intel_runtime_pm.c 68.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *    Daniel Vetter <daniel.vetter@ffwll.ch>
 *
 */

#include <linux/pm_runtime.h>
#include <linux/vgaarb.h>

#include "i915_drv.h"
#include "intel_drv.h"

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/**
 * DOC: runtime pm
 *
 * The i915 driver supports dynamic enabling and disabling of entire hardware
 * blocks at runtime. This is especially important on the display side where
 * software is supposed to control many power gates manually on recent hardware,
 * since on the GT side a lot of the power management is done by the hardware.
 * But even there some manual control at the device level is required.
 *
 * Since i915 supports a diverse set of platforms with a unified codebase and
 * hardware engineers just love to shuffle functionality around between power
 * domains there's a sizeable amount of indirection required. This file provides
 * generic functions to the driver for grabbing and releasing references for
 * abstract power domains. It then maps those to the actual power wells
 * present for a given platform.
 */

52 53 54 55 56
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
57
		for_each_if ((power_well)->domains & (domain_mask))
58 59 60 61 62

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
63
		for_each_if ((power_well)->domains & (domain_mask))
64

65 66 67
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
				    int power_well_id);

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
		return "PIPE_A";
	case POWER_DOMAIN_PIPE_B:
		return "PIPE_B";
	case POWER_DOMAIN_PIPE_C:
		return "PIPE_C";
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
		return "PIPE_A_PANEL_FITTER";
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
		return "PIPE_B_PANEL_FITTER";
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
		return "PIPE_C_PANEL_FITTER";
	case POWER_DOMAIN_TRANSCODER_A:
		return "TRANSCODER_A";
	case POWER_DOMAIN_TRANSCODER_B:
		return "TRANSCODER_B";
	case POWER_DOMAIN_TRANSCODER_C:
		return "TRANSCODER_C";
	case POWER_DOMAIN_TRANSCODER_EDP:
		return "TRANSCODER_EDP";
	case POWER_DOMAIN_PORT_DDI_A_LANES:
		return "PORT_DDI_A_LANES";
	case POWER_DOMAIN_PORT_DDI_B_LANES:
		return "PORT_DDI_B_LANES";
	case POWER_DOMAIN_PORT_DDI_C_LANES:
		return "PORT_DDI_C_LANES";
	case POWER_DOMAIN_PORT_DDI_D_LANES:
		return "PORT_DDI_D_LANES";
	case POWER_DOMAIN_PORT_DDI_E_LANES:
		return "PORT_DDI_E_LANES";
	case POWER_DOMAIN_PORT_DSI:
		return "PORT_DSI";
	case POWER_DOMAIN_PORT_CRT:
		return "PORT_CRT";
	case POWER_DOMAIN_PORT_OTHER:
		return "PORT_OTHER";
	case POWER_DOMAIN_VGA:
		return "VGA";
	case POWER_DOMAIN_AUDIO:
		return "AUDIO";
	case POWER_DOMAIN_PLLS:
		return "PLLS";
	case POWER_DOMAIN_AUX_A:
		return "AUX_A";
	case POWER_DOMAIN_AUX_B:
		return "AUX_B";
	case POWER_DOMAIN_AUX_C:
		return "AUX_C";
	case POWER_DOMAIN_AUX_D:
		return "AUX_D";
	case POWER_DOMAIN_GMBUS:
		return "GMBUS";
	case POWER_DOMAIN_INIT:
		return "INIT";
	case POWER_DOMAIN_MODESET:
		return "MODESET";
	default:
		MISSING_CASE(domain);
		return "?";
	}
}

134 135 136 137 138 139 140 141
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well)
{
	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
	power_well->ops->enable(dev_priv, power_well);
	power_well->hw_enabled = true;
}

142 143 144 145 146 147 148 149
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
				     struct i915_power_well *power_well)
{
	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
	power_well->hw_enabled = false;
	power_well->ops->disable(dev_priv, power_well);
}

