as-iosched.c 45.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Anticipatory & deadline i/o scheduler.
 *
 *  Copyright (C) 2002 Jens Axboe <axboe@suse.de>
N
Nick Piggin 已提交
5
 *                     Nick Piggin <nickpiggin@yahoo.com.au>
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 */
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/bio.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/hash.h>
#include <linux/rbtree.h>
#include <linux/interrupt.h>

#define REQ_SYNC	1
#define REQ_ASYNC	0

/*
 * See Documentation/block/as-iosched.txt
 */

/*
 * max time before a read is submitted.
 */
#define default_read_expire (HZ / 8)

/*
 * ditto for writes, these limits are not hard, even
 * if the disk is capable of satisfying them.
 */
#define default_write_expire (HZ / 4)

/*
 * read_batch_expire describes how long we will allow a stream of reads to
 * persist before looking to see whether it is time to switch over to writes.
 */
#define default_read_batch_expire (HZ / 2)

/*
 * write_batch_expire describes how long we want a stream of writes to run for.
 * This is not a hard limit, but a target we set for the auto-tuning thingy.
 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
 * a short amount of time...
 */
#define default_write_batch_expire (HZ / 8)

/*
 * max time we may wait to anticipate a read (default around 6ms)
 */
#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)

/*
 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
 * however huge values tend to interfere and not decay fast enough. A program
 * might be in a non-io phase of operation. Waiting on user input for example,
 * or doing a lengthy computation. A small penalty can be justified there, and
 * will still catch out those processes that constantly have large thinktimes.
 */
#define MAX_THINKTIME (HZ/50UL)

/* Bits in as_io_context.state */
enum as_io_states {
N
Nick Piggin 已提交
70
	AS_TASK_RUNNING=0,	/* Process has not exited */
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	AS_TASK_IOSTARTED,	/* Process has started some IO */
	AS_TASK_IORUNNING,	/* Process has completed some IO */
};

enum anticipation_status {
	ANTIC_OFF=0,		/* Not anticipating (normal operation)	*/
	ANTIC_WAIT_REQ,		/* The last read has not yet completed  */
	ANTIC_WAIT_NEXT,	/* Currently anticipating a request vs
				   last read (which has completed) */
	ANTIC_FINISHED,		/* Anticipating but have found a candidate
				 * or timed out */
};

struct as_data {
	/*
	 * run time data
	 */

	struct request_queue *q;	/* the "owner" queue */

	/*
	 * requests (as_rq s) are present on both sort_list and fifo_list
	 */
	struct rb_root sort_list[2];
	struct list_head fifo_list[2];

	struct as_rq *next_arq[2];	/* next in sort order */
	sector_t last_sector[2];	/* last REQ_SYNC & REQ_ASYNC sectors */
	struct list_head *hash;		/* request hash */

	unsigned long exit_prob;	/* probability a task will exit while
					   being waited on */
N
Nick Piggin 已提交
103 104 105
	unsigned long exit_no_coop;	/* probablility an exited task will
					   not be part of a later cooperating
					   request */
L
Linus Torvalds 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	unsigned long new_ttime_total; 	/* mean thinktime on new proc */
	unsigned long new_ttime_mean;
	u64 new_seek_total;		/* mean seek on new proc */
	sector_t new_seek_mean;

	unsigned long current_batch_expires;
	unsigned long last_check_fifo[2];
	int changed_batch;		/* 1: waiting for old batch to end */
	int new_batch;			/* 1: waiting on first read complete */
	int batch_data_dir;		/* current batch REQ_SYNC / REQ_ASYNC */
	int write_batch_count;		/* max # of reqs in a write batch */
	int current_write_count;	/* how many requests left this batch */
	int write_batch_idled;		/* has the write batch gone idle? */
	mempool_t *arq_pool;

	enum anticipation_status antic_status;
	unsigned long antic_start;	/* jiffies: when it started */
	struct timer_list antic_timer;	/* anticipatory scheduling timer */
	struct work_struct antic_work;	/* Deferred unplugging */
	struct io_context *io_context;	/* Identify the expected process */
	int ioc_finished; /* IO associated with io_context is finished */
	int nr_dispatched;

	/*
	 * settings that change how the i/o scheduler behaves
	 */
	unsigned long fifo_expire[2];
	unsigned long batch_expire[2];
	unsigned long antic_expire;
};

#define list_entry_fifo(ptr)	list_entry((ptr), struct as_rq, fifo)

/*
 * per-request data.
 */
enum arq_state {
	AS_RQ_NEW=0,		/* New - not referenced and not on any lists */
	AS_RQ_QUEUED,		/* In the request queue. It belongs to the
				   scheduler */
	AS_RQ_DISPATCHED,	/* On the dispatch list. It belongs to the
				   driver now */
	AS_RQ_PRESCHED,		/* Debug poisoning for requests being used */
	AS_RQ_REMOVED,
	AS_RQ_MERGED,
	AS_RQ_POSTSCHED,	/* when they shouldn't be */
};

struct as_rq {
	/*
	 * rbtree index, key is the starting offset
	 */
	struct rb_node rb_node;
	sector_t rb_key;

	struct request *request;

	struct io_context *io_context;	/* The submitting task */

	/*
	 * request hash, key is the ending offset (for back merge lookup)
	 */
	struct list_head hash;
	unsigned int on_hash;

	/*
	 * expire fifo
	 */
	struct list_head fifo;
	unsigned long expires;

	unsigned int is_sync;
	enum arq_state state;
};

#define RQ_DATA(rq)	((struct as_rq *) (rq)->elevator_private)

static kmem_cache_t *arq_pool;

185 186 187
static atomic_t ioc_count = ATOMIC_INIT(0);
static struct completion *ioc_gone;

188 189 190
static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
static void as_antic_stop(struct as_data *ad);

L
Linus Torvalds 已提交
191 192 193 194 195 196 197 198
/*
 * IO Context helper functions
 */

/* Called to deallocate the as_io_context */
static void free_as_io_context(struct as_io_context *aic)
{
	kfree(aic);
199 200
	if (atomic_dec_and_test(&ioc_count) && ioc_gone)
		complete(ioc_gone);
L
Linus Torvalds 已提交
201 202
}

203 204
static void as_trim(struct io_context *ioc)
{
205 206
	if (ioc->aic)
		free_as_io_context(ioc->aic);
207 208 209
	ioc->aic = NULL;
}

L
Linus Torvalds 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Called when the task exits */
static void exit_as_io_context(struct as_io_context *aic)
{
	WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
	clear_bit(AS_TASK_RUNNING, &aic->state);
}

static struct as_io_context *alloc_as_io_context(void)
{
	struct as_io_context *ret;

