netvsc_drv.c 38.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40

41
#include "hyperv_net.h"
42 43


44
#define RING_SIZE_MIN 64
45
#define LINKCHANGE_INT (2 * HZ)
46 47 48 49 50
#define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
				 NETIF_F_SG | \
				 NETIF_F_TSO | \
				 NETIF_F_TSO6 | \
				 NETIF_F_HW_CSUM)
51
static int ring_size = 128;
S
Stephen Hemminger 已提交
52 53
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54

55 56
static int max_num_vrss_chns = 8;

57 58 59 60 61 62 63 64 65
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

66 67
static void do_set_multicast(struct work_struct *w)
{
68 69
	struct net_device_context *ndevctx =
		container_of(w, struct net_device_context, work);
70 71 72
	struct hv_device *device_obj = ndevctx->device_ctx;
	struct net_device *ndev = hv_get_drvdata(device_obj);
	struct netvsc_device *nvdev = ndevctx->nvdev;
73 74
	struct rndis_device *rdev;

75
	if (!nvdev)
76
		return;
77 78 79

	rdev = nvdev->extension;
	if (rdev == NULL)
80
		return;
81

82
	if (ndev->flags & IFF_PROMISC)
83 84 85 86 87 88 89 90 91
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_PROMISCUOUS);
	else
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_BROADCAST |
			NDIS_PACKET_TYPE_ALL_MULTICAST |
			NDIS_PACKET_TYPE_DIRECTED);
}

92
static void netvsc_set_multicast_list(struct net_device *net)
93
{
94
	struct net_device_context *net_device_ctx = netdev_priv(net);
95

96
	schedule_work(&net_device_ctx->work);
97 98 99 100 101
}

static int netvsc_open(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
102
	struct hv_device *device_obj = net_device_ctx->device_ctx;
103
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
104
	struct rndis_device *rdev;
105
	int ret = 0;
106

107 108
	netif_carrier_off(net);

109 110 111 112 113
	/* Open up the device */
	ret = rndis_filter_open(device_obj);
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
114 115
	}

116
	netif_tx_wake_all_queues(net);
117

118 119 120 121
	rdev = nvdev->extension;
	if (!rdev->link_state)
		netif_carrier_on(net);

122 123 124 125 126 127
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
128
	struct hv_device *device_obj = net_device_ctx->device_ctx;
129
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
130
	int ret;
131 132
	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
	struct vmbus_channel *chn;
133

134
	netif_tx_disable(net);
135

136 137
	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
	cancel_work_sync(&net_device_ctx->work);
138
	ret = rndis_filter_close(device_obj);
139
	if (ret != 0) {
140
		netdev_err(net, "unable to close device (ret %d).\n", ret);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
		return ret;
	}

	/* Ensure pending bytes in ring are read */
	while (true) {
		aread = 0;
		for (i = 0; i < nvdev->num_chn; i++) {
			chn = nvdev->chn_table[i];
			if (!chn)
				continue;

			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
						     &awrite);

			if (aread)
				break;

			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
						     &awrite);

			if (aread)
				break;
		}

		retry++;
		if (retry > retry_max || aread == 0)
			break;

		msleep(msec);

		if (msec < 1000)
			msec *= 2;
	}

	if (aread) {
		netdev_err(net, "Ring buffer not empty after closing rndis\n");
		ret = -ETIMEDOUT;
	}
179 180 181 182

	return ret;
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

204 205 206 207
static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
	struct net_device_context *net_device_ctx = netdev_priv(ndev);
208
	struct netvsc_device *nvsc_dev = net_device_ctx->nvdev;
209 210 211 212 213 214
	u32 hash;
	u16 q_idx = 0;

	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
		return 0;

215 216 217
	hash = skb_get_hash(skb);
	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
		ndev->real_num_tx_queues;
218

219 220 221
	if (!nvsc_dev->chn_table[q_idx])
		q_idx = 0;

222 223 224
	return q_idx;
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

259
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
260 261
			   struct hv_netvsc_packet *packet,
			   struct hv_page_buffer **page_buf)
262
{
263
	struct hv_page_buffer *pb = *page_buf;
264 265 266 267 268 269
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
270
	 * 1. hdr: RNDIS header and PPI
271 272 273 274 275 276 277 278
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

279 280 281
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

282 283 284 285 286 287 288 289 290 291 292
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
293
	return slots_used;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
}

static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
{
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
	u32 ret_val = TRANSPORT_INFO_NOT_IP;