150
/*
151 152 153 154 155 156 157 158 159 160 161
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

162 163 164 165 166 167 168 169 170 171 172 173
/**
 * __intel_display_power_is_enabled - unlocked check for a power domain
 * @dev_priv: i915 device instance
 * @domain: power domain to check
 *
 * This is the unlocked version of intel_display_power_is_enabled() and should
 * only be used from error capture and recovery code where deadlocks are
 * possible.
 *
 * Returns:
 * True when the power domain is enabled, false otherwise.
 */
174 175
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
				      enum intel_display_power_domain domain)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
{
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;

	power_domains = &dev_priv->power_domains;

	is_enabled = true;

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;

		if (!power_well->hw_enabled) {
			is_enabled = false;
			break;
		}
	}

	return is_enabled;
}

202
/**
203
 * intel_display_power_is_enabled - check for a power domain
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 * @dev_priv: i915 device instance
 * @domain: power domain to check
 *
 * This function can be used to check the hw power domain state. It is mostly
 * used in hardware state readout functions. Everywhere else code should rely
 * upon explicit power domain reference counting to ensure that the hardware
 * block is powered up before accessing it.
 *
 * Callers must hold the relevant modesetting locks to ensure that concurrent
 * threads can't disable the power well while the caller tries to read a few
 * registers.
 *
 * Returns:
 * True when the power domain is enabled, false otherwise.
 */
219 220
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
				    enum intel_display_power_domain domain)
221 222 223 224 225 226 227
{
	struct i915_power_domains *power_domains;
	bool ret;

	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
228
	ret = __intel_display_power_is_enabled(dev_priv, domain);
229 230 231 232 233
	mutex_unlock(&power_domains->lock);

	return ret;
}

234 235 236 237 238 239 240 241 242 243
/**
 * intel_display_set_init_power - set the initial power domain state
 * @dev_priv: i915 device instance
 * @enable: whether to enable or disable the initial power domain state
 *
 * For simplicity our driver load/unload and system suspend/resume code assumes
 * that all power domains are always enabled. This functions controls the state
 * of this little hack. While the initial power domain state is enabled runtime
 * pm is effectively disabled.
 */
244 245 246 247 248 249 250 251 252 253 254 255 256 257
void intel_display_set_init_power(struct drm_i915_private *dev_priv,
				  bool enable)
{
	if (dev_priv->power_domains.init_power_on == enable)
		return;

	if (enable)
		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
	else
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);

	dev_priv->power_domains.init_power_on = enable;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

282
	if (IS_BROADWELL(dev))
283 284
		gen8_irq_power_well_post_enable(dev_priv,
						1 << PIPE_C | 1 << PIPE_B);
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	struct drm_device *dev = dev_priv->dev;

	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	if (power_well->data == SKL_DISP_PW_2) {
		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

		gen8_irq_power_well_post_enable(dev_priv,
						1 << PIPE_C | 1 << PIPE_B);
	}
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
{
	bool is_enabled, enable_requested;
	uint32_t tmp;

	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;

	if (enable) {
		if (!enable_requested)
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);

		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				      HSW_PWR_WELL_STATE_ENABLED), 20))
				DRM_ERROR("Timeout enabling power well\n");
332
			hsw_power_well_post_enable(dev_priv);
333 334 335 336 337 338 339 340 341 342 343
		}

	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
			POSTING_READ(HSW_PWR_WELL_DRIVER);
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
		}
	}
}

344 345 346 347 348 349 350 351
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
	BIT(POWER_DOMAIN_PIPE_B) |			\
	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
	BIT(POWER_DOMAIN_PIPE_C) |			\
	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
352 353 354 355
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
356 357 358 359 360 361 362
	BIT(POWER_DOMAIN_AUX_B) |                       \
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUX_D) |			\
	BIT(POWER_DOMAIN_AUDIO) |			\
	BIT(POWER_DOMAIN_VGA) |				\
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
363 364
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
365 366
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
367
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
368 369
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
370
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
371 372
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
373
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
374
	BIT(POWER_DOMAIN_INIT))
375 376 377 378 379
#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_MODESET) |			\
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_INIT))
380
#define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
381
	(POWER_DOMAIN_MASK & ~(				\
382 383
	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) |		\
384 385
	BIT(POWER_DOMAIN_INIT))

