dax.c 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * fs/dax.c - Direct Access filesystem code
 * Copyright (c) 2013-2014 Intel Corporation
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/genhd.h>
22 23 24
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
25
#include <linux/mutex.h>
26
#include <linux/pmem.h>
27
#include <linux/sched.h>
28
#include <linux/uio.h>
29
#include <linux/vmstat.h>
30

31 32 33 34 35 36 37
int dax_clear_blocks(struct inode *inode, sector_t block, long size)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	sector_t sector = block << (inode->i_blkbits - 9);

	might_sleep();
	do {
38
		void __pmem *addr;
39 40 41 42 43 44 45 46 47 48 49
		unsigned long pfn;
		long count;

		count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
		if (count < 0)
			return count;
		BUG_ON(size < count);
		while (count > 0) {
			unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
			if (pgsz > count)
				pgsz = count;
50
			clear_pmem(addr, pgsz);
51 52 53 54 55 56 57 58 59
			addr += pgsz;
			size -= pgsz;
			count -= pgsz;
			BUG_ON(pgsz & 511);
			sector += pgsz / 512;
			cond_resched();
		}
	} while (size);

60
	wmb_pmem();
61 62 63 64
	return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_blocks);

65 66
static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
		unsigned blkbits)
67 68 69 70 71 72
{
	unsigned long pfn;
	sector_t sector = bh->b_blocknr << (blkbits - 9);
	return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
}

73
/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
74 75
static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
		loff_t pos, loff_t end)
76 77 78 79
{
	loff_t final = end - pos + first; /* The final byte of the buffer */

	if (first > 0)
80
		clear_pmem(addr, first);
81
	if (final < size)
82
		clear_pmem(addr + final, size - final);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

static bool buffer_written(struct buffer_head *bh)
{
	return buffer_mapped(bh) && !buffer_unwritten(bh);
}

/*
 * When ext4 encounters a hole, it returns without modifying the buffer_head
 * which means that we can't trust b_size.  To cope with this, we set b_state
 * to 0 before calling get_block and, if any bit is set, we know we can trust
 * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 * and would save us time calling get_block repeatedly.
 */
static bool buffer_size_valid(struct buffer_head *bh)
{
	return bh->b_state != 0;
}

O
Omar Sandoval 已提交
102 103 104
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
		      loff_t start, loff_t end, get_block_t get_block,
		      struct buffer_head *bh)
105 106 107 108 109
{
	ssize_t retval = 0;
	loff_t pos = start;
	loff_t max = start;
	loff_t bh_max = start;
110
	void __pmem *addr;
111
	bool hole = false;
112
	bool need_wmb = false;
113

O
Omar Sandoval 已提交
114
	if (iov_iter_rw(iter) != WRITE)
115 116 117
		end = min(end, i_size_read(inode));

	while (pos < end) {
118
		size_t len;
119 120 121 122 123 124 125 126 127 128
		if (pos == max) {
			unsigned blkbits = inode->i_blkbits;
			sector_t block = pos >> blkbits;
			unsigned first = pos - (block << blkbits);
			long size;

			if (pos == bh_max) {
				bh->b_size = PAGE_ALIGN(end - pos);
				bh->b_state = 0;
				retval = get_block(inode, block, bh,
O
Omar Sandoval 已提交
129
						   iov_iter_rw(iter) == WRITE);
130 131 132 133 134 135 136 137 138 139 140 141
				if (retval)
					break;
				if (!buffer_size_valid(bh))
					bh->b_size = 1 << blkbits;
				bh_max = pos - first + bh->b_size;
			} else {
				unsigned done = bh->b_size -
						(bh_max - (pos - first));
				bh->b_blocknr += done >> blkbits;
				bh->b_size -= done;
			}

O
Omar Sandoval 已提交
142
			hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
143 144 145 146 147 148 149
			if (hole) {
				addr = NULL;
				size = bh->b_size - first;
			} else {
				retval = dax_get_addr(bh, &addr, blkbits);
				if (retval < 0)
					break;
150
				if (buffer_unwritten(bh) || buffer_new(bh)) {
151 152
					dax_new_buf(addr, retval, first, pos,
									end);
153 154
					need_wmb = true;
				}
155 156 157 158 159 160
				addr += first;
				size = retval - first;
			}
			max = min(pos + size, end);
		}