	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
		goto not_ip;
	}

	*trans_off = skb_transport_offset(skb);

	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
		struct iphdr *iphdr = ip_hdr(skb);

		if (iphdr->protocol == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV4_TCP;
		else if (iphdr->protocol == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV4_UDP;
	} else {
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV6_TCP;
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV6_UDP;
	}

not_ip:
	return ret_val;
}

355
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
356 357
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
358
	struct hv_netvsc_packet *packet = NULL;
359
	int ret;
360 361 362 363 364
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	bool isvlan;
365
	bool linear = false;
366
	struct rndis_per_packet_info *ppi;
367
	struct ndis_tcp_ip_checksum_info *csum_info;
368
	struct ndis_tcp_lso_info *lso_info;
369 370
	int  hdr_offset;
	u32 net_trans_info;
371
	u32 hash;
372
	u32 skb_length;
373
	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
374
	struct hv_page_buffer *pb = page_buf;
375
	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
376

377 378
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
379 380
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
381
	 */
382 383 384

check_size:
	skb_length = skb->len;
385
	num_data_pgs = netvsc_get_slots(skb) + 2;
386 387 388
	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
				      num_data_pgs, skb->len);
389 390
		ret = -EFAULT;
		goto drop;
391 392 393 394 395 396 397 398
	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
		if (skb_linearize(skb)) {
			net_alert_ratelimited("failed to linearize skb\n");
			ret = -ENOMEM;
			goto drop;
		}
		linear = true;
		goto check_size;
399
	}
400

401 402 403 404 405 406
	/*
	 * Place the rndis header in the skb head room and
	 * the skb->cb will be used for hv_netvsc_packet
	 * structure.
	 */
	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
407 408 409 410
	if (ret) {
		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
		ret = -ENOMEM;
		goto drop;
411
	}
412 413 414 415
	/* Use the skb control buffer for building up the packet */
	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
			FIELD_SIZEOF(struct sk_buff, cb));
	packet = (struct hv_netvsc_packet *)skb->cb;
416

417

418 419
	packet->q_idx = skb_get_queue_mapping(skb);

420
	packet->total_data_buflen = skb->len;
421

422
	rndis_msg = (struct rndis_message *)skb->head;
423

424
	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
425

426
	isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
427 428 429 430 431 432 433 434 435 436 437

	/* Add the rndis header */
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

438 439 440 441 442 443 444 445
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

446 447 448 449 450 451 452 453
	if (isvlan) {
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
454 455
		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
456 457 458
				VLAN_PRIO_SHIFT;
	}

459 460 461 462 463 464 465 466 467
	net_trans_info = get_net_transport_info(skb, &hdr_offset);
	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
		goto do_send;

	/*
	 * Setup the sendside checksum offload only if this is not a
	 * GSO packet.
	 */
	if (skb_is_gso(skb))
468
		goto do_lso;
469

470 471 472 473
	if ((skb->ip_summed == CHECKSUM_NONE) ||
	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
		goto do_send;

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
			    TCPIP_CHKSUM_PKTINFO);

	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
			ppi->ppi_offset);

	if (net_trans_info & (INFO_IPV4 << 16))
		csum_info->transmit.is_ipv4 = 1;
	else
		csum_info->transmit.is_ipv6 = 1;

	if (net_trans_info & INFO_TCP) {
		csum_info->transmit.tcp_checksum = 1;
		csum_info->transmit.tcp_header_offset = hdr_offset;
	} else if (net_trans_info & INFO_UDP) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		/* UDP checksum offload is not supported on ws2008r2.
		 * Furthermore, on ws2012 and ws2012r2, there are some
		 * issues with udp checksum offload from Linux guests.
		 * (these are host issues).
		 * For now compute the checksum here.
		 */
		struct udphdr *uh;
		u16 udp_len;

		ret = skb_cow_head(skb, 0);
		if (ret)
			goto drop;

		uh = udp_hdr(skb);
		udp_len = ntohs(uh->len);
		uh->check = 0;
		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
					      ip_hdr(skb)->daddr,
					      udp_len, IPPROTO_UDP,
					      csum_partial(uh, udp_len, 0));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;

		csum_info->transmit.udp_checksum = 0;
514
	}
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	goto do_send;

do_lso:
	rndis_msg_size += NDIS_LSO_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
			    TCP_LARGESEND_PKTINFO);

	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
			ppi->ppi_offset);