	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
	if (ret) {
		ret->dtor = free_as_io_context;
		ret->exit = exit_as_io_context;
		ret->state = 1 << AS_TASK_RUNNING;
		atomic_set(&ret->nr_queued, 0);
		atomic_set(&ret->nr_dispatched, 0);
		spin_lock_init(&ret->lock);
		ret->ttime_total = 0;
		ret->ttime_samples = 0;
		ret->ttime_mean = 0;
		ret->seek_total = 0;
		ret->seek_samples = 0;
		ret->seek_mean = 0;
235
		atomic_inc(&ioc_count);
L
Linus Torvalds 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	}

	return ret;
}

/*
 * If the current task has no AS IO context then create one and initialise it.
 * Then take a ref on the task's io context and return it.
 */
static struct io_context *as_get_io_context(void)
{
	struct io_context *ioc = get_io_context(GFP_ATOMIC);
	if (ioc && !ioc->aic) {
		ioc->aic = alloc_as_io_context();
		if (!ioc->aic) {
			put_io_context(ioc);
			ioc = NULL;
		}
	}
	return ioc;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void as_put_io_context(struct as_rq *arq)
{
	struct as_io_context *aic;

	if (unlikely(!arq->io_context))
		return;

	aic = arq->io_context->aic;

	if (arq->is_sync == REQ_SYNC && aic) {
		spin_lock(&aic->lock);
		set_bit(AS_TASK_IORUNNING, &aic->state);
		aic->last_end_request = jiffies;
		spin_unlock(&aic->lock);
	}

	put_io_context(arq->io_context);
}

L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * the back merge hash support functions
 */
static const int as_hash_shift = 6;
#define AS_HASH_BLOCK(sec)	((sec) >> 3)
#define AS_HASH_FN(sec)		(hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
#define AS_HASH_ENTRIES		(1 << as_hash_shift)
#define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
#define list_entry_hash(ptr)	list_entry((ptr), struct as_rq, hash)

static inline void __as_del_arq_hash(struct as_rq *arq)
{
	arq->on_hash = 0;
	list_del_init(&arq->hash);
}

static inline void as_del_arq_hash(struct as_rq *arq)
{
	if (arq->on_hash)
		__as_del_arq_hash(arq);
}

static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
{
	struct request *rq = arq->request;

	BUG_ON(arq->on_hash);

	arq->on_hash = 1;
	list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
}

/*
 * move hot entry to front of chain
 */
static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
{
	struct request *rq = arq->request;
	struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];

	if (!arq->on_hash) {
		WARN_ON(1);
		return;
	}

	if (arq->hash.prev != head) {
		list_del(&arq->hash);
		list_add(&arq->hash, head);
	}
}

static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
{
	struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
	struct list_head *entry, *next = hash_list->next;

	while ((entry = next) != hash_list) {
		struct as_rq *arq = list_entry_hash(entry);
		struct request *__rq = arq->request;

		next = entry->next;

		BUG_ON(!arq->on_hash);

		if (!rq_mergeable(__rq)) {
342
			as_del_arq_hash(arq);
L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
			continue;
		}

		if (rq_hash_key(__rq) == offset)
			return __rq;
	}

	return NULL;
}

/*
 * rb tree support functions
 */
#define RB_NONE		(2)
#define RB_EMPTY(root)	((root)->rb_node == NULL)
#define ON_RB(node)	((node)->rb_color != RB_NONE)
#define RB_CLEAR(node)	((node)->rb_color = RB_NONE)
#define rb_entry_arq(node)	rb_entry((node), struct as_rq, rb_node)
#define ARQ_RB_ROOT(ad, arq)	(&(ad)->sort_list[(arq)->is_sync])
#define rq_rb_key(rq)		(rq)->sector

/*
 * as_find_first_arq finds the first (lowest sector numbered) request
 * for the specified data_dir. Used to sweep back to the start of the disk
 * (1-way elevator) after we process the last (highest sector) request.
 */
static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
{
	struct rb_node *n = ad->sort_list[data_dir].rb_node;

	if (n == NULL)
		return NULL;

	for (;;) {
		if (n->rb_left == NULL)
			return rb_entry_arq(n);

		n = n->rb_left;
	}
}

/*
 * Add the request to the rb tree if it is unique.  If there is an alias (an
 * existing request against the same sector), which can happen when using
 * direct IO, then return the alias.
 */
389
static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
L
Linus Torvalds 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
{
	struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
	struct rb_node *parent = NULL;
	struct as_rq *__arq;
	struct request *rq = arq->request;

	arq->rb_key = rq_rb_key(rq);

	while (*p) {
		parent = *p;
		__arq = rb_entry_arq(parent);

		if (arq->rb_key < __arq->rb_key)
			p = &(*p)->rb_left;
		else if (arq->rb_key > __arq->rb_key)
			p = &(*p)->rb_right;
		else
			return __arq;
	}

	rb_link_node(&arq->rb_node, parent, p);
	rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));

	return NULL;
}

416 417 418 419 420 421 422 423 424 425
static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
{
	struct as_rq *alias;

	while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
		as_move_to_dispatch(ad, alias);
		as_antic_stop(ad);
	}
}

L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
{
	if (!ON_RB(&arq->rb_node)) {
		WARN_ON(1);
		return;
	}

	rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
	RB_CLEAR(&arq->rb_node);
}

static struct request *
as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
{
	struct rb_node *n = ad->sort_list[data_dir].rb_node;
	struct as_rq *arq;

	while (n) {
		arq = rb_entry_arq(n);

		if (sector < arq->rb_key)
			n = n->rb_left;
		else if (sector > arq->rb_key)
			n = n->rb_right;
		else
			return arq->request;
	}

	return NULL;
}

/*
 * IO Scheduler proper
 */

#define MAXBACK (1024 * 1024)	/*
				 * Maximum distance the disk will go backward
				 * for a request.
				 */

#define BACK_PENALTY	2

/*
 * as_choose_req selects the preferred one of two requests of the same data_dir
 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
 */
static struct as_rq *
as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
{
	int data_dir;
	sector_t last, s1, s2, d1, d2;
	int r1_wrap=0, r2_wrap=0;	/* requests are behind the disk head */
	const sector_t maxback = MAXBACK;

	if (arq1 == NULL || arq1 == arq2)
		return arq2;
	if (arq2 == NULL)
		return arq1;

	data_dir = arq1->is_sync;

	last = ad->last_sector[data_dir];
	s1 = arq1->request->sector;
	s2 = arq2->request->sector;

	BUG_ON(data_dir != arq2->is_sync);