161
		if (iov_iter_rw(iter) == WRITE) {
162
			len = copy_from_iter_pmem(addr, max - pos, iter);
163 164
			need_wmb = true;
		} else if (!hole)
165 166
			len = copy_to_iter((void __force *)addr, max - pos,
					iter);
167 168 169 170 171 172 173 174 175 176
		else
			len = iov_iter_zero(max - pos, iter);

		if (!len)
			break;

		pos += len;
		addr += len;
	}

177 178 179
	if (need_wmb)
		wmb_pmem();

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	return (pos == start) ? retval : pos - start;
}

/**
 * dax_do_io - Perform I/O to a DAX file
 * @iocb: The control block for this I/O
 * @inode: The file which the I/O is directed at
 * @iter: The addresses to do I/O from or to
 * @pos: The file offset where the I/O starts
 * @get_block: The filesystem method used to translate file offsets to blocks
 * @end_io: A filesystem callback for I/O completion
 * @flags: See below
 *
 * This function uses the same locking scheme as do_blockdev_direct_IO:
 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 * caller for writes.  For reads, we take and release the i_mutex ourselves.
 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 * is in progress.
 */
O
Omar Sandoval 已提交
200 201 202
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
		  dio_iodone_t end_io, int flags)
203 204 205 206 207 208 209
{
	struct buffer_head bh;
	ssize_t retval = -EINVAL;
	loff_t end = pos + iov_iter_count(iter);

	memset(&bh, 0, sizeof(bh));

O
Omar Sandoval 已提交
210
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
211 212 213 214 215 216 217 218 219 220
		struct address_space *mapping = inode->i_mapping;
		mutex_lock(&inode->i_mutex);
		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
		if (retval) {
			mutex_unlock(&inode->i_mutex);
			goto out;
		}
	}

	/* Protects against truncate */
221 222
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_begin(inode);
223

O
Omar Sandoval 已提交
224
	retval = dax_io(inode, iter, pos, end, get_block, &bh);
225

O
Omar Sandoval 已提交
226
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
227 228 229 230 231
		mutex_unlock(&inode->i_mutex);

	if ((retval > 0) && end_io)
		end_io(iocb, pos, retval, bh.b_private);

232 233
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_end(inode);
234 235 236 237
 out:
	return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

/*
 * The user has performed a load from a hole in the file.  Allocating
 * a new page in the file would cause excessive storage usage for
 * workloads with sparse files.  We allocate a page cache page instead.
 * We'll kick it out of the page cache if it's ever written to,
 * otherwise it will simply fall out of the page cache under memory
 * pressure without ever having been dirtied.
 */
static int dax_load_hole(struct address_space *mapping, struct page *page,
							struct vm_fault *vmf)
{
	unsigned long size;
	struct inode *inode = mapping->host;
	if (!page)
		page = find_or_create_page(mapping, vmf->pgoff,
						GFP_KERNEL | __GFP_ZERO);
	if (!page)
		return VM_FAULT_OOM;
	/* Recheck i_size under page lock to avoid truncate race */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size) {
		unlock_page(page);
		page_cache_release(page);
		return VM_FAULT_SIGBUS;
	}

	vmf->page = page;
	return VM_FAULT_LOCKED;
}

static int copy_user_bh(struct page *to, struct buffer_head *bh,
			unsigned blkbits, unsigned long vaddr)
{
272 273 274
	void __pmem *vfrom;
	void *vto;

275 276 277
	if (dax_get_addr(bh, &vfrom, blkbits) < 0)
		return -EIO;
	vto = kmap_atomic(to);
278
	copy_user_page(vto, (void __force *)vfrom, vaddr, to);
279 280 281 282 283 284 285 286 287
	kunmap_atomic(vto);
	return 0;
}

static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
			struct vm_area_struct *vma, struct vm_fault *vmf)
{
	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
288
	void __pmem *addr;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	unsigned long pfn;
	pgoff_t size;
	int error;