386 387 388 389 390 391 392 393
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
	BIT(POWER_DOMAIN_PIPE_B) |			\
	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
	BIT(POWER_DOMAIN_PIPE_C) |			\
	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
394 395
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
396 397 398 399
	BIT(POWER_DOMAIN_AUX_B) |			\
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUDIO) |			\
	BIT(POWER_DOMAIN_VGA) |				\
400
	BIT(POWER_DOMAIN_GMBUS) |			\
401 402 403 404 405 406
	BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_PIPE_A) |			\
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
407
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
408 409 410
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_PLLS) |			\
	BIT(POWER_DOMAIN_INIT))
411 412 413 414 415
#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_MODESET) |			\
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_INIT))
416 417 418 419 420
#define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
	BIT(POWER_DOMAIN_INIT))

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
		"DC9 already programmed to be enabled.\n");
	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
		"DC5 still not disabled to enable DC9.\n");
	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");

	 /*
	  * TODO: check for the following to verify the conditions to enter DC9
	  * state are satisfied:
	  * 1] Check relevant display engine registers to verify if mode set
	  * disable sequence was followed.
	  * 2] Check if display uninitialize sequence is initialized.
	  */
}

static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
		"DC9 already programmed to be disabled.\n");
	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
		"DC5 still not disabled.\n");

	 /*
	  * TODO: check for the following to verify DC9 state was indeed
	  * entered before programming to disable it:
	  * 1] Check relevant display engine registers to verify if mode
	  *  set disable sequence was followed.
	  * 2] Check if display uninitialize sequence is initialized.
	  */
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void gen9_set_dc_state_debugmask_memory_up(
			struct drm_i915_private *dev_priv)
{
	uint32_t val;

	/* The below bit doesn't need to be cleared ever afterwards */
	val = I915_READ(DC_STATE_DEBUG);
	if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
		val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
		I915_WRITE(DC_STATE_DEBUG, val);
		POSTING_READ(DC_STATE_DEBUG);
	}
}

473
static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
474 475
{
	uint32_t val;
476
	uint32_t mask;
477

478 479 480 481 482
	mask = DC_STATE_EN_UPTO_DC5;
	if (IS_BROXTON(dev_priv))
		mask |= DC_STATE_EN_DC9;
	else
		mask |= DC_STATE_EN_UPTO_DC6;
483

484
	WARN_ON_ONCE(state & ~mask);
485

486 487 488 489 490
	if (i915.enable_dc == 0)
		state = DC_STATE_DISABLE;
	else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
		state = DC_STATE_EN_UPTO_DC5;

491 492 493
	if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
		gen9_set_dc_state_debugmask_memory_up(dev_priv);

494
	val = I915_READ(DC_STATE_EN);
495 496 497 498
	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
		      val & mask, state);
	val &= ~mask;
	val |= state;
499 500 501 502
	I915_WRITE(DC_STATE_EN, val);
	POSTING_READ(DC_STATE_EN);
}

503
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
504
{
505 506 507
	assert_can_enable_dc9(dev_priv);

	DRM_DEBUG_KMS("Enabling DC9\n");
508

509 510 511 512 513
	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}

void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
514 515 516 517
	assert_can_disable_dc9(dev_priv);

	DRM_DEBUG_KMS("Disabling DC9\n");

518
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
519 520
}

521 522 523 524 525 526 527 528
static void assert_csr_loaded(struct drm_i915_private *dev_priv)
{
	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
		  "CSR program storage start is NULL\n");
	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
}

529
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
530
{
531
	struct drm_device *dev = dev_priv->dev;
532 533 534
	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
					SKL_DISP_PW_2);

