cpumap.c 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* cpumap.c: used for optimizing CPU assignment
 *
 * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/spinlock.h>
#include <asm/cpudata.h>
#include "cpumap.h"


enum {
	CPUINFO_LVL_ROOT = 0,
	CPUINFO_LVL_NODE,
	CPUINFO_LVL_CORE,
	CPUINFO_LVL_PROC,
	CPUINFO_LVL_MAX,
};

enum {
	ROVER_NO_OP              = 0,
	/* Increment rover every time level is visited */
	ROVER_INC_ON_VISIT       = 1 << 0,
	/* Increment parent's rover every time rover wraps around */
	ROVER_INC_PARENT_ON_LOOP = 1 << 1,
};

struct cpuinfo_node {
	int id;
	int level;
	int num_cpus;    /* Number of CPUs in this hierarchy */
	int parent_index;
	int child_start; /* Array index of the first child node */
	int child_end;   /* Array index of the last child node */
	int rover;       /* Child node iterator */
};

struct cpuinfo_level {
	int start_index; /* Index of first node of a level in a cpuinfo tree */
	int end_index;   /* Index of last node of a level in a cpuinfo tree */
	int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */
};

struct cpuinfo_tree {
	int total_nodes;

	/* Offsets into nodes[] for each level of the tree */
	struct cpuinfo_level level[CPUINFO_LVL_MAX];
	struct cpuinfo_node  nodes[0];
};


static struct cpuinfo_tree *cpuinfo_tree;

static u16 cpu_distribution_map[NR_CPUS];
static DEFINE_SPINLOCK(cpu_map_lock);


/* Niagara optimized cpuinfo tree traversal. */
static const int niagara_iterate_method[] = {
	[CPUINFO_LVL_ROOT] = ROVER_NO_OP,

	/* Strands (or virtual CPUs) within a core may not run concurrently
	 * on the Niagara, as instruction pipeline(s) are shared.  Distribute
	 * work to strands in different cores first for better concurrency.
	 * Go to next NUMA node when all cores are used.
	 */
	[CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,

	/* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
	 * a proc_id represents an instruction pipeline.  Distribute work to
	 * strands in different proc_id groups if the core has multiple
	 * instruction pipelines (e.g. the Niagara 2/2+ has two).
	 */
	[CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,

	/* Pick the next strand in the proc_id group. */
	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
};

/* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA
 * nodes.
 */
static const int generic_iterate_method[] = {
	[CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
	[CPUINFO_LVL_NODE] = ROVER_NO_OP,
	[CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
};


static int cpuinfo_id(int cpu, int level)
{
	int id;

	switch (level) {
	case CPUINFO_LVL_ROOT:
		id = 0;
		break;
	case CPUINFO_LVL_NODE:
		id = cpu_to_node(cpu);
		break;
	case CPUINFO_LVL_CORE:
		id = cpu_data(cpu).core_id;
		break;
	case CPUINFO_LVL_PROC:
		id = cpu_data(cpu).proc_id;
		break;
	default:
		id = -EINVAL;
	}
	return id;
}

/*
 * Enumerate the CPU information in __cpu_data to determine the start index,
 * end index, and number of nodes for each level in the cpuinfo tree.  The
 * total number of cpuinfo nodes required to build the tree is returned.
 */
static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
{
	int prev_id[CPUINFO_LVL_MAX];
	int i, n, num_nodes;

	for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
		struct cpuinfo_level *lv = &tree_level[i];

		prev_id[i] = -1;
		lv->start_index = lv->end_index = lv->num_nodes = 0;
	}

	num_nodes = 1; /* Include the root node */

	for (i = 0; i < num_possible_cpus(); i++) {
		if (!cpu_online(i))
			continue;