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1+maxback >= last)
		d1 = (last - s1)*BACK_PENALTY;
	else {
		r1_wrap = 1;
		d1 = 0; /* shut up, gcc */
	}

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2+maxback >= last)
		d2 = (last - s2)*BACK_PENALTY;
	else {
		r2_wrap = 1;
		d2 = 0;
	}

	/* Found required data */
	if (!r1_wrap && r2_wrap)
		return arq1;
	else if (!r2_wrap && r1_wrap)
		return arq2;
	else if (r1_wrap && r2_wrap) {
		/* both behind the head */
		if (s1 <= s2)
			return arq1;
		else
			return arq2;
	}

	/* Both requests in front of the head */
	if (d1 < d2)
		return arq1;
	else if (d2 < d1)
		return arq2;
	else {
		if (s1 >= s2)
			return arq1;
		else
			return arq2;
	}
}

/*
 * as_find_next_arq finds the next request after @prev in elevator order.
 * this with as_choose_req form the basis for how the scheduler chooses
 * what request to process next. Anticipation works on top of this.
 */
static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
{
	const int data_dir = last->is_sync;
	struct as_rq *ret;
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
	struct as_rq *arq_next, *arq_prev;

	BUG_ON(!ON_RB(&last->rb_node));

	if (rbprev)
		arq_prev = rb_entry_arq(rbprev);
	else
		arq_prev = NULL;

	if (rbnext)
		arq_next = rb_entry_arq(rbnext);
	else {
		arq_next = as_find_first_arq(ad, data_dir);
		if (arq_next == last)
			arq_next = NULL;
	}

	ret = as_choose_req(ad,	arq_next, arq_prev);

	return ret;
}

/*
 * anticipatory scheduling functions follow
 */

/*
 * as_antic_expired tells us when we have anticipated too long.
 * The funny "absolute difference" math on the elapsed time is to handle
 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
 */
static int as_antic_expired(struct as_data *ad)
{
	long delta_jif;

	delta_jif = jiffies - ad->antic_start;
	if (unlikely(delta_jif < 0))
		delta_jif = -delta_jif;
	if (delta_jif < ad->antic_expire)
		return 0;

	return 1;
}

/*
 * as_antic_waitnext starts anticipating that a nice request will soon be
 * submitted. See also as_antic_waitreq
 */
static void as_antic_waitnext(struct as_data *ad)
{
	unsigned long timeout;

	BUG_ON(ad->antic_status != ANTIC_OFF
			&& ad->antic_status != ANTIC_WAIT_REQ);

	timeout = ad->antic_start + ad->antic_expire;

	mod_timer(&ad->antic_timer, timeout);

	ad->antic_status = ANTIC_WAIT_NEXT;
}

/*
 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
 * until the request that we're anticipating on has finished. This means we
 * are timing from when the candidate process wakes up hopefully.
 */
static void as_antic_waitreq(struct as_data *ad)
{
	BUG_ON(ad->antic_status == ANTIC_FINISHED);
	if (ad->antic_status == ANTIC_OFF) {
		if (!ad->io_context || ad->ioc_finished)
			as_antic_waitnext(ad);
		else
			ad->antic_status = ANTIC_WAIT_REQ;
	}
}

/*
 * This is called directly by the functions in this file to stop anticipation.
 * We kill the timer and schedule a call to the request_fn asap.
 */
static void as_antic_stop(struct as_data *ad)
{
	int status = ad->antic_status;

	if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
		if (status == ANTIC_WAIT_NEXT)
			del_timer(&ad->antic_timer);
		ad->antic_status = ANTIC_FINISHED;
		/* see as_work_handler */
		kblockd_schedule_work(&ad->antic_work);
	}
}

/*
 * as_antic_timeout is the timer function set by as_antic_waitnext.
 */
static void as_antic_timeout(unsigned long data)
{
	struct request_queue *q = (struct request_queue *)data;
	struct as_data *ad = q->elevator->elevator_data;
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	if (ad->antic_status == ANTIC_WAIT_REQ
			|| ad->antic_status == ANTIC_WAIT_NEXT) {
		struct as_io_context *aic = ad->io_context->aic;

		ad->antic_status = ANTIC_FINISHED;
		kblockd_schedule_work(&ad->antic_work);

		if (aic->ttime_samples == 0) {
N
Nick Piggin 已提交
666
			/* process anticipated on has exited or timed out*/
L
Linus Torvalds 已提交
667 668
			ad->exit_prob = (7*ad->exit_prob + 256)/8;
		}
N
Nick Piggin 已提交
669 670 671 672
		if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
			/* process not "saved" by a cooperating request */
			ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
		}
L
Linus Torvalds 已提交
673 674 675 676
	}
	spin_unlock_irqrestore(q->queue_lock, flags);
}

N
Nick Piggin 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
				unsigned long ttime)
{
	/* fixed point: 1.0 == 1<<8 */
	if (aic->ttime_samples == 0) {
		ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
		ad->new_ttime_mean = ad->new_ttime_total / 256;

		ad->exit_prob = (7*ad->exit_prob)/8;
	}
	aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
	aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
	aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
}

static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
				sector_t sdist)
{
	u64 total;

	if (aic->seek_samples == 0) {
		ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
		ad->new_seek_mean = ad->new_seek_total / 256;
	}

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
	if (aic->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
	else
		sdist = min(sdist, (aic->seek_mean * 4)	+ 2*1024*64);

	aic->seek_samples = (7*aic->seek_samples + 256) / 8;
	aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
	total = aic->seek_total + (aic->seek_samples/2);
	do_div(total, aic->seek_samples);
	aic->seek_mean = (sector_t)total;
}

/*
 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
 * updates @aic->ttime_mean based on that. It is called when a new
 * request is queued.
 */
static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
				struct request *rq)
{
	struct as_rq *arq = RQ_DATA(rq);
	int data_dir = arq->is_sync;
	unsigned long thinktime = 0;
	sector_t seek_dist;

	if (aic == NULL)
		return;

	if (data_dir == REQ_SYNC) {
		unsigned long in_flight = atomic_read(&aic->nr_queued)
					+ atomic_read(&aic->nr_dispatched);
		spin_lock(&aic->lock);
		if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
			test_bit(AS_TASK_IOSTARTED, &aic->state)) {
			/* Calculate read -> read thinktime */
			if (test_bit(AS_TASK_IORUNNING, &aic->state)
							&& in_flight == 0) {
				thinktime = jiffies - aic->last_end_request;
				thinktime = min(thinktime, MAX_THINKTIME-1);
			}
			as_update_thinktime(ad, aic, thinktime);