535 536 537
	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
538

539 540 541 542
	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
		  "DC5 already programmed to be enabled.\n");
	WARN_ONCE(dev_priv->pm.suspended,
		  "DC5 cannot be enabled, if platform is runtime-suspended.\n");
543 544 545 546 547 548

	assert_csr_loaded(dev_priv);
}

static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
{
549 550 551 552 553 554
	/*
	 * During initialization, the firmware may not be loaded yet.
	 * We still want to make sure that the DC enabling flag is cleared.
	 */
	if (dev_priv->power_domains.initializing)
		return;
555

556
	WARN_ONCE(dev_priv->pm.suspended,
557 558 559 560 561 562
		"Disabling of DC5 while platform is runtime-suspended should never happen.\n");
}

static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
	assert_can_enable_dc5(dev_priv);
563 564 565

	DRM_DEBUG_KMS("Enabling DC5\n");

566
	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
567 568
}

569
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
570
{
571
	struct drm_device *dev = dev_priv->dev;
572

573 574 575 576 577 578
	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
		  "Backlight is not disabled.\n");
	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
		  "DC6 already programmed to be enabled.\n");
579 580 581 582 583 584 585 586 587 588 589 590 591

	assert_csr_loaded(dev_priv);
}

static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
{
	/*
	 * During initialization, the firmware may not be loaded yet.
	 * We still want to make sure that the DC enabling flag is cleared.
	 */
	if (dev_priv->power_domains.initializing)
		return;

592 593
	WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
		  "DC6 already programmed to be disabled.\n");
594 595
}

596 597 598
static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
{
	assert_can_disable_dc5(dev_priv);
599 600 601

	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
		assert_can_disable_dc6(dev_priv);
602 603 604 605

	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}

606
void skl_enable_dc6(struct drm_i915_private *dev_priv)
607 608
{
	assert_can_enable_dc6(dev_priv);
609 610 611

	DRM_DEBUG_KMS("Enabling DC6\n");

612 613
	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);

614 615
}

616
void skl_disable_dc6(struct drm_i915_private *dev_priv)
617
{
618
	assert_can_disable_dc6(dev_priv);
619 620 621

	DRM_DEBUG_KMS("Disabling DC6\n");

622
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
623 624
}

625 626 627
static void skl_set_power_well(struct drm_i915_private *dev_priv,
			struct i915_power_well *power_well, bool enable)
{
628
	struct drm_device *dev = dev_priv->dev;
629 630
	uint32_t tmp, fuse_status;
	uint32_t req_mask, state_mask;
631
	bool is_enabled, enable_requested, check_fuse_status = false;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	fuse_status = I915_READ(SKL_FUSE_STATUS);

	switch (power_well->data) {
	case SKL_DISP_PW_1:
		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
			SKL_FUSE_PG0_DIST_STATUS), 1)) {
			DRM_ERROR("PG0 not enabled\n");
			return;
		}
		break;
	case SKL_DISP_PW_2:
		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
			DRM_ERROR("PG1 in disabled state\n");
			return;
		}
		break;
	case SKL_DISP_PW_DDI_A_E:
	case SKL_DISP_PW_DDI_B:
	case SKL_DISP_PW_DDI_C:
	case SKL_DISP_PW_DDI_D:
	case SKL_DISP_PW_MISC_IO:
		break;
	default:
		WARN(1, "Unknown power well %lu\n", power_well->data);
		return;
	}

	req_mask = SKL_POWER_WELL_REQ(power_well->data);
662
	enable_requested = tmp & req_mask;
663
	state_mask = SKL_POWER_WELL_STATE(power_well->data);
664
	is_enabled = tmp & state_mask;
665 666

	if (enable) {
667
		if (!enable_requested) {
668 669 670 671
			WARN((tmp & state_mask) &&
				!I915_READ(HSW_PWR_WELL_BIOS),
				"Invalid for power well status to be enabled, unless done by the BIOS, \
				when request is to disable!\n");
672
			if (power_well->data == SKL_DISP_PW_2) {
673 674 675 676 677 678 679 680 681
				/*
				 * DDI buffer programming unnecessary during
				 * driver-load/resume as it's already done
				 * during modeset initialization then. It's
				 * also invalid here as encoder list is still
				 * uninitialized.
				 */
				if (!dev_priv->power_domains.initializing)
					intel_prepare_ddi(dev);
682
			}
683 684 685
			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
		}