	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
	if (net_trans_info & (INFO_IPV4 << 16)) {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
		ip_hdr(skb)->tot_len = 0;
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check =
		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check =
		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
544 545

do_send:
546 547
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
548
	packet->total_data_buflen = rndis_msg->msg_len;
549
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
550
					       skb, packet, &pb);
551

552 553
	/* timestamp packet in software */
	skb_tx_timestamp(skb);
554 555
	ret = netvsc_send(net_device_ctx->device_ctx, packet,
			  rndis_msg, &pb, skb);
556

557
drop:
558
	if (ret == 0) {
559
		u64_stats_update_begin(&tx_stats->syncp);
560 561
		tx_stats->packets++;
		tx_stats->bytes += skb_length;
562
		u64_stats_update_end(&tx_stats->syncp);
563
	} else {
564 565 566 567
		if (ret != -EAGAIN) {
			dev_kfree_skb_any(skb);
			net->stats.tx_dropped++;
		}
568 569
	}

570
	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
571 572
}

573
/*
574 575
 * netvsc_linkstatus_callback - Link up/down notification
 */
576
void netvsc_linkstatus_callback(struct hv_device *device_obj,
577
				struct rndis_message *resp)
578
{
579
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
580
	struct net_device *net;
581
	struct net_device_context *ndev_ctx;
582 583
	struct netvsc_reconfig *event;
	unsigned long flags;
584

585 586 587 588
	/* Handle link change statuses only */
	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
589
		return;
590

591
	net = hv_get_drvdata(device_obj);
592

593
	if (!net || net->reg_state != NETREG_REGISTERED)
594 595
		return;

596
	ndev_ctx = netdev_priv(net);
597 598 599 600 601 602 603 604 605 606 607

	event = kzalloc(sizeof(*event), GFP_ATOMIC);
	if (!event)
		return;
	event->event = indicate->status;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	schedule_delayed_work(&ndev_ctx->dwork, 0);
608 609
}

610 611

static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
612
				struct hv_netvsc_packet *packet,
613
				struct ndis_tcp_ip_checksum_info *csum_info,
614
				void *data, u16 vlan_tci)
615 616 617
{
	struct sk_buff *skb;

618
	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
619 620
	if (!skb)
		return skb;
621

622 623 624 625
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
626 627
	memcpy(skb_put(skb, packet->total_data_buflen), data,
	       packet->total_data_buflen);
628 629

	skb->protocol = eth_type_trans(skb, net);
630 631 632 633 634 635 636 637 638 639 640
	if (csum_info) {
		/* We only look at the IP checksum here.
		 * Should we be dropping the packet if checksum
		 * failed? How do we deal with other checksums - TCP/UDP?
		 */
		if (csum_info->receive.ip_checksum_succeeded)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb->ip_summed = CHECKSUM_NONE;
	}

641
	if (vlan_tci & VLAN_TAG_PRESENT)
642
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
643
				       vlan_tci);
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658
	return skb;
}

/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
int netvsc_recv_callback(struct hv_device *device_obj,
				struct hv_netvsc_packet *packet,
				void **data,
				struct ndis_tcp_ip_checksum_info *csum_info,
				struct vmbus_channel *channel,
				u16 vlan_tci)
{
659 660
	struct net_device *net = hv_get_drvdata(device_obj);
	struct net_device_context *net_device_ctx = netdev_priv(net);
661 662 663
	struct sk_buff *skb;
	struct sk_buff *vf_skb;
	struct netvsc_stats *rx_stats;
664
	struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	u32 bytes_recvd = packet->total_data_buflen;
	int ret = 0;

	if (!net || net->reg_state != NETREG_REGISTERED)
		return NVSP_STAT_FAIL;

	if (READ_ONCE(netvsc_dev->vf_inject)) {
		atomic_inc(&netvsc_dev->vf_use_cnt);
		if (!READ_ONCE(netvsc_dev->vf_inject)) {
			/*
			 * We raced; just move on.
			 */
			atomic_dec(&netvsc_dev->vf_use_cnt);
			goto vf_injection_done;
		}

		/*
		 * Inject this packet into the VF inerface.
		 * On Hyper-V, multicast and brodcast packets
		 * are only delivered on the synthetic interface
		 * (after subjecting these to policy filters on
		 * the host). Deliver these via the VF interface
		 * in the guest.
		 */
		vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
					       csum_info, *data, vlan_tci);
		if (vf_skb != NULL) {
			++netvsc_dev->vf_netdev->stats.rx_packets;
			netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
			netif_receive_skb(vf_skb);
		} else {
			++net->stats.rx_dropped;
			ret = NVSP_STAT_FAIL;
		}
		atomic_dec(&netvsc_dev->vf_use_cnt);
		return ret;
	}

vf_injection_done:
	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);