			/* Calculate read -> read seek distance */
			if (aic->last_request_pos < rq->sector)
				seek_dist = rq->sector - aic->last_request_pos;
			else
				seek_dist = aic->last_request_pos - rq->sector;
			as_update_seekdist(ad, aic, seek_dist);
		}
		aic->last_request_pos = rq->sector + rq->nr_sectors;
		set_bit(AS_TASK_IOSTARTED, &aic->state);
		spin_unlock(&aic->lock);
	}
}

L
Linus Torvalds 已提交
761 762 763 764
/*
 * as_close_req decides if one request is considered "close" to the
 * previous one issued.
 */
N
Nick Piggin 已提交
765 766
static int as_close_req(struct as_data *ad, struct as_io_context *aic,
				struct as_rq *arq)
L
Linus Torvalds 已提交
767 768 769 770 771
{
	unsigned long delay;	/* milliseconds */
	sector_t last = ad->last_sector[ad->batch_data_dir];
	sector_t next = arq->request->sector;
	sector_t delta; /* acceptable close offset (in sectors) */
N
Nick Piggin 已提交
772
	sector_t s;
L
Linus Torvalds 已提交
773 774 775 776 777 778

	if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
		delay = 0;
	else
		delay = ((jiffies - ad->antic_start) * 1000) / HZ;

N
Nick Piggin 已提交
779 780
	if (delay == 0)
		delta = 8192;
L
Linus Torvalds 已提交
781
	else if (delay <= 20 && delay <= ad->antic_expire)
N
Nick Piggin 已提交
782
		delta = 8192 << delay;
L
Linus Torvalds 已提交
783 784 785
	else
		return 1;

N
Nick Piggin 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	if ((last <= next + (delta>>1)) && (next <= last + delta))
		return 1;

	if (last < next)
		s = next - last;
	else
		s = last - next;

	if (aic->seek_samples == 0) {
		/*
		 * Process has just started IO. Use past statistics to
		 * gauge success possibility
		 */
		if (ad->new_seek_mean > s) {
			/* this request is better than what we're expecting */
			return 1;
		}

	} else {
		if (aic->seek_mean > s) {
			/* this request is better than what we're expecting */
			return 1;
		}
	}

	return 0;
L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819 820 821 822
}

/*
 * as_can_break_anticipation returns true if we have been anticipating this
 * request.
 *
 * It also returns true if the process against which we are anticipating
 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
 * dispatch it ASAP, because we know that application will not be submitting
 * any new reads.
 *
N
Nick Piggin 已提交
823
 * If the task which has submitted the request has exited, break anticipation.
L
Linus Torvalds 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
 *
 * If this task has queued some other IO, do not enter enticipation.
 */
static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
{
	struct io_context *ioc;
	struct as_io_context *aic;

	ioc = ad->io_context;
	BUG_ON(!ioc);

	if (arq && ioc == arq->io_context) {
		/* request from same process */
		return 1;
	}

	if (ad->ioc_finished && as_antic_expired(ad)) {
		/*
		 * In this situation status should really be FINISHED,
		 * however the timer hasn't had the chance to run yet.
		 */
		return 1;
	}

	aic = ioc->aic;
	if (!aic)
		return 0;

	if (atomic_read(&aic->nr_queued) > 0) {
		/* process has more requests queued */
		return 1;
	}

	if (atomic_read(&aic->nr_dispatched) > 0) {
		/* process has more requests dispatched */
		return 1;
	}

N
Nick Piggin 已提交
862
	if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
L
Linus Torvalds 已提交
863 864 865
		/*
		 * Found a close request that is not one of ours.
		 *
N
Nick Piggin 已提交
866 867
		 * This makes close requests from another process update
		 * our IO history. Is generally useful when there are
L
Linus Torvalds 已提交
868 869 870
		 * two or more cooperating processes working in the same
		 * area.
		 */
N
Nick Piggin 已提交
871 872 873 874 875 876 877 878
		if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
			if (aic->ttime_samples == 0)
				ad->exit_prob = (7*ad->exit_prob + 256)/8;

			ad->exit_no_coop = (7*ad->exit_no_coop)/8;
		}

		as_update_iohist(ad, aic, arq->request);
L
Linus Torvalds 已提交
879 880 881
		return 1;
	}

N
Nick Piggin 已提交
882 883 884 885 886 887 888 889
	if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
		/* process anticipated on has exited */
		if (aic->ttime_samples == 0)
			ad->exit_prob = (7*ad->exit_prob + 256)/8;

		if (ad->exit_no_coop > 128)
			return 1;
	}
L
Linus Torvalds 已提交
890 891 892 893

	if (aic->ttime_samples == 0) {
		if (ad->new_ttime_mean > ad->antic_expire)
			return 1;
N
Nick Piggin 已提交
894
		if (ad->exit_prob * ad->exit_no_coop > 128*256)
L
Linus Torvalds 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
			return 1;
	} else if (aic->ttime_mean > ad->antic_expire) {
		/* the process thinks too much between requests */
		return 1;
	}

	return 0;
}

/*
 * as_can_anticipate indicates weather we should either run arq
 * or keep anticipating a better request.
 */
static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
{
	if (!ad->io_context)
		/*
		 * Last request submitted was a write
		 */
		return 0;

	if (ad->antic_status == ANTIC_FINISHED)
		/*
		 * Don't restart if we have just finished. Run the next request
		 */
		return 0;

	if (as_can_break_anticipation(ad, arq))
		/*
		 * This request is a good candidate. Don't keep anticipating,
		 * run it.
		 */
		return 0;

	/*
	 * OK from here, we haven't finished, and don't have a decent request!
	 * Status is either ANTIC_OFF so start waiting,
	 * ANTIC_WAIT_REQ so continue waiting for request to finish
	 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
	 */

	return 1;
}

/*
 * as_update_arq must be called whenever a request (arq) is added to
 * the sort_list. This function keeps caches up to date, and checks if the
 * request might be one we are "anticipating"
 */
static void as_update_arq(struct as_data *ad, struct as_rq *arq)
{
	const int data_dir = arq->is_sync;

	/* keep the next_arq cache up to date */
	ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);

	/*
	 * have we been anticipating this request?
	 * or does it come from the same process as the one we are anticipating
	 * for?
	 */
	if (ad->antic_status == ANTIC_WAIT_REQ
			|| ad->antic_status == ANTIC_WAIT_NEXT) {
		if (as_can_break_anticipation(ad, arq))
			as_antic_stop(ad);
	}
}