	/*
	 * Check truncate didn't happen while we were allocating a block.
	 * If it did, this block may or may not be still allocated to the
	 * file.  We can't tell the filesystem to free it because we can't
	 * take i_mutex here.  In the worst case, the file still has blocks
	 * allocated past the end of the file.
	 */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (unlikely(vmf->pgoff >= size)) {
		error = -EIO;
		goto out;
	}

	error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
	if (error < 0)
		goto out;
	if (error < PAGE_SIZE) {
		error = -EIO;
		goto out;
	}

314
	if (buffer_unwritten(bh) || buffer_new(bh)) {
315
		clear_pmem(addr, PAGE_SIZE);
316 317
		wmb_pmem();
	}
318 319 320 321 322 323 324

	error = vm_insert_mixed(vma, vaddr, pfn);

 out:
	return error;
}

325 326 327 328 329
/**
 * __dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
330 331 332 333 334 335
 * @complete_unwritten: The filesystem method used to convert unwritten blocks
 *	to written so the data written to them is exposed. This is required for
 *	required by write faults for filesystems that will return unwritten
 *	extent mappings from @get_block, but it is optional for reads as
 *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
 *	not support unwritten extents, the it should pass NULL.
336 337 338 339 340 341
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 * the necessary locking for the page fault to proceed successfully.
 */
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
342
			get_block_t get_block, dax_iodone_t complete_unwritten)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct page *page;
	struct buffer_head bh;
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	unsigned blkbits = inode->i_blkbits;
	sector_t block;
	pgoff_t size;
	int error;
	int major = 0;

	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		return VM_FAULT_SIGBUS;

	memset(&bh, 0, sizeof(bh));
	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
	bh.b_size = PAGE_SIZE;

 repeat:
	page = find_get_page(mapping, vmf->pgoff);
	if (page) {
		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
			page_cache_release(page);
			return VM_FAULT_RETRY;
		}
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
			page_cache_release(page);
			goto repeat;
		}
		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (unlikely(vmf->pgoff >= size)) {
			/*
			 * We have a struct page covering a hole in the file
			 * from a read fault and we've raced with a truncate
			 */
			error = -EIO;
383
			goto unlock;
384
		}
385 386
	} else {
		i_mmap_lock_write(mapping);
387 388 389 390 391 392
	}

	error = get_block(inode, block, &bh, 0);
	if (!error && (bh.b_size < PAGE_SIZE))
		error = -EIO;		/* fs corruption? */
	if (error)
393
		goto unlock;
394 395 396 397 398 399 400 401 402 403

	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
		if (vmf->flags & FAULT_FLAG_WRITE) {
			error = get_block(inode, block, &bh, 1);
			count_vm_event(PGMAJFAULT);
			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
			major = VM_FAULT_MAJOR;
			if (!error && (bh.b_size < PAGE_SIZE))
				error = -EIO;
			if (error)
404
				goto unlock;
405
		} else {
406
			i_mmap_unlock_write(mapping);
407 408 409 410 411 412 413 414 415 416 417
			return dax_load_hole(mapping, page, vmf);
		}
	}

	if (vmf->cow_page) {
		struct page *new_page = vmf->cow_page;
		if (buffer_written(&bh))
			error = copy_user_bh(new_page, &bh, blkbits, vaddr);
		else
			clear_user_highpage(new_page, vaddr);
		if (error)
418
			goto unlock;
419 420 421 422 423 424 425
		vmf->page = page;
		if (!page) {
			/* Check we didn't race with truncate */
			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
								PAGE_SHIFT;
			if (vmf->pgoff >= size) {
				error = -EIO;
426
				goto unlock;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
			}
		}
		return VM_FAULT_LOCKED;
	}

	/* Check we didn't race with a read fault installing a new page */
	if (!page && major)
		page = find_lock_page(mapping, vmf->pgoff);

	if (page) {
		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
							PAGE_CACHE_SIZE, 0);
		delete_from_page_cache(page);
		unlock_page(page);
		page_cache_release(page);
	}

444 445 446 447 448 449 450 451 452 453
	/*
	 * If we successfully insert the new mapping over an unwritten extent,
	 * we need to ensure we convert the unwritten extent. If there is an
	 * error inserting the mapping, the filesystem needs to leave it as
	 * unwritten to prevent exposure of the stale underlying data to
	 * userspace, but we still need to call the completion function so
	 * the private resources on the mapping buffer can be released. We
	 * indicate what the callback should do via the uptodate variable, same
	 * as for normal BH based IO completions.
	 */
454
	error = dax_insert_mapping(inode, &bh, vma, vmf);
455 456 457 458 459 460
	if (buffer_unwritten(&bh)) {
		if (complete_unwritten)
			complete_unwritten(&bh, !error);
		else
			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
	}
461