	/* Allocate a skb - TODO direct I/O to pages? */
	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
		return NVSP_STAT_FAIL;
	}
712
	skb_record_rx_queue(skb, channel->
713
			    offermsg.offer.sub_channel_index);
714

715
	u64_stats_update_begin(&rx_stats->syncp);
716 717
	rx_stats->packets++;
	rx_stats->bytes += packet->total_data_buflen;
718
	u64_stats_update_end(&rx_stats->syncp);
719

720 721
	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
722 723
	 * is done.
	 * TODO - use NAPI?
724
	 */
725
	netif_rx(skb);
726 727 728 729

	return 0;
}

730 731 732
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
733 734
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
735 736
}

737 738 739 740
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
741
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
742 743 744 745 746 747 748

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

749 750 751 752 753
static int netvsc_set_channels(struct net_device *net,
			       struct ethtool_channels *channels)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
754
	struct netvsc_device *nvdev = net_device_ctx->nvdev;
755
	struct netvsc_device_info device_info;
756 757
	u32 num_chn;
	u32 max_chn;
758 759 760
	int ret = 0;
	bool recovering = false;

761
	if (net_device_ctx->start_remove || !nvdev || nvdev->destroy)
762 763
		return -ENODEV;

764 765 766
	num_chn = nvdev->num_chn;
	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
		pr_info("vRSS unsupported before NVSP Version 5\n");
		return -EINVAL;
	}

	/* We do not support rx, tx, or other */
	if (!channels ||
	    channels->rx_count ||
	    channels->tx_count ||
	    channels->other_count ||
	    (channels->combined_count < 1))
		return -EINVAL;

	if (channels->combined_count > max_chn) {
		pr_info("combined channels too high, using %d\n", max_chn);
		channels->combined_count = max_chn;
	}

	ret = netvsc_close(net);
	if (ret)
		goto out;

 do_set:
790
	net_device_ctx->start_remove = true;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	rndis_filter_device_remove(dev);

	nvdev->num_chn = channels->combined_count;

	memset(&device_info, 0, sizeof(device_info));
	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
	device_info.ring_size = ring_size;
	device_info.max_num_vrss_chns = max_num_vrss_chns;

	ret = rndis_filter_device_add(dev, &device_info);
	if (ret) {
		if (recovering) {
			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

809
	nvdev = net_device_ctx->nvdev;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
	if (ret) {
		if (recovering) {
			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
	if (ret) {
		if (recovering) {
			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
			return ret;
		}
		goto recover;
	}

 out:
	netvsc_open(net);
831
	net_device_ctx->start_remove = false;
832 833
	/* We may have missed link change notifications */
	schedule_delayed_work(&net_device_ctx->dwork, 0);
834 835 836 837 838 839 840 841 842 843 844 845 846

	return ret;

 recover:
	/* If the above failed, we attempt to recover through the same
	 * process but with the original number of channels.
	 */
	netdev_err(net, "could not set channels, recovering\n");
	recovering = true;
	channels->combined_count = num_chn;
	goto do_set;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
{
	struct ethtool_cmd diff1 = *cmd;
	struct ethtool_cmd diff2 = {};

	ethtool_cmd_speed_set(&diff1, 0);
	diff1.duplex = 0;
	/* advertising and cmd are usually set */
	diff1.advertising = 0;
	diff1.cmd = 0;
	/* We set port to PORT_OTHER */
	diff2.port = PORT_OTHER;

	return !memcmp(&diff1, &diff2, sizeof(diff1));
}

static void netvsc_init_settings(struct net_device *dev)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ndc->speed = SPEED_UNKNOWN;
	ndc->duplex = DUPLEX_UNKNOWN;
}

static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct net_device_context *ndc = netdev_priv(dev);

	ethtool_cmd_speed_set(cmd, ndc->speed);
	cmd->duplex = ndc->duplex;
	cmd->port = PORT_OTHER;

	return 0;
}

static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct net_device_context *ndc = netdev_priv(dev);
	u32 speed;

	speed = ethtool_cmd_speed(cmd);
	if (!ethtool_validate_speed(speed) ||
	    !ethtool_validate_duplex(cmd->duplex) ||
	    !netvsc_validate_ethtool_ss_cmd(cmd))
		return -EINVAL;

	ndc->speed = speed;
	ndc->duplex = cmd->duplex;

	return 0;
}

899 900 901
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
902 903
	struct netvsc_device *nvdev = ndevctx->nvdev;
	struct hv_device *hdev = ndevctx->device_ctx;
904 905
	struct netvsc_device_info device_info;
	int limit = ETH_DATA_LEN;
906
	u32 num_chn;
907
	int ret = 0;
908