		n = cpuinfo_id(i, CPUINFO_LVL_NODE);
		if (n > prev_id[CPUINFO_LVL_NODE]) {
			tree_level[CPUINFO_LVL_NODE].num_nodes++;
			prev_id[CPUINFO_LVL_NODE] = n;
			num_nodes++;
		}
		n = cpuinfo_id(i, CPUINFO_LVL_CORE);
		if (n > prev_id[CPUINFO_LVL_CORE]) {
			tree_level[CPUINFO_LVL_CORE].num_nodes++;
			prev_id[CPUINFO_LVL_CORE] = n;
			num_nodes++;
		}
		n = cpuinfo_id(i, CPUINFO_LVL_PROC);
		if (n > prev_id[CPUINFO_LVL_PROC]) {
			tree_level[CPUINFO_LVL_PROC].num_nodes++;
			prev_id[CPUINFO_LVL_PROC] = n;
			num_nodes++;
		}
	}

	tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;

	n = tree_level[CPUINFO_LVL_NODE].num_nodes;
	tree_level[CPUINFO_LVL_NODE].start_index = 1;
	tree_level[CPUINFO_LVL_NODE].end_index   = n;

	n++;
	tree_level[CPUINFO_LVL_CORE].start_index = n;
	n += tree_level[CPUINFO_LVL_CORE].num_nodes;
	tree_level[CPUINFO_LVL_CORE].end_index   = n - 1;

	tree_level[CPUINFO_LVL_PROC].start_index = n;
	n += tree_level[CPUINFO_LVL_PROC].num_nodes;
	tree_level[CPUINFO_LVL_PROC].end_index   = n - 1;

	return num_nodes;
}

/* Build a tree representation of the CPU hierarchy using the per CPU
 * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are
 * assumed to be sorted in ascending order based on node, core_id, and
 * proc_id (in order of significance).
 */
static struct cpuinfo_tree *build_cpuinfo_tree(void)
{
	struct cpuinfo_tree *new_tree;
	struct cpuinfo_node *node;
	struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
	int num_cpus[CPUINFO_LVL_MAX];
	int level_rover[CPUINFO_LVL_MAX];
	int prev_id[CPUINFO_LVL_MAX];
	int n, id, cpu, prev_cpu, last_cpu, level;

	n = enumerate_cpuinfo_nodes(tmp_level);

	new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
	                   (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
	if (!new_tree)
		return NULL;

	new_tree->total_nodes = n;
	memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));

	prev_cpu = cpu = first_cpu(cpu_online_map);

	/* Initialize all levels in the tree with the first CPU */
	for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
		n = new_tree->level[level].start_index;

		level_rover[level] = n;
		node = &new_tree->nodes[n];

		id = cpuinfo_id(cpu, level);
		if (unlikely(id < 0)) {
			kfree(new_tree);
			return NULL;
		}
		node->id = id;
		node->level = level;
		node->num_cpus = 1;

		node->parent_index = (level > CPUINFO_LVL_ROOT)
		    ? new_tree->level[level - 1].start_index : -1;

		node->child_start = node->child_end = node->rover =
		    (level == CPUINFO_LVL_PROC)
		    ? cpu : new_tree->level[level + 1].start_index;

		prev_id[level] = node->id;
		num_cpus[level] = 1;
	}

	for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
		if (cpu_online(last_cpu))
			break;
	}

	while (++cpu <= last_cpu) {
		if (!cpu_online(cpu))
			continue;

		for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
		     level--) {
			id = cpuinfo_id(cpu, level);
			if (unlikely(id < 0)) {
				kfree(new_tree);
				return NULL;
			}

			if ((id != prev_id[level]) || (cpu == last_cpu)) {
				prev_id[level] = id;
				node = &new_tree->nodes[level_rover[level]];
				node->num_cpus = num_cpus[level];
				num_cpus[level] = 1;

				if (cpu == last_cpu)
					node->num_cpus++;

				/* Connect tree node to parent */
				if (level == CPUINFO_LVL_ROOT)
					node->parent_index = -1;
				else
					node->parent_index =
					    level_rover[level - 1];

				if (level == CPUINFO_LVL_PROC) {
					node->child_end =
					    (cpu == last_cpu) ? cpu : prev_cpu;
				} else {
					node->child_end =
					    level_rover[level + 1] - 1;
				}