/*
 * Gathers timings and resizes the write batch automatically
 */
static void update_write_batch(struct as_data *ad)
{
	unsigned long batch = ad->batch_expire[REQ_ASYNC];
	long write_time;

	write_time = (jiffies - ad->current_batch_expires) + batch;
	if (write_time < 0)
		write_time = 0;

	if (write_time > batch && !ad->write_batch_idled) {
		if (write_time > batch * 3)
			ad->write_batch_count /= 2;
		else
			ad->write_batch_count--;
	} else if (write_time < batch && ad->current_write_count == 0) {
		if (batch > write_time * 3)
			ad->write_batch_count *= 2;
		else
			ad->write_batch_count++;
	}

	if (ad->write_batch_count < 1)
		ad->write_batch_count = 1;
}

/*
 * as_completed_request is to be called when a request has completed and
 * returned something to the requesting process, be it an error or data.
 */
static void as_completed_request(request_queue_t *q, struct request *rq)
{
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = RQ_DATA(rq);

	WARN_ON(!list_empty(&rq->queuelist));

	if (arq->state != AS_RQ_REMOVED) {
		printk("arq->state %d\n", arq->state);
		WARN_ON(1);
		goto out;
	}

	if (ad->changed_batch && ad->nr_dispatched == 1) {
		kblockd_schedule_work(&ad->antic_work);
		ad->changed_batch = 0;

		if (ad->batch_data_dir == REQ_SYNC)
			ad->new_batch = 1;
	}
	WARN_ON(ad->nr_dispatched == 0);
	ad->nr_dispatched--;

	/*
	 * Start counting the batch from when a request of that direction is
	 * actually serviced. This should help devices with big TCQ windows
	 * and writeback caches
	 */
	if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
		update_write_batch(ad);
		ad->current_batch_expires = jiffies +
				ad->batch_expire[REQ_SYNC];
		ad->new_batch = 0;
	}

	if (ad->io_context == arq->io_context && ad->io_context) {
		ad->antic_start = jiffies;
		ad->ioc_finished = 1;
		if (ad->antic_status == ANTIC_WAIT_REQ) {
			/*
			 * We were waiting on this request, now anticipate
			 * the next one
			 */
			as_antic_waitnext(ad);
		}
	}

1042
	as_put_io_context(arq);
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
out:
	arq->state = AS_RQ_POSTSCHED;
}

/*
 * as_remove_queued_request removes a request from the pre dispatch queue
 * without updating refcounts. It is expected the caller will drop the
 * reference unless it replaces the request at somepart of the elevator
 * (ie. the dispatch queue)
 */
static void as_remove_queued_request(request_queue_t *q, struct request *rq)
{
	struct as_rq *arq = RQ_DATA(rq);
	const int data_dir = arq->is_sync;
	struct as_data *ad = q->elevator->elevator_data;

	WARN_ON(arq->state != AS_RQ_QUEUED);

	if (arq->io_context && arq->io_context->aic) {
		BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
		atomic_dec(&arq->io_context->aic->nr_queued);
	}

	/*
	 * Update the "next_arq" cache if we are about to remove its
	 * entry
	 */
	if (ad->next_arq[data_dir] == arq)
		ad->next_arq[data_dir] = as_find_next_arq(ad, arq);

	list_del_init(&arq->fifo);
1074
	as_del_arq_hash(arq);
L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	as_del_arq_rb(ad, arq);
}

/*
 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
 * 1 otherwise.  It is ratelimited so that we only perform the check once per
 * `fifo_expire' interval.  Otherwise a large number of expired requests
 * would create a hopeless seekstorm.
 *
 * See as_antic_expired comment.
 */
static int as_fifo_expired(struct as_data *ad, int adir)
{
	struct as_rq *arq;
	long delta_jif;

	delta_jif = jiffies - ad->last_check_fifo[adir];
	if (unlikely(delta_jif < 0))
		delta_jif = -delta_jif;
	if (delta_jif < ad->fifo_expire[adir])
		return 0;

	ad->last_check_fifo[adir] = jiffies;

	if (list_empty(&ad->fifo_list[adir]))
		return 0;

	arq = list_entry_fifo(ad->fifo_list[adir].next);

	return time_after(jiffies, arq->expires);
}

/*
 * as_batch_expired returns true if the current batch has expired. A batch
 * is a set of reads or a set of writes.
 */
static inline int as_batch_expired(struct as_data *ad)
{
	if (ad->changed_batch || ad->new_batch)
		return 0;

	if (ad->batch_data_dir == REQ_SYNC)
		/* TODO! add a check so a complete fifo gets written? */
		return time_after(jiffies, ad->current_batch_expires);

	return time_after(jiffies, ad->current_batch_expires)
		|| ad->current_write_count == 0;
}

/*
 * move an entry to dispatch queue
 */
static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
{
	struct request *rq = arq->request;
	const int data_dir = arq->is_sync;

	BUG_ON(!ON_RB(&arq->rb_node));

	as_antic_stop(ad);
	ad->antic_status = ANTIC_OFF;

	/*
	 * This has to be set in order to be correctly updated by
	 * as_find_next_arq
	 */
	ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;

	if (data_dir == REQ_SYNC) {
		/* In case we have to anticipate after this */
		copy_io_context(&ad->io_context, &arq->io_context);
	} else {
		if (ad->io_context) {
			put_io_context(ad->io_context);
			ad->io_context = NULL;
		}

		if (ad->current_write_count != 0)
			ad->current_write_count--;
	}
	ad->ioc_finished = 0;

	ad->next_arq[data_dir] = as_find_next_arq(ad, arq);

	/*
	 * take it off the sort and fifo list, add to dispatch queue
	 */
	as_remove_queued_request(ad->q, rq);
	WARN_ON(arq->state != AS_RQ_QUEUED);

1165 1166
	elv_dispatch_sort(ad->q, rq);

L
Linus Torvalds 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	arq->state = AS_RQ_DISPATCHED;
	if (arq->io_context && arq->io_context->aic)
		atomic_inc(&arq->io_context->aic->nr_dispatched);
	ad->nr_dispatched++;
}