909
	if (ndevctx->start_remove || !nvdev || nvdev->destroy)
910 911
		return -ENODEV;

912
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
913
		limit = NETVSC_MTU - ETH_HLEN;
914

915
	if (mtu < NETVSC_MTU_MIN || mtu > limit)
916 917
		return -EINVAL;

918 919 920 921
	ret = netvsc_close(ndev);
	if (ret)
		goto out;

922 923
	num_chn = nvdev->num_chn;

924
	ndevctx->start_remove = true;
925 926 927 928
	rndis_filter_device_remove(hdev);

	ndev->mtu = mtu;

929
	memset(&device_info, 0, sizeof(device_info));
930
	device_info.ring_size = ring_size;
931
	device_info.num_chn = num_chn;
932
	device_info.max_num_vrss_chns = max_num_vrss_chns;
933 934
	rndis_filter_device_add(hdev, &device_info);

935 936
out:
	netvsc_open(ndev);
937
	ndevctx->start_remove = false;
938

939 940 941
	/* We may have missed link change notifications */
	schedule_delayed_work(&ndevctx->dwork, 0);

942
	return ret;
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
						    struct rtnl_link_stats64 *t)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	int cpu;

	for_each_possible_cpu(cpu) {
		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
							    cpu);
		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
							    cpu);
		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
		unsigned int start;

		do {
960
			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
961 962
			tx_packets = tx_stats->packets;
			tx_bytes = tx_stats->bytes;
963
		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
964 965

		do {
966
			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
967 968
			rx_packets = rx_stats->packets;
			rx_bytes = rx_stats->bytes;
969
		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

		t->tx_bytes	+= tx_bytes;
		t->tx_packets	+= tx_packets;
		t->rx_bytes	+= rx_bytes;
		t->rx_packets	+= rx_packets;
	}

	t->tx_dropped	= net->stats.tx_dropped;
	t->tx_errors	= net->stats.tx_dropped;

	t->rx_dropped	= net->stats.rx_dropped;
	t->rx_errors	= net->stats.rx_errors;

	return t;
}
985 986 987 988 989 990

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct sockaddr *addr = p;
991
	char save_adr[ETH_ALEN];
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}

R
Richard Weinberger 已提交
1012 1013 1014 1015 1016 1017 1018 1019
#ifdef CONFIG_NET_POLL_CONTROLLER
static void netvsc_poll_controller(struct net_device *net)
{
	/* As netvsc_start_xmit() works synchronous we don't have to
	 * trigger anything here.
	 */
}
#endif
1020

1021 1022 1023
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
1024
	.get_channels   = netvsc_get_channels,
1025
	.set_channels   = netvsc_set_channels,
1026
	.get_ts_info	= ethtool_op_get_ts_info,
1027 1028
	.get_settings	= netvsc_get_settings,
	.set_settings	= netvsc_set_settings,
1029 1030
};

1031 1032 1033 1034
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
1035
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
1036
	.ndo_change_mtu =		netvsc_change_mtu,
1037
	.ndo_validate_addr =		eth_validate_addr,
1038
	.ndo_set_mac_address =		netvsc_set_mac_addr,
1039
	.ndo_select_queue =		netvsc_select_queue,
1040
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
1041 1042 1043
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
1044 1045
};

1046
/*
1047 1048 1049
 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
 * present send GARP packet to network peers with netif_notify_peers().
1050
 */
1051
static void netvsc_link_change(struct work_struct *w)
1052
{
1053 1054 1055 1056
	struct net_device_context *ndev_ctx =
		container_of(w, struct net_device_context, dwork.work);
	struct hv_device *device_obj = ndev_ctx->device_ctx;
	struct net_device *net = hv_get_drvdata(device_obj);
1057
	struct netvsc_device *net_device;
1058
	struct rndis_device *rdev;
1059 1060 1061
	struct netvsc_reconfig *event = NULL;
	bool notify = false, reschedule = false;
	unsigned long flags, next_reconfig, delay;
1062