686
		if (!is_enabled) {
687
			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
688 689 690 691 692 693 694
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				state_mask), 1))
				DRM_ERROR("%s enable timeout\n",
					power_well->name);
			check_fuse_status = true;
		}
	} else {
695
		if (enable_requested) {
696 697 698
			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
			POSTING_READ(HSW_PWR_WELL_DRIVER);
			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
699 700 701 702 703 704 705 706 707 708 709 710 711 712
		}
	}

	if (check_fuse_status) {
		if (power_well->data == SKL_DISP_PW_1) {
			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
				SKL_FUSE_PG1_DIST_STATUS), 1))
				DRM_ERROR("PG1 distributing status timeout\n");
		} else if (power_well->data == SKL_DISP_PW_2) {
			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
				SKL_FUSE_PG2_DIST_STATUS), 1))
				DRM_ERROR("PG2 distributing status timeout\n");
		}
	}
713 714 715

	if (enable && !is_enabled)
		skl_power_well_post_enable(dev_priv, power_well);
716 717
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
		SKL_POWER_WELL_STATE(power_well->data);

	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
}

static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, power_well->count > 0);

	/* Clear any request made by BIOS as driver is taking over */
	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void skl_power_well_enable(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, true);
}

static void skl_power_well_disable(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, false);
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
}

static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	gen9_disable_dc5_dc6(dev_priv);
}

static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
788
	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
789 790 791 792 793 794 795 796 797 798 799
		skl_enable_dc6(dev_priv);
	else
		gen9_enable_dc5(dev_priv);
}

static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	if (power_well->count > 0) {
		gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
	} else {
800 801
		if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 &&
		    i915.enable_dc != 1)
802 803 804 805 806 807
			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
		else
			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
	}
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
{
	enum punit_power_well power_well_id = power_well->data;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
845
		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

909
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
910
{
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	enum pipe pipe;

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection. Supposedly DSI also
	 * needs the ref clock up and running.
	 *
	 * CHV DPLL B/C have some issues if VGA mode is enabled.
	 */
	for_each_pipe(dev_priv->dev, pipe) {
		u32 val = I915_READ(DPLL(pipe));

		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
		if (pipe != PIPE_A)
			val |= DPLL_INTEGRATED_CRI_CLK_VLV;

		I915_WRITE(DPLL(pipe), val);
	}
930 931 932 933 934 935 936 937 938 939 940 941

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
	 */
	if (dev_priv->power_domains.initializing)
		return;

942
	intel_hpd_init(dev_priv);
943 944 945 946

	i915_redisable_vga_power_on(dev_priv->dev);
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_power_sequencer_reset(dev_priv);
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	vlv_display_power_well_init(dev_priv);
}

966 967 968 969 970
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

971
	vlv_display_power_well_deinit(dev_priv);
972 973 974 975 976 977 978 979 980

	vlv_set_power_well(dev_priv, power_well, false);
}

static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

981
	/* since ref/cri clock was enabled */
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	for_each_pipe(dev_priv, pipe)
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

1016 1017 1018 1019 1020 1021 1022 1023
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 int power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	int i;

1024 1025 1026 1027
	for (i = 0; i < power_domains->power_well_count; i++) {
		struct i915_power_well *power_well;

		power_well = &power_domains->power_wells[i];
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

#define BITS_SET(val, bits) (((val) & (bits)) == (bits))

static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn_bc =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *cmn_d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
	u32 phy_control = dev_priv->chv_phy_control;
	u32 phy_status = 0;
1045
	u32 phy_status_mask = 0xffffffff;
1046 1047
	u32 tmp;