/*
 * as_dispatch_request selects the best request according to
 * read/write expire, batch expire, etc, and moves it to the dispatch
 * queue. Returns 1 if a request was found, 0 otherwise.
 */
1178
static int as_dispatch_request(request_queue_t *q, int force)
L
Linus Torvalds 已提交
1179
{
1180
	struct as_data *ad = q->elevator->elevator_data;
L
Linus Torvalds 已提交
1181 1182 1183 1184
	struct as_rq *arq;
	const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
	const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (unlikely(force)) {
		/*
		 * Forced dispatch, accounting is useless.  Reset
		 * accounting states and dump fifo_lists.  Note that
		 * batch_data_dir is reset to REQ_SYNC to avoid
		 * screwing write batch accounting as write batch
		 * accounting occurs on W->R transition.
		 */
		int dispatched = 0;

		ad->batch_data_dir = REQ_SYNC;
		ad->changed_batch = 0;
		ad->new_batch = 0;

		while (ad->next_arq[REQ_SYNC]) {
			as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
			dispatched++;
		}
		ad->last_check_fifo[REQ_SYNC] = jiffies;

		while (ad->next_arq[REQ_ASYNC]) {
			as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
			dispatched++;
		}
		ad->last_check_fifo[REQ_ASYNC] = jiffies;

		return dispatched;
	}

L
Linus Torvalds 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/* Signal that the write batch was uncontended, so we can't time it */
	if (ad->batch_data_dir == REQ_ASYNC && !reads) {
		if (ad->current_write_count == 0 || !writes)
			ad->write_batch_idled = 1;
	}

	if (!(reads || writes)
		|| ad->antic_status == ANTIC_WAIT_REQ
		|| ad->antic_status == ANTIC_WAIT_NEXT
		|| ad->changed_batch)
		return 0;

N
Nick Piggin 已提交
1226
	if (!(reads && writes && as_batch_expired(ad))) {
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		/*
		 * batch is still running or no reads or no writes
		 */
		arq = ad->next_arq[ad->batch_data_dir];

		if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
			if (as_fifo_expired(ad, REQ_SYNC))
				goto fifo_expired;

			if (as_can_anticipate(ad, arq)) {
				as_antic_waitreq(ad);
				return 0;
			}
		}

		if (arq) {
			/* we have a "next request" */
			if (reads && !writes)
				ad->current_batch_expires =
					jiffies + ad->batch_expire[REQ_SYNC];
			goto dispatch_request;
		}
	}

	/*
	 * at this point we are not running a batch. select the appropriate
	 * data direction (read / write)
	 */

	if (reads) {
		BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));

		if (writes && ad->batch_data_dir == REQ_SYNC)
			/*
			 * Last batch was a read, switch to writes
			 */
			goto dispatch_writes;

		if (ad->batch_data_dir == REQ_ASYNC) {
			WARN_ON(ad->new_batch);
			ad->changed_batch = 1;
		}
		ad->batch_data_dir = REQ_SYNC;
		arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
		ad->last_check_fifo[ad->batch_data_dir] = jiffies;
		goto dispatch_request;
	}

	/*
	 * the last batch was a read
	 */

	if (writes) {
dispatch_writes:
		BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));

		if (ad->batch_data_dir == REQ_SYNC) {
			ad->changed_batch = 1;

			/*
			 * new_batch might be 1 when the queue runs out of
			 * reads. A subsequent submission of a write might
			 * cause a change of batch before the read is finished.
			 */
			ad->new_batch = 0;
		}
		ad->batch_data_dir = REQ_ASYNC;
		ad->current_write_count = ad->write_batch_count;
		ad->write_batch_idled = 0;
		arq = ad->next_arq[ad->batch_data_dir];
		goto dispatch_request;
	}

	BUG();
	return 0;

dispatch_request:
	/*
	 * If a request has expired, service it.
	 */

	if (as_fifo_expired(ad, ad->batch_data_dir)) {
fifo_expired:
		arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
		BUG_ON(arq == NULL);
	}

	if (ad->changed_batch) {
		WARN_ON(ad->new_batch);

		if (ad->nr_dispatched)
			return 0;

		if (ad->batch_data_dir == REQ_ASYNC)
			ad->current_batch_expires = jiffies +
					ad->batch_expire[REQ_ASYNC];
		else
			ad->new_batch = 1;

		ad->changed_batch = 0;
	}

	/*
	 * arq is the selected appropriate request.
	 */
	as_move_to_dispatch(ad, arq);

	return 1;
}

/*
 * add arq to rbtree and fifo
 */
1340
static void as_add_request(request_queue_t *q, struct request *rq)
L
Linus Torvalds 已提交
1341
{
1342 1343
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = RQ_DATA(rq);
L
Linus Torvalds 已提交
1344 1345
	int data_dir;

1346 1347
	arq->state = AS_RQ_NEW;

L
Linus Torvalds 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (rq_data_dir(arq->request) == READ
			|| current->flags&PF_SYNCWRITE)
		arq->is_sync = 1;
	else
		arq->is_sync = 0;
	data_dir = arq->is_sync;

	arq->io_context = as_get_io_context();

	if (arq->io_context) {
		as_update_iohist(ad, arq->io_context->aic, arq->request);
		atomic_inc(&arq->io_context->aic->nr_queued);
	}

1362 1363 1364
	as_add_arq_rb(ad, arq);
	if (rq_mergeable(arq->request))
		as_add_arq_hash(ad, arq);
L
Linus Torvalds 已提交
1365

1366 1367 1368 1369 1370
	/*
	 * set expire time (only used for reads) and add to fifo list
	 */
	arq->expires = jiffies + ad->fifo_expire[data_dir];
	list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
L
Linus Torvalds 已提交
1371

1372
	as_update_arq(ad, arq); /* keep state machine up to date */
L
Linus Torvalds 已提交
1373 1374 1375
	arq->state = AS_RQ_QUEUED;
}

1376
static void as_activate_request(request_queue_t *q, struct request *rq)
L
Linus Torvalds 已提交
1377 1378 1379
{
	struct as_rq *arq = RQ_DATA(rq);

1380 1381 1382 1383
	WARN_ON(arq->state != AS_RQ_DISPATCHED);
	arq->state = AS_RQ_REMOVED;
	if (arq->io_context && arq->io_context->aic)
		atomic_dec(&arq->io_context->aic->nr_dispatched);
L
Linus Torvalds 已提交
1384 1385
}

1386
static void as_deactivate_request(request_queue_t *q, struct request *rq)
L
Linus Torvalds 已提交
1387 1388 1389
{
	struct as_rq *arq = RQ_DATA(rq);

1390 1391 1392 1393
	WARN_ON(arq->state != AS_RQ_REMOVED);
	arq->state = AS_RQ_DISPATCHED;
	if (arq->io_context && arq->io_context->aic)
		atomic_inc(&arq->io_context->aic->nr_dispatched);
L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

/*
 * as_queue_empty tells us if there are requests left in the device. It may
 * not be the case that a driver can get the next request even if the queue
 * is not empty - it is used in the block layer to check for plugging and
 * merging opportunities
 */
static int as_queue_empty(request_queue_t *q)
{
	struct as_data *ad = q->elevator->elevator_data;

1406 1407
	return list_empty(&ad->fifo_list[REQ_ASYNC])
		&& list_empty(&ad->fifo_list[REQ_SYNC]);
L
Linus Torvalds 已提交
1408 1409
}