1063 1064 1065 1066
	rtnl_lock();
	if (ndev_ctx->start_remove)
		goto out_unlock;

1067
	net_device = ndev_ctx->nvdev;
1068 1069
	rdev = net_device->extension;

1070 1071 1072 1073 1074 1075 1076 1077 1078
	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
	if (time_is_after_jiffies(next_reconfig)) {
		/* link_watch only sends one notification with current state
		 * per second, avoid doing reconfig more frequently. Handle
		 * wrap around.
		 */
		delay = next_reconfig - jiffies;
		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
		schedule_delayed_work(&ndev_ctx->dwork, delay);
1079
		goto out_unlock;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	}
	ndev_ctx->last_reconfig = jiffies;

	spin_lock_irqsave(&ndev_ctx->lock, flags);
	if (!list_empty(&ndev_ctx->reconfig_events)) {
		event = list_first_entry(&ndev_ctx->reconfig_events,
					 struct netvsc_reconfig, list);
		list_del(&event->list);
		reschedule = !list_empty(&ndev_ctx->reconfig_events);
	}
	spin_unlock_irqrestore(&ndev_ctx->lock, flags);

	if (!event)
1093
		goto out_unlock;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

	switch (event->event) {
		/* Only the following events are possible due to the check in
		 * netvsc_linkstatus_callback()
		 */
	case RNDIS_STATUS_MEDIA_CONNECT:
		if (rdev->link_state) {
			rdev->link_state = false;
			netif_carrier_on(net);
			netif_tx_wake_all_queues(net);
		} else {
			notify = true;
		}
		kfree(event);
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
		}
		kfree(event);
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		/* Only makes sense if carrier is present */
		if (!rdev->link_state) {
			rdev->link_state = true;
			netif_carrier_off(net);
			netif_tx_stop_all_queues(net);
			event->event = RNDIS_STATUS_MEDIA_CONNECT;
			spin_lock_irqsave(&ndev_ctx->lock, flags);
1125
			list_add(&event->list, &ndev_ctx->reconfig_events);
1126 1127
			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
			reschedule = true;
1128
		}
1129
		break;
1130 1131 1132 1133 1134 1135
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
1136 1137 1138 1139 1140 1141

	/* link_watch only sends one notification with current state per
	 * second, handle next reconfig event in 2 seconds.
	 */
	if (reschedule)
		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1142 1143 1144 1145 1146

	return;

out_unlock:
	rtnl_unlock();
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156
static void netvsc_free_netdev(struct net_device *netdev)
{
	struct net_device_context *net_device_ctx = netdev_priv(netdev);

	free_percpu(net_device_ctx->tx_stats);
	free_percpu(net_device_ctx->rx_stats);
	free_netdev(netdev);
}
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void netvsc_notify_peers(struct work_struct *wrk)
{
	struct garp_wrk *gwrk;

	gwrk = container_of(wrk, struct garp_wrk, dwrk);

	netdev_notify_peers(gwrk->netdev);

	atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
}

1169
static struct net_device *get_netvsc_net_device(char *mac)
1170
{
1171
	struct net_device *dev, *found = NULL;
1172 1173 1174 1175 1176 1177 1178 1179
	int rtnl_locked;

	rtnl_locked = rtnl_trylock();

	for_each_netdev(&init_net, dev) {
		if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
			if (dev->netdev_ops != &device_ops)
				continue;
1180
			found = dev;
1181 1182 1183 1184 1185 1186
			break;
		}
	}
	if (rtnl_locked)
		rtnl_unlock();

1187
	return found;
1188 1189 1190 1191
}

static int netvsc_register_vf(struct net_device *vf_netdev)
{
1192 1193
	struct net_device *ndev;
	struct net_device_context *net_device_ctx;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;

	if (eth_ops == NULL || eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

	/*
	 * We will use the MAC address to locate the synthetic interface to
	 * associate with the VF interface. If we don't find a matching
	 * synthetic interface, move on.
	 */
1205 1206 1207 1208 1209 1210
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1211 1212 1213
	if (netvsc_dev == NULL)
		return NOTIFY_DONE;

1214
	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/*
	 * Take a reference on the module.
	 */
	try_module_get(THIS_MODULE);
	netvsc_dev->vf_netdev = vf_netdev;
	return NOTIFY_OK;
}


static int netvsc_vf_up(struct net_device *vf_netdev)
{
1226
	struct net_device *ndev;
1227 1228 1229 1230 1231 1232 1233
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
	struct net_device_context *net_device_ctx;