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	/*
	 * The BIOS can leave the PHY is some weird state
	 * where it doesn't fully power down some parts.
	 * Disable the asserts until the PHY has been fully
	 * reset (ie. the power well has been disabled at
	 * least once).
	 */
	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));

	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
		phy_status |= PHY_POWERGOOD(DPIO_PHY0);

		/* this assumes override is only used to enable lanes */
		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);

		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);

		/* CL1 is on whenever anything is on in either channel */
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);

		/*
		 * The DPLLB check accounts for the pipe B + port A usage
		 * with CL2 powered up but all the lanes in the second channel
		 * powered down.
		 */
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
	}

	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
		phy_status |= PHY_POWERGOOD(DPIO_PHY1);

		/* this assumes override is only used to enable lanes */
		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
	}

1128 1129
	phy_status &= phy_status_mask;

1130 1131 1132 1133
	/*
	 * The PHY may be busy with some initial calibration and whatnot,
	 * so the power state can take a while to actually change.
	 */
1134
	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1135 1136 1137 1138 1139 1140 1141
		WARN(phy_status != tmp,
		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
		     tmp, phy_status, dev_priv->chv_phy_control);
}

#undef BITS_SET

1142 1143 1144 1145
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;
1146 1147
	enum pipe pipe;
	uint32_t tmp;
1148 1149 1150 1151

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

1152 1153
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		pipe = PIPE_A;
1154
		phy = DPIO_PHY0;
1155 1156
	} else {
		pipe = PIPE_C;
1157
		phy = DPIO_PHY1;
1158
	}
1159 1160

	/* since ref/cri clock was enabled */
1161 1162 1163 1164 1165 1166 1167
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

1168 1169 1170 1171
	mutex_lock(&dev_priv->sb_lock);

	/* Enable dynamic power down */
	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1172 1173
	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1174 1175 1176 1177 1178 1179
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
		tmp |= DPIO_DYNPWRDOWNEN_CH1;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1180 1181 1182 1183 1184 1185 1186 1187 1188
	} else {
		/*
		 * Force the non-existing CL2 off. BXT does this
		 * too, so maybe it saves some power even though
		 * CL2 doesn't exist?
		 */
		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1189 1190 1191 1192
	}

	mutex_unlock(&dev_priv->sb_lock);

1193 1194
	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1195 1196 1197

	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
		      phy, dev_priv->chv_phy_control);
1198 1199

	assert_chv_phy_status(dev_priv);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

1219 1220
	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1221 1222

	vlv_set_power_well(dev_priv, power_well, false);
1223 1224 1225

	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
		      phy, dev_priv->chv_phy_control);
1226

1227 1228 1229
	/* PHY is fully reset now, so we can enable the PHY state asserts */
	dev_priv->chv_phy_assert[phy] = true;

1230
	assert_chv_phy_status(dev_priv);
1231 1232
}

1233 1234 1235 1236 1237 1238
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
				     enum dpio_channel ch, bool override, unsigned int mask)
{
	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
	u32 reg, val, expected, actual;

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	/*
	 * The BIOS can leave the PHY is some weird state
	 * where it doesn't fully power down some parts.
	 * Disable the asserts until the PHY has been fully
	 * reset (ie. the power well has been disabled at
	 * least once).
	 */
	if (!dev_priv->chv_phy_assert[phy])
		return;

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (ch == DPIO_CH0)
		reg = _CHV_CMN_DW0_CH0;
	else
		reg = _CHV_CMN_DW6_CH1;

	mutex_lock(&dev_priv->sb_lock);
	val = vlv_dpio_read(dev_priv, pipe, reg);
	mutex_unlock(&dev_priv->sb_lock);