N
Nick Piggin 已提交
1410 1411
static struct request *as_former_request(request_queue_t *q,
					struct request *rq)
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	struct as_rq *arq = RQ_DATA(rq);
	struct rb_node *rbprev = rb_prev(&arq->rb_node);
	struct request *ret = NULL;

	if (rbprev)
		ret = rb_entry_arq(rbprev)->request;

	return ret;
}

N
Nick Piggin 已提交
1423 1424
static struct request *as_latter_request(request_queue_t *q,
					struct request *rq)
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	struct as_rq *arq = RQ_DATA(rq);
	struct rb_node *rbnext = rb_next(&arq->rb_node);
	struct request *ret = NULL;

	if (rbnext)
		ret = rb_entry_arq(rbnext)->request;

	return ret;
}

static int
as_merge(request_queue_t *q, struct request **req, struct bio *bio)
{
	struct as_data *ad = q->elevator->elevator_data;
	sector_t rb_key = bio->bi_sector + bio_sectors(bio);
	struct request *__rq;
	int ret;

	/*
	 * see if the merge hash can satisfy a back merge
	 */
	__rq = as_find_arq_hash(ad, bio->bi_sector);
	if (__rq) {
		BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);

		if (elv_rq_merge_ok(__rq, bio)) {
			ret = ELEVATOR_BACK_MERGE;
			goto out;
		}
	}

	/*
	 * check for front merge
	 */
	__rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
	if (__rq) {
		BUG_ON(rb_key != rq_rb_key(__rq));

		if (elv_rq_merge_ok(__rq, bio)) {
			ret = ELEVATOR_FRONT_MERGE;
			goto out;
		}
	}

	return ELEVATOR_NO_MERGE;
out:
	if (ret) {
		if (rq_mergeable(__rq))
			as_hot_arq_hash(ad, RQ_DATA(__rq));
	}
	*req = __rq;
	return ret;
}

static void as_merged_request(request_queue_t *q, struct request *req)
{
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = RQ_DATA(req);

	/*
	 * hash always needs to be repositioned, key is end sector
	 */
	as_del_arq_hash(arq);
	as_add_arq_hash(ad, arq);

	/*
	 * if the merge was a front merge, we need to reposition request
	 */
	if (rq_rb_key(req) != arq->rb_key) {
		as_del_arq_rb(ad, arq);
1496
		as_add_arq_rb(ad, arq);
L
Linus Torvalds 已提交
1497 1498 1499 1500 1501 1502 1503 1504
		/*
		 * Note! At this stage of this and the next function, our next
		 * request may not be optimal - eg the request may have "grown"
		 * behind the disk head. We currently don't bother adjusting.
		 */
	}
}

N
Nick Piggin 已提交
1505 1506
static void as_merged_requests(request_queue_t *q, struct request *req,
			 	struct request *next)
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
{
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = RQ_DATA(req);
	struct as_rq *anext = RQ_DATA(next);

	BUG_ON(!arq);
	BUG_ON(!anext);

	/*
	 * reposition arq (this is the merged request) in hash, and in rbtree
	 * in case of a front merge
	 */
	as_del_arq_hash(arq);
	as_add_arq_hash(ad, arq);

	if (rq_rb_key(req) != arq->rb_key) {
		as_del_arq_rb(ad, arq);
1524
		as_add_arq_rb(ad, arq);
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	}

	/*
	 * if anext expires before arq, assign its expire time to arq
	 * and move into anext position (anext will be deleted) in fifo
	 */
	if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
		if (time_before(anext->expires, arq->expires)) {
			list_move(&arq->fifo, &anext->fifo);
			arq->expires = anext->expires;
			/*
			 * Don't copy here but swap, because when anext is
			 * removed below, it must contain the unused context
			 */
			swap_io_context(&arq->io_context, &anext->io_context);
		}
	}

	/*
	 * kill knowledge of next, this one is a goner
	 */
	as_remove_queued_request(q, next);
1547
	as_put_io_context(anext);
L
Linus Torvalds 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	anext->state = AS_RQ_MERGED;
}

/*
 * This is executed in a "deferred" process context, by kblockd. It calls the
 * driver's request_fn so the driver can submit that request.
 *
 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
 * state before calling, and don't rely on any state over calls.
 *
 * FIXME! dispatch queue is not a queue at all!
 */
static void as_work_handler(void *data)
{
	struct request_queue *q = data;
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
1567
	if (!as_queue_empty(q))
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		q->request_fn(q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}

static void as_put_request(request_queue_t *q, struct request *rq)
{
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = RQ_DATA(rq);

	if (!arq) {
		WARN_ON(1);
		return;
	}

1582 1583 1584
	if (unlikely(arq->state != AS_RQ_POSTSCHED &&
		     arq->state != AS_RQ_PRESCHED &&
		     arq->state != AS_RQ_MERGED)) {
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591 1592
		printk("arq->state %d\n", arq->state);
		WARN_ON(1);
	}

	mempool_free(arq, ad->arq_pool);
	rq->elevator_private = NULL;
}

1593
static int as_set_request(request_queue_t *q, struct request *rq,
A
Al Viro 已提交
1594
			  struct bio *bio, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
{
	struct as_data *ad = q->elevator->elevator_data;
	struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);

	if (arq) {
		memset(arq, 0, sizeof(*arq));
		RB_CLEAR(&arq->rb_node);
		arq->request = rq;
		arq->state = AS_RQ_PRESCHED;
		arq->io_context = NULL;
		INIT_LIST_HEAD(&arq->hash);
		arq->on_hash = 0;
		INIT_LIST_HEAD(&arq->fifo);
		rq->elevator_private = arq;
		return 0;
	}

	return 1;
}

1615
static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
{
	int ret = ELV_MQUEUE_MAY;
	struct as_data *ad = q->elevator->elevator_data;
	struct io_context *ioc;
	if (ad->antic_status == ANTIC_WAIT_REQ ||
			ad->antic_status == ANTIC_WAIT_NEXT) {
		ioc = as_get_io_context();
		if (ad->io_context == ioc)
			ret = ELV_MQUEUE_MUST;
		put_io_context(ioc);
	}

	return ret;
}

static void as_exit_queue(elevator_t *e)
{
	struct as_data *ad = e->elevator_data;

	del_timer_sync(&ad->antic_timer);
	kblockd_flush();

	BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
	BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));

	mempool_destroy(ad->arq_pool);
	put_io_context(ad->io_context);
	kfree(ad->hash);
	kfree(ad);
}

/*
 * initialize elevator private data (as_data), and alloc a arq for
 * each request on the free lists
 */
static int as_init_queue(request_queue_t *q, elevator_t *e)
{
	struct as_data *ad;
	int i;

	if (!arq_pool)
		return -ENOMEM;