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1234 1235 1236 1237 1238 1239
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1240 1241 1242 1243

	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
		return NOTIFY_DONE;

1244
	netdev_info(ndev, "VF up: %s\n", vf_netdev->name);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	netvsc_dev->vf_inject = true;

	/*
	 * Open the device before switching data path.
	 */
	rndis_filter_open(net_device_ctx->device_ctx);

	/*
	 * notify the host to switch the data path.
	 */
1255 1256
	netvsc_switch_datapath(ndev, true);
	netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1257

1258
	netif_carrier_off(ndev);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	/*
	 * Now notify peers. We are scheduling work to
	 * notify peers; take a reference to prevent
	 * the VF interface from vanishing.
	 */
	atomic_inc(&netvsc_dev->vf_use_cnt);
	net_device_ctx->gwrk.netdev = vf_netdev;
	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
	schedule_work(&net_device_ctx->gwrk.dwrk);

	return NOTIFY_OK;
}


static int netvsc_vf_down(struct net_device *vf_netdev)
{
1276
	struct net_device *ndev;
1277 1278 1279 1280 1281 1282 1283
	struct netvsc_device *netvsc_dev;
	struct net_device_context *net_device_ctx;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1284 1285 1286 1287 1288 1289
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1290 1291 1292 1293

	if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
		return NOTIFY_DONE;

1294
	netdev_info(ndev, "VF down: %s\n", vf_netdev->name);
1295 1296 1297 1298 1299 1300 1301 1302
	netvsc_dev->vf_inject = false;
	/*
	 * Wait for currently active users to
	 * drain out.
	 */

	while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
		udelay(50);
1303 1304
	netvsc_switch_datapath(ndev, false);
	netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1305
	rndis_filter_close(net_device_ctx->device_ctx);
1306
	netif_carrier_on(ndev);
1307 1308 1309 1310
	/*
	 * Notify peers.
	 */
	atomic_inc(&netvsc_dev->vf_use_cnt);
1311
	net_device_ctx->gwrk.netdev = ndev;
1312 1313 1314 1315 1316 1317 1318 1319 1320
	net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
	schedule_work(&net_device_ctx->gwrk.dwrk);

	return NOTIFY_OK;
}


static int netvsc_unregister_vf(struct net_device *vf_netdev)
{
1321
	struct net_device *ndev;
1322 1323
	struct netvsc_device *netvsc_dev;
	const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1324
	struct net_device_context *net_device_ctx;
1325 1326 1327 1328

	if (eth_ops == &ethtool_ops)
		return NOTIFY_DONE;

1329 1330 1331 1332 1333 1334
	ndev = get_netvsc_net_device(vf_netdev->dev_addr);
	if (!ndev)
		return NOTIFY_DONE;

	net_device_ctx = netdev_priv(ndev);
	netvsc_dev = net_device_ctx->nvdev;
1335 1336
	if (netvsc_dev == NULL)
		return NOTIFY_DONE;
1337
	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1338 1339 1340 1341 1342 1343

	netvsc_dev->vf_netdev = NULL;
	module_put(THIS_MODULE);
	return NOTIFY_OK;
}

1344 1345
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
1346 1347 1348 1349
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
1350
	struct netvsc_device *nvdev;
1351 1352
	int ret;

1353 1354
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
				num_online_cpus());
1355
	if (!net)
1356
		return -ENOMEM;
1357

1358 1359
	netif_carrier_off(net);

1360
	net_device_ctx = netdev_priv(net);
1361
	net_device_ctx->device_ctx = dev;
1362 1363 1364 1365 1366
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->tx_stats) {
		free_netdev(net);
		return -ENOMEM;
	}
	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->rx_stats) {
		free_percpu(net_device_ctx->tx_stats);
		free_netdev(net);
		return -ENOMEM;
	}

1379
	hv_set_drvdata(dev, net);
1380 1381 1382

	net_device_ctx->start_remove = false;

1383
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1384
	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1385
	INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1386

1387 1388 1389
	spin_lock_init(&net_device_ctx->lock);
	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);

1390 1391
	net->netdev_ops = &device_ops;

1392 1393
	net->hw_features = NETVSC_HW_FEATURES;
	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1394

1395
	net->ethtool_ops = &ethtool_ops;
1396
	SET_NETDEV_DEV(net, &dev->device);
1397

1398 1399 1400
	/* We always need headroom for rndis header */
	net->needed_headroom = RNDIS_AND_PPI_SIZE;