	/*
	 * This assumes !override is only used when the port is disabled.
	 * All lanes should power down even without the override when
	 * the port is disabled.
	 */
	if (!override || mask == 0xf) {
		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
		/*
		 * If CH1 common lane is not active anymore
		 * (eg. for pipe B DPLL) the entire channel will
		 * shut down, which causes the common lane registers
		 * to read as 0. That means we can't actually check
		 * the lane power down status bits, but as the entire
		 * register reads as 0 it's a good indication that the
		 * channel is indeed entirely powered down.
		 */
		if (ch == DPIO_CH1 && val == 0)
			expected = 0;
	} else if (mask != 0x0) {
		expected = DPIO_ANYDL_POWERDOWN;
	} else {
		expected = 0;
	}

	if (ch == DPIO_CH0)
		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
	else
		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;

	WARN(actual != expected,
	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
	     reg, val);
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
			  enum dpio_channel ch, bool override)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	bool was_override;

	mutex_lock(&power_domains->lock);

	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	if (override == was_override)
		goto out;

	if (override)
		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
	else
		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
		      phy, ch, dev_priv->chv_phy_control);

1318 1319
	assert_chv_phy_status(dev_priv);

1320 1321 1322 1323 1324 1325
out:
	mutex_unlock(&power_domains->lock);

	return was_override;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
			     bool override, unsigned int mask)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));

	mutex_lock(&power_domains->lock);

	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);

	if (override)
		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
	else
		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
		      phy, ch, mask, dev_priv->chv_phy_control);

1349 1350
	assert_chv_phy_status(dev_priv);

1351 1352
	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);

1353
	mutex_unlock(&power_domains->lock);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
}

static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
1409
		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
1422 1423
	WARN_ON_ONCE(power_well->data != PIPE_A);

1424 1425 1426 1427 1428 1429
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
1430
	WARN_ON_ONCE(power_well->data != PIPE_A);
1431 1432

	chv_set_pipe_power_well(dev_priv, power_well, true);
1433

1434
	vlv_display_power_well_init(dev_priv);
1435 1436 1437 1438 1439
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
1440 1441
	WARN_ON_ONCE(power_well->data != PIPE_A);

1442
	vlv_display_power_well_deinit(dev_priv);
1443

1444 1445 1446
	chv_set_pipe_power_well(dev_priv, power_well, false);
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/**
 * intel_display_power_get - grab a power domain reference
 * @dev_priv: i915 device instance
 * @domain: power domain to reference
 *
 * This function grabs a power domain reference for @domain and ensures that the
 * power domain and all its parents are powered up. Therefore users should only
 * grab a reference to the innermost power domain they need.
 *
 * Any power domain reference obtained by this function must have a symmetric
 * call to intel_display_power_put() to release the reference again.
 */
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
void intel_display_power_get(struct drm_i915_private *dev_priv,
			     enum intel_display_power_domain domain)
{
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	int i;

	intel_runtime_pm_get(dev_priv);

	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);

	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1473 1474
		if (!power_well->count++)
			intel_power_well_enable(dev_priv, power_well);
1475 1476 1477 1478 1479 1480 1481
	}

	power_domains->domain_use_count[domain]++;

	mutex_unlock(&power_domains->lock);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * intel_display_power_put - release a power domain reference
 * @dev_priv: i915 device instance
 * @domain: power domain to reference
 *
 * This function drops the power domain reference obtained by
 * intel_display_power_get() and might power down the corresponding hardware
 * block right away if this is the last reference.
 */
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
void intel_display_power_put(struct drm_i915_private *dev_priv,
			     enum intel_display_power_domain domain)
{
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	int i;

	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);

1502 1503 1504
	WARN(!power_domains->domain_use_count[domain],
	     "Use count on domain %s is already zero\n",
	     intel_display_power_domain_str(domain));
1505 1506 1507
	power_domains->domain_use_count[domain]--;

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1508 1509 1510
		WARN(!power_well->count,
		     "Use count on power well %s is already zero",
		     power_well->name);
1511