462 463
	if (!page)
		i_mmap_unlock_write(mapping);
464 465 466 467 468 469 470 471
 out:
	if (error == -ENOMEM)
		return VM_FAULT_OOM | major;
	/* -EBUSY is fine, somebody else faulted on the same PTE */
	if ((error < 0) && (error != -EBUSY))
		return VM_FAULT_SIGBUS | major;
	return VM_FAULT_NOPAGE | major;

472
 unlock:
473 474 475
	if (page) {
		unlock_page(page);
		page_cache_release(page);
476 477
	} else {
		i_mmap_unlock_write(mapping);
478
	}
479

480 481
	goto out;
}
482
EXPORT_SYMBOL(__dax_fault);
483 484 485 486 487 488 489 490 491 492 493

/**
 * dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files.
 */
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
494
	      get_block_t get_block, dax_iodone_t complete_unwritten)
495 496 497 498 499 500 501 502
{
	int result;
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	if (vmf->flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(sb);
		file_update_time(vma->vm_file);
	}
503
	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
504 505 506 507 508 509
	if (vmf->flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(sb);

	return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
 * more often than one might expect in the below function.
 */
#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)

int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
		pmd_t *pmd, unsigned int flags, get_block_t get_block,
		dax_iodone_t complete_unwritten)
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct buffer_head bh;
	unsigned blkbits = inode->i_blkbits;
	unsigned long pmd_addr = address & PMD_MASK;
	bool write = flags & FAULT_FLAG_WRITE;
	long length;
	void *kaddr;
	pgoff_t size, pgoff;
	sector_t block, sector;
	unsigned long pfn;
	int result = 0;

	/* Fall back to PTEs if we're going to COW */
	if (write && !(vma->vm_flags & VM_SHARED))
		return VM_FAULT_FALLBACK;
	/* If the PMD would extend outside the VMA */
	if (pmd_addr < vma->vm_start)
		return VM_FAULT_FALLBACK;
	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
		return VM_FAULT_FALLBACK;

M
Matthew Wilcox 已提交
545
	pgoff = linear_page_index(vma, pmd_addr);
546 547 548 549 550 551 552 553 554 555 556
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (pgoff >= size)
		return VM_FAULT_SIGBUS;
	/* If the PMD would cover blocks out of the file */
	if ((pgoff | PG_PMD_COLOUR) >= size)
		return VM_FAULT_FALLBACK;

	memset(&bh, 0, sizeof(bh));
	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);

	bh.b_size = PMD_SIZE;
557
	i_mmap_lock_write(mapping);
558 559 560 561 562 563 564 565 566 567 568 569
	length = get_block(inode, block, &bh, write);
	if (length)
		return VM_FAULT_SIGBUS;

	/*
	 * If the filesystem isn't willing to tell us the length of a hole,
	 * just fall back to PTEs.  Calling get_block 512 times in a loop
	 * would be silly.
	 */
	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
		goto fallback;

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	if (buffer_unwritten(&bh) || buffer_new(&bh)) {
		int i;
		for (i = 0; i < PTRS_PER_PMD; i++)
			clear_page(kaddr + i * PAGE_SIZE);
		count_vm_event(PGMAJFAULT);
		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
		result |= VM_FAULT_MAJOR;
	}

	/*
	 * If we allocated new storage, make sure no process has any
	 * zero pages covering this hole
	 */
	if (buffer_new(&bh)) {
		i_mmap_unlock_write(mapping);
		unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
		i_mmap_lock_write(mapping);
	}

589 590 591 592 593 594
	/*
	 * If a truncate happened while we were allocating blocks, we may
	 * leave blocks allocated to the file that are beyond EOF.  We can't
	 * take i_mutex here, so just leave them hanging; they'll be freed
	 * when the file is deleted.
	 */
595 596 597 598 599 600 601 602 603 604
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (pgoff >= size) {
		result = VM_FAULT_SIGBUS;
		goto out;
	}
	if ((pgoff | PG_PMD_COLOUR) >= size)
		goto fallback;

