3*8;;

	mov		r3=ar.rnat;;
	st8		[r2]=r3,8*13             // increment by 13x8 bytes

	mov		r3=ar.ccv;;
	st8		[r2]=r3,8*4

	mov		r3=ar.unat;;
	st8		[r2]=r3,8*4

	mov		r3=ar.fpsr;;
	st8		[r2]=r3,8*4

	mov		r3=ar.itc;;
	st8		[r2]=r3,160                 // 160

	mov		r3=ar.pfs;;
	st8		[r2]=r3,8

	mov		r3=ar.lc;;
	st8		[r2]=r3,8

	mov		r3=ar.ec;;
	st8		[r2]=r3
	add		r2=8*62,r2               //padding

// save RRs
	mov		ar.lc=0x08-1
	movl		r4=0x00;;

cStRR:
	dep.z		r5=r4,61,3;;
	mov		r3=rr[r5];;
	st8		[r2]=r3,8
	add		r4=1,r4
	br.cloop.sptk.few	cStRR
	;;
end_os_mca_dump:
	br	ia64_os_mca_done_dump;;

//EndStub//////////////////////////////////////////////////////////////////////


//++
// Name:
//       ia64_os_mca_proc_state_restore()
//
// Stub Description:
//
//       This is a stub to restore the saved processor state during MCHK
//
//--

ia64_os_mca_proc_state_restore:

// Restore bank1 GR16-31
	GET_IA64_MCA_DATA(r2)
	;;
	add r2 = IA64_MCA_CPU_PROC_STATE_DUMP_OFFSET, r2

restore_GRs:                                    // restore bank-1 GRs 16-31
	bsw.1;;
	add		r3=16*8,r2;;                // to get to NaT of GR 16-31
	ld8		r3=[r3];;
	mov		ar.unat=r3;;                // first restore NaT

	ld8.fill	r16=[r2],8;;
	ld8.fill	r17=[r2],8;;
	ld8.fill	r18=[r2],8;;
	ld8.fill	r19=[r2],8;;
	ld8.fill	r20=[r2],8;;
	ld8.fill	r21=[r2],8;;
	ld8.fill	r22=[r2],8;;
	ld8.fill	r23=[r2],8;;
	ld8.fill	r24=[r2],8;;
	ld8.fill	r25=[r2],8;;
	ld8.fill	r26=[r2],8;;
	ld8.fill	r27=[r2],8;;
	ld8.fill	r28=[r2],8;;
	ld8.fill	r29=[r2],8;;
	ld8.fill	r30=[r2],8;;
	ld8.fill	r31=[r2],8;;

	ld8		r3=[r2],8;;              // increment to skip NaT
	bsw.0;;

restore_BRs:
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2;;              // duplicate r2 in r4

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		b0=r3
	mov		b1=r5
	mov		b2=r7;;

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		b3=r3
	mov		b4=r5
	mov		b5=r7;;

	ld8		r3=[r2],2*8
	ld8		r5=[r4],2*8;;
	mov		b6=r3
	mov		b7=r5;;

restore_CRs:
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2;;              // duplicate r2 in r4

	ld8		r3=[r2],8*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;            // 48 byte increments
	mov		cr.dcr=r3
	mov		cr.itm=r5
	mov		cr.iva=r7;;

	ld8		r3=[r2],8*8;;            // 64 byte increments
//      mov		cr.pta=r3


// if PSR.ic=1, reading interruption registers causes an illegal operation fault
	mov		r3=psr;;
	tbit.nz.unc	p6,p0=r3,PSR_IC;;           // PSI Valid Log bit pos. test
(p6)    st8     [r2]=r0,9*8+160             // increment by 232 byte inc.

begin_rskip_intr_regs:
(p6)	br		rSkipIntrRegs;;

	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2;;              // duplicate r2 in r4

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		cr.ipsr=r3
//	mov		cr.isr=r5                   // cr.isr is read only

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		cr.iip=r3
	mov		cr.ifa=r5
	mov		cr.itir=r7;;

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		cr.iipa=r3
	mov		cr.ifs=r5
	mov		cr.iim=r7

	ld8		r3=[r2],160;;               // 160 byte increment
	mov		cr.iha=r3

rSkipIntrRegs:
	ld8		r3=[r2],152;;               // another 152 byte inc.

	add		r4=8,r2                     // duplicate r2 in r4
	add		r6=2*8,r2;;                 // duplicate r2 in r6

	ld8		r3=[r2],8*3
	ld8		r5=[r4],8*3
	ld8		r7=[r6],8*3;;
	mov		cr.lid=r3
//	mov		cr.ivr=r5                   // cr.ivr is read only
	mov		cr.tpr=r7;;

	ld8		r3=[r2],8*3
	ld8		r5=[r4],8*3
	ld8		r7=[r6],8*3;;
//	mov		cr.eoi=r3
//	mov		cr.irr0=r5                  // cr.irr0 is read only
//	mov		cr.irr1=r7;;                // cr.irr1 is read only

	ld8		r3=[r2],8*3
	ld8		r5=[r4],8*3
	ld8		r7=[r6],8*3;;
//	mov		cr.irr2=r3                  // cr.irr2 is read only
//	mov		cr.irr3=r5                  // cr.irr3 is read only
	mov		cr.itv=r7;;

	ld8		r3=[r2],8*7
	ld8		r5=[r4],8*7;;
	mov		cr.pmv=r3
	mov		cr.cmcv=r5;;

	ld8		r3=[r2],8*23
	ld8		r5=[r4],8*23;;
	adds		r2=8*23,r2
	adds		r4=8*23,r4;;
//	mov		cr.lrr0=r3
//	mov		cr.lrr1=r5

	adds		r2=8*2,r2;;

restore_ARs:
	add		r4=8,r2                  // duplicate r2 in r4
	add		r6=2*8,r2;;              // duplicate r2 in r4