				/* Initialize the next node in the same level */
				n = ++level_rover[level];
				if (n <= new_tree->level[level].end_index) {
					node = &new_tree->nodes[n];
					node->id = id;
					node->level = level;

					/* Connect node to child */
					node->child_start = node->child_end =
					node->rover =
					    (level == CPUINFO_LVL_PROC)
					    ? cpu : level_rover[level + 1];
				}
			} else
				num_cpus[level]++;
		}
		prev_cpu = cpu;
	}

	return new_tree;
}

static void increment_rover(struct cpuinfo_tree *t, int node_index,
                            int root_index, const int *rover_inc_table)
{
	struct cpuinfo_node *node = &t->nodes[node_index];
	int top_level, level;

	top_level = t->nodes[root_index].level;
	for (level = node->level; level >= top_level; level--) {
		node->rover++;
		if (node->rover <= node->child_end)
			return;

		node->rover = node->child_start;
		/* If parent's rover does not need to be adjusted, stop here. */
		if ((level == top_level) ||
		    !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
			return;

		node = &t->nodes[node->parent_index];
	}
}

static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
{
	const int *rover_inc_table;
	int level, new_index, index = root_index;

	switch (sun4v_chip_type) {
	case SUN4V_CHIP_NIAGARA1:
	case SUN4V_CHIP_NIAGARA2:
		rover_inc_table = niagara_iterate_method;
		break;
	default:
		rover_inc_table = generic_iterate_method;
	}

	for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
	     level++) {
		new_index = t->nodes[index].rover;
		if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
			increment_rover(t, index, root_index, rover_inc_table);

		index = new_index;
	}
	return index;
}

static void _cpu_map_rebuild(void)
{
	int i;

	if (cpuinfo_tree) {
		kfree(cpuinfo_tree);
		cpuinfo_tree = NULL;
	}

	cpuinfo_tree = build_cpuinfo_tree();
	if (!cpuinfo_tree)
		return;

	/* Build CPU distribution map that spans all online CPUs.  No need
	 * to check if the CPU is online, as that is done when the cpuinfo
	 * tree is being built.
	 */
	for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
		cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
}

/* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear
 * round robin.
 */
static int simple_map_to_cpu(unsigned int index)
{
	int i, end, cpu_rover;

	cpu_rover = 0;
	end = index % num_online_cpus();
	for (i = 0; i < num_possible_cpus(); i++) {
		if (cpu_online(cpu_rover)) {
			if (cpu_rover >= end)
				return cpu_rover;

			cpu_rover++;
		}
	}

	/* Impossible, since num_online_cpus() <= num_possible_cpus() */
	return first_cpu(cpu_online_map);
}

static int _map_to_cpu(unsigned int index)
{
	struct cpuinfo_node *root_node;

	if (unlikely(!cpuinfo_tree)) {
		_cpu_map_rebuild();
		if (!cpuinfo_tree)
			return simple_map_to_cpu(index);
	}

	root_node = &cpuinfo_tree->nodes[0];
#ifdef CONFIG_HOTPLUG_CPU
	if (unlikely(root_node->num_cpus != num_online_cpus())) {
		_cpu_map_rebuild();
		if (!cpuinfo_tree)
			return simple_map_to_cpu(index);
	}
#endif
	return cpu_distribution_map[index % root_node->num_cpus];
}

int map_to_cpu(unsigned int index)
{
	int mapped_cpu;
	unsigned long flag;

	spin_lock_irqsave(&cpu_map_lock, flag);
	mapped_cpu = _map_to_cpu(index);

#ifdef CONFIG_HOTPLUG_CPU
	while (unlikely(!cpu_online(mapped_cpu)))
		mapped_cpu = _map_to_cpu(index);
#endif
	spin_unlock_irqrestore(&cpu_map_lock, flag);
	return mapped_cpu;
}
EXPORT_SYMBOL(map_to_cpu);

void cpu_map_rebuild(void)
{
	unsigned long flag;

	spin_lock_irqsave(&cpu_map_lock, flag);
	_cpu_map_rebuild();
	spin_unlock_irqrestore(&cpu_map_lock, flag);
}