	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
		spinlock_t *ptl;
605
		pmd_t entry;
606
		struct page *zero_page = get_huge_zero_page();
607

608 609 610
		if (unlikely(!zero_page))
			goto fallback;

611 612 613 614 615 616 617 618 619
		ptl = pmd_lock(vma->vm_mm, pmd);
		if (!pmd_none(*pmd)) {
			spin_unlock(ptl);
			goto fallback;
		}

		entry = mk_pmd(zero_page, vma->vm_page_prot);
		entry = pmd_mkhuge(entry);
		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
620
		result = VM_FAULT_NOPAGE;
621
		spin_unlock(ptl);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	} else {
		sector = bh.b_blocknr << (blkbits - 9);
		length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
						bh.b_size);
		if (length < 0) {
			result = VM_FAULT_SIGBUS;
			goto out;
		}
		if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
			goto fallback;

		result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
	}

 out:
	if (buffer_unwritten(&bh))
		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));

640 641
	i_mmap_unlock_write(mapping);

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	return result;

 fallback:
	count_vm_event(THP_FAULT_FALLBACK);
	result = VM_FAULT_FALLBACK;
	goto out;
}
EXPORT_SYMBOL_GPL(__dax_pmd_fault);

/**
 * dax_pmd_fault - handle a PMD fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * pmd_fault handler for DAX files.
 */
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
			pmd_t *pmd, unsigned int flags, get_block_t get_block,
			dax_iodone_t complete_unwritten)
{
	int result;
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(sb);
		file_update_time(vma->vm_file);
	}
	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
				complete_unwritten);
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(sb);

	return result;
}
EXPORT_SYMBOL_GPL(dax_pmd_fault);
679
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/**
 * dax_pfn_mkwrite - handle first write to DAX page
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 *
 */
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	sb_start_pagefault(sb);
	file_update_time(vma->vm_file);
	sb_end_pagefault(sb);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);

698
/**
M
Matthew Wilcox 已提交
699
 * dax_zero_page_range - zero a range within a page of a DAX file
700 701
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
M
Matthew Wilcox 已提交
702
 * @length: The number of bytes to zero
703 704
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
M
Matthew Wilcox 已提交
705 706 707 708
 * This function can be called by a filesystem when it is zeroing part of a
 * page in a DAX file.  This is intended for hole-punch operations.  If
 * you are truncating a file, the helper function dax_truncate_page() may be
 * more convenient.
709 710 711 712 713
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
M
Matthew Wilcox 已提交
714
 * since the file might be mmapped.
715
 */
M
Matthew Wilcox 已提交
716 717
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
							get_block_t get_block)
718 719 720 721 722 723 724 725 726
{
	struct buffer_head bh;
	pgoff_t index = from >> PAGE_CACHE_SHIFT;
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	int err;

	/* Block boundary? Nothing to do */
	if (!length)
		return 0;
M
Matthew Wilcox 已提交
727
	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
728 729 730 731 732 733 734

	memset(&bh, 0, sizeof(bh));
	bh.b_size = PAGE_CACHE_SIZE;
	err = get_block(inode, index, &bh, 0);
	if (err < 0)
		return err;
	if (buffer_written(&bh)) {
735
		void __pmem *addr;
736 737 738
		err = dax_get_addr(&bh, &addr, inode->i_blkbits);
		if (err < 0)
			return err;
739
		clear_pmem(addr + offset, length);
740
		wmb_pmem();
741 742 743 744
	}

	return 0;
}
M
Matthew Wilcox 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
EXPORT_SYMBOL_GPL(dax_zero_page_range);

/**
 * dax_truncate_page - handle a partial page being truncated in a DAX file
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * Similar to block_truncate_page(), this function can be called by a
 * filesystem when it is truncating a DAX file to handle the partial page.
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
 * since the file might be mmapped.
 */
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
	unsigned length = PAGE_CACHE_ALIGN(from) - from;
	return dax_zero_page_range(inode, from, length, get_block);
}
767
EXPORT_SYMBOL_GPL(dax_truncate_page);