1401
	/* Notify the netvsc driver of the new device */
1402
	memset(&device_info, 0, sizeof(device_info));
1403
	device_info.ring_size = ring_size;
1404
	device_info.max_num_vrss_chns = max_num_vrss_chns;
1405 1406 1407
	ret = rndis_filter_device_add(dev, &device_info);
	if (ret != 0) {
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1408
		netvsc_free_netdev(net);
1409
		hv_set_drvdata(dev, NULL);
1410
		return ret;
1411
	}
1412 1413
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

1414
	nvdev = net_device_ctx->nvdev;
1415 1416 1417
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

1418 1419
	netvsc_init_settings(net);

1420 1421 1422 1423
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
		rndis_filter_device_remove(dev);
1424
		netvsc_free_netdev(net);
1425 1426
	}

1427 1428 1429
	return ret;
}

1430
static int netvsc_remove(struct hv_device *dev)
1431
{
1432
	struct net_device *net;
1433
	struct net_device_context *ndev_ctx;
1434 1435
	struct netvsc_device *net_device;

1436
	net = hv_get_drvdata(dev);
1437 1438

	if (net == NULL) {
1439
		dev_err(&dev->device, "No net device to remove\n");
1440 1441 1442
		return 0;
	}

1443

1444
	ndev_ctx = netdev_priv(net);
1445 1446
	net_device = ndev_ctx->nvdev;

1447 1448 1449 1450
	/* Avoid racing with netvsc_change_mtu()/netvsc_set_channels()
	 * removing the device.
	 */
	rtnl_lock();
1451
	ndev_ctx->start_remove = true;
1452
	rtnl_unlock();
1453

1454
	cancel_delayed_work_sync(&ndev_ctx->dwork);
1455
	cancel_work_sync(&ndev_ctx->work);
1456

1457
	/* Stop outbound asap */
1458
	netif_tx_disable(net);
1459 1460 1461 1462 1463 1464 1465

	unregister_netdev(net);

	/*
	 * Call to the vsc driver to let it know that the device is being
	 * removed
	 */
1466
	rndis_filter_device_remove(dev);
1467

1468 1469
	hv_set_drvdata(dev, NULL);

1470
	netvsc_free_netdev(net);
1471
	return 0;
1472 1473
}

1474
static const struct hv_vmbus_device_id id_table[] = {
1475
	/* Network guid */
1476
	{ HV_NIC_GUID, },
1477
	{ },
1478 1479 1480 1481
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1482
/* The one and only one */
1483
static struct  hv_driver netvsc_drv = {
1484
	.name = KBUILD_MODNAME,
1485
	.id_table = id_table,
1486 1487
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1488
};
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

/*
 * On Hyper-V, every VF interface is matched with a corresponding
 * synthetic interface. The synthetic interface is presented first
 * to the guest. When the corresponding VF instance is registered,
 * we will take care of switching the data path.
 */
static int netvsc_netdev_event(struct notifier_block *this,
			       unsigned long event, void *ptr)
{
	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);

1502 1503 1504 1505
	/* Avoid Vlan dev with same MAC registering as VF */
	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
		return NOTIFY_DONE;

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	switch (event) {
	case NETDEV_REGISTER:
		return netvsc_register_vf(event_dev);
	case NETDEV_UNREGISTER:
		return netvsc_unregister_vf(event_dev);
	case NETDEV_UP:
		return netvsc_vf_up(event_dev);
	case NETDEV_DOWN:
		return netvsc_vf_down(event_dev);
	default:
		return NOTIFY_DONE;
	}
}

static struct notifier_block netvsc_netdev_notifier = {
	.notifier_call = netvsc_netdev_event,
};

1524
static void __exit netvsc_drv_exit(void)
1525
{
1526
	unregister_netdevice_notifier(&netvsc_netdev_notifier);
1527
	vmbus_driver_unregister(&netvsc_drv);
1528 1529
}

1530
static int __init netvsc_drv_init(void)
1531
{
1532 1533
	int ret;

1534 1535 1536 1537 1538
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1539 1540 1541 1542 1543 1544 1545
	ret = vmbus_driver_register(&netvsc_drv);

	if (ret)
		return ret;

	register_netdevice_notifier(&netvsc_netdev_notifier);
	return 0;
1546 1547
}

1548
MODULE_LICENSE("GPL");
1549
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1550

1551
module_init(netvsc_drv_init);
1552
module_exit(netvsc_drv_exit);