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		ar.k0=r3
	mov		ar.k1=r5
	mov		ar.k2=r7;;

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
	mov		ar.k3=r3
	mov		ar.k4=r5
	mov		ar.k5=r7;;

	ld8		r3=[r2],10*8
	ld8		r5=[r4],10*8
	ld8		r7=[r6],10*8;;
	mov		ar.k6=r3
	mov		ar.k7=r5
	;;

	ld8		r3=[r2],3*8
	ld8		r5=[r4],3*8
	ld8		r7=[r6],3*8;;
//	mov		ar.rsc=r3
//	mov		ar.bsp=r5                   // ar.bsp is read only
	mov		ar.rsc=r0			    // make sure that RSE is in enforced lazy mode
	;;
	mov		ar.bspstore=r7;;

	ld8		r9=[r2],8*13;;
	mov		ar.rnat=r9

	mov		ar.rsc=r3
	ld8		r3=[r2],8*4;;
	mov		ar.ccv=r3

	ld8		r3=[r2],8*4;;
	mov		ar.unat=r3

	ld8		r3=[r2],8*4;;
	mov		ar.fpsr=r3

	ld8		r3=[r2],160;;               // 160
//      mov		ar.itc=r3

	ld8		r3=[r2],8;;
	mov		ar.pfs=r3

	ld8		r3=[r2],8;;
	mov		ar.lc=r3

	ld8		r3=[r2];;
	mov		ar.ec=r3
	add		r2=8*62,r2;;             // padding

restore_RRs:
	mov		r5=ar.lc
	mov		ar.lc=0x08-1
	movl		r4=0x00;;
cStRRr:
	dep.z		r7=r4,61,3
	ld8		r3=[r2],8;;
	mov		rr[r7]=r3                   // what are its access previledges?
	add		r4=1,r4
	br.cloop.sptk.few	cStRRr
	;;
	mov		ar.lc=r5
	;;
end_os_mca_restore:
	br	ia64_os_mca_done_restore;;

//EndStub//////////////////////////////////////////////////////////////////////


// ok, the issue here is that we need to save state information so
// it can be useable by the kernel debugger and show regs routines.
// In order to do this, our best bet is save the current state (plus
// the state information obtain from the MIN_STATE_AREA) into a pt_regs
// format.  This way we can pass it on in a useable format.
//

//
// SAL to OS entry point for INIT on the monarch processor
// This has been defined for registration purposes with SAL
// as a part of ia64_mca_init.
//
// When we get here, the following registers have been
// set by the SAL for our use
//
//		1. GR1 = OS INIT GP
//		2. GR8 = PAL_PROC physical address
//		3. GR9 = SAL_PROC physical address
//		4. GR10 = SAL GP (physical)
//		5. GR11 = Init Reason
//			0 = Received INIT for event other than crash dump switch
//			1 = Received wakeup at the end of an OS_MCA corrected machine check
//			2 = Received INIT dude to CrashDump switch assertion
//
//		6. GR12 = Return address to location within SAL_INIT procedure


GLOBAL_ENTRY(ia64_monarch_init_handler)
	.prologue
	// stash the information the SAL passed to os
	SAL_TO_OS_MCA_HANDOFF_STATE_SAVE(r2)
	;;
	SAVE_MIN_WITH_COVER
	;;
	mov r8=cr.ifa
	mov r9=cr.isr
	adds r3=8,r2				// set up second base pointer
	;;
	SAVE_REST

// ok, enough should be saved at this point to be dangerous, and supply
// information for a dump
// We need to switch to Virtual mode before hitting the C functions.

	movl	r2=IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN
	mov	r3=psr	// get the current psr, minimum enabled at this point
	;;
	or	r2=r2,r3
	;;
	movl	r3=IVirtual_Switch
	;;
	mov	cr.iip=r3	// short return to set the appropriate bits
	mov	cr.ipsr=r2	// need to do an rfi to set appropriate bits
	;;
	rfi
	;;
IVirtual_Switch:
	//
	// We should now be running virtual
	//
	// Let's call the C handler to get the rest of the state info
	//
	alloc r14=ar.pfs,0,0,2,0		// now it's safe (must be first in insn group!)
	;;
	adds out0=16,sp				// out0 = pointer to pt_regs
	;;
	DO_SAVE_SWITCH_STACK
	.body
	adds out1=16,sp				// out0 = pointer to switch_stack

	br.call.sptk.many rp=ia64_init_handler
.ret1:

return_from_init:
	br.sptk return_from_init
END(ia64_monarch_init_handler)

//
// SAL to OS entry point for INIT on the slave processor
// This has been defined for registration purposes with SAL
// as a part of ia64_mca_init.
//

GLOBAL_ENTRY(ia64_slave_init_handler)
1:	br.sptk 1b
END(ia64_slave_init_handler)