1659
	ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665
	if (!ad)
		return -ENOMEM;
	memset(ad, 0, sizeof(*ad));

	ad->q = q; /* Identify what queue the data belongs to */

1666 1667
	ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
				GFP_KERNEL, q->node);
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672
	if (!ad->hash) {
		kfree(ad);
		return -ENOMEM;
	}

1673 1674
	ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
				mempool_free_slab, arq_pool, q->node);
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (!ad->arq_pool) {
		kfree(ad->hash);
		kfree(ad);
		return -ENOMEM;
	}

	/* anticipatory scheduling helpers */
	ad->antic_timer.function = as_antic_timeout;
	ad->antic_timer.data = (unsigned long)q;
	init_timer(&ad->antic_timer);
	INIT_WORK(&ad->antic_work, as_work_handler, q);

	for (i = 0; i < AS_HASH_ENTRIES; i++)
		INIT_LIST_HEAD(&ad->hash[i]);

	INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
	INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
	ad->sort_list[REQ_SYNC] = RB_ROOT;
	ad->sort_list[REQ_ASYNC] = RB_ROOT;
	ad->fifo_expire[REQ_SYNC] = default_read_expire;
	ad->fifo_expire[REQ_ASYNC] = default_write_expire;
	ad->antic_expire = default_antic_expire;
	ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
	ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
	e->elevator_data = ad;

	ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
	ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
	if (ad->write_batch_count < 2)
		ad->write_batch_count = 2;

	return 0;
}

/*
 * sysfs parts below
 */

static ssize_t
as_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
as_var_store(unsigned long *var, const char *page, size_t count)
{
	char *p = (char *) page;

1724
	*var = simple_strtoul(p, &p, 10);
L
Linus Torvalds 已提交
1725 1726 1727
	return count;
}

1728
static ssize_t est_time_show(elevator_t *e, char *page)
L
Linus Torvalds 已提交
1729
{
1730
	struct as_data *ad = e->elevator_data;
L
Linus Torvalds 已提交
1731 1732
	int pos = 0;

N
Nick Piggin 已提交
1733 1734 1735 1736 1737
	pos += sprintf(page+pos, "%lu %% exit probability\n",
				100*ad->exit_prob/256);
	pos += sprintf(page+pos, "%lu %% probability of exiting without a "
				"cooperating process submitting IO\n",
				100*ad->exit_no_coop/256);
L
Linus Torvalds 已提交
1738
	pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
N
Nick Piggin 已提交
1739 1740
	pos += sprintf(page+pos, "%llu sectors new seek distance\n",
				(unsigned long long)ad->new_seek_mean);
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745

	return pos;
}

#define SHOW_FUNCTION(__FUNC, __VAR)				\
1746
static ssize_t __FUNC(elevator_t *e, char *page)		\
L
Linus Torvalds 已提交
1747
{								\
1748
	struct as_data *ad = e->elevator_data;			\
L
Linus Torvalds 已提交
1749 1750
	return as_var_show(jiffies_to_msecs((__VAR)), (page));	\
}
1751 1752 1753 1754 1755
SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
L
Linus Torvalds 已提交
1756 1757 1758
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)				\
1759
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
1760
{									\
1761 1762
	struct as_data *ad = e->elevator_data;				\
	int ret = as_var_store(__PTR, (page), count);			\
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769
	if (*(__PTR) < (MIN))						\
		*(__PTR) = (MIN);					\
	else if (*(__PTR) > (MAX))					\
		*(__PTR) = (MAX);					\
	*(__PTR) = msecs_to_jiffies(*(__PTR));				\
	return ret;							\
}
1770 1771 1772 1773
STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
STORE_FUNCTION(as_read_batch_expire_store,
L
Linus Torvalds 已提交
1774
			&ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1775
STORE_FUNCTION(as_write_batch_expire_store,
L
Linus Torvalds 已提交
1776 1777 1778
			&ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
#undef STORE_FUNCTION

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
#define AS_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)

static struct elv_fs_entry as_attrs[] = {
	__ATTR_RO(est_time),
	AS_ATTR(read_expire),
	AS_ATTR(write_expire),
	AS_ATTR(antic_expire),
	AS_ATTR(read_batch_expire),
	AS_ATTR(write_batch_expire),
	__ATTR_NULL
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795 1796
};

static struct elevator_type iosched_as = {
	.ops = {
		.elevator_merge_fn = 		as_merge,
		.elevator_merged_fn =		as_merged_request,
		.elevator_merge_req_fn =	as_merged_requests,
1797 1798 1799
		.elevator_dispatch_fn =		as_dispatch_request,
		.elevator_add_req_fn =		as_add_request,
		.elevator_activate_req_fn =	as_activate_request,
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		.elevator_deactivate_req_fn = 	as_deactivate_request,
		.elevator_queue_empty_fn =	as_queue_empty,
		.elevator_completed_req_fn =	as_completed_request,
		.elevator_former_req_fn =	as_former_request,
		.elevator_latter_req_fn =	as_latter_request,
		.elevator_set_req_fn =		as_set_request,
		.elevator_put_req_fn =		as_put_request,
		.elevator_may_queue_fn =	as_may_queue,
		.elevator_init_fn =		as_init_queue,
		.elevator_exit_fn =		as_exit_queue,
1810
		.trim =				as_trim,
L
Linus Torvalds 已提交
1811 1812
	},

1813
	.elevator_attrs = as_attrs,
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	.elevator_name = "anticipatory",
	.elevator_owner = THIS_MODULE,
};

static int __init as_init(void)
{
	int ret;

	arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
				     0, 0, NULL, NULL);
	if (!arq_pool)
		return -ENOMEM;

	ret = elv_register(&iosched_as);
	if (!ret) {
		/*
		 * don't allow AS to get unregistered, since we would have
		 * to browse all tasks in the system and release their
		 * as_io_context first
		 */
		__module_get(THIS_MODULE);
		return 0;
	}

	kmem_cache_destroy(arq_pool);
	return ret;
}

static void __exit as_exit(void)
{
1844
	DECLARE_COMPLETION(all_gone);
L
Linus Torvalds 已提交
1845
	elv_unregister(&iosched_as);
1846
	ioc_gone = &all_gone;
1847 1848
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
1849
	if (atomic_read(&ioc_count))
1850
		wait_for_completion(ioc_gone);
1851
	synchronize_rcu();
1852
	kmem_cache_destroy(arq_pool);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860
}

module_init(as_init);
module_exit(as_exit);

MODULE_AUTHOR("Nick Piggin");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("anticipatory IO scheduler");