1512
		if (!--power_well->count)
1513
			intel_power_well_disable(dev_priv, power_well);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	}

	mutex_unlock(&power_domains->lock);

	intel_runtime_pm_put(dev_priv);
}

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1524 1525 1526 1527
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1528 1529
	BIT(POWER_DOMAIN_PORT_CRT) |			\
	BIT(POWER_DOMAIN_PLLS) |			\
1530 1531 1532 1533
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_AUX_B) |			\
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUX_D) |			\
1534
	BIT(POWER_DOMAIN_GMBUS) |			\
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1551 1552
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1553
	BIT(POWER_DOMAIN_PORT_CRT) |		\
1554 1555
	BIT(POWER_DOMAIN_AUX_B) |		\
	BIT(POWER_DOMAIN_AUX_C) |		\
1556 1557 1558
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1559
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1560
	BIT(POWER_DOMAIN_AUX_B) |		\
1561 1562 1563
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1564
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1565
	BIT(POWER_DOMAIN_AUX_B) |		\
1566 1567 1568
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1569
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1570
	BIT(POWER_DOMAIN_AUX_C) |		\
1571 1572 1573
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1574
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1575
	BIT(POWER_DOMAIN_AUX_C) |		\
1576 1577 1578
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1579 1580
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1581 1582
	BIT(POWER_DOMAIN_AUX_B) |		\
	BIT(POWER_DOMAIN_AUX_C) |		\
1583 1584 1585
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1586
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1587
	BIT(POWER_DOMAIN_AUX_D) |		\
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	BIT(POWER_DOMAIN_INIT))

static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};

static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
		.ops = &i9xx_always_on_power_well_ops,
	},
};

static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

1627 1628 1629 1630 1631 1632 1633
static const struct i915_power_well_ops skl_power_well_ops = {
	.sync_hw = skl_power_well_sync_hw,
	.enable = skl_power_well_enable,
	.disable = skl_power_well_disable,
	.is_enabled = skl_power_well_enabled,
};

1634 1635 1636 1637 1638 1639 1640
static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
	.sync_hw = gen9_dc_off_power_well_sync_hw,
	.enable = gen9_dc_off_power_well_enable,
	.disable = gen9_dc_off_power_well_disable,
	.is_enabled = gen9_dc_off_power_well_enabled,
};

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static struct i915_power_well hsw_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = HSW_DISPLAY_POWER_DOMAINS,
		.ops = &hsw_power_well_ops,
	},
};

static struct i915_power_well bdw_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = BDW_DISPLAY_POWER_DOMAINS,
		.ops = &hsw_power_well_ops,
	},
};

static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
1696
		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &vlv_dpio_cmn_power_well_ops,
	},
};

static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
1757
		/*
1758 1759 1760
		 * Pipe A power well is the new disp2d well. Pipe B and C
		 * power wells don't actually exist. Pipe A power well is
		 * required for any pipe to work.
1761
		 */
1762
		.domains = VLV_DISPLAY_POWER_DOMAINS,
1763 1764 1765 1766 1767
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "dpio-common-bc",
1768
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1769 1770 1771 1772 1773
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
1774
		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1775 1776 1777 1778 1779
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
};

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
				    int power_well_id)
{
	struct i915_power_well *power_well;
	bool ret;

	power_well = lookup_power_well(dev_priv, power_well_id);
	ret = power_well->ops->is_enabled(dev_priv, power_well);

	return ret;
}

1792 1793 1794 1795 1796 1797
static struct i915_power_well skl_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
1798
		.data = SKL_DISP_PW_ALWAYS_ON,
1799 1800 1801
	},
	{
		.name = "power well 1",
1802 1803
		/* Handled by the DMC firmware */
		.domains = 0,
1804 1805 1806 1807 1808
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_1,
	},
	{
		.name = "MISC IO power well",
1809 1810
		/* Handled by the DMC firmware */
		.domains = 0,
1811 1812 1813
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_MISC_IO,
	},
1814 1815 1816 1817 1818 1819
	{
		.name = "DC off",
		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
		.ops = &gen9_dc_off_power_well_ops,
		.data = SKL_DISP_PW_DC_OFF,
	},
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	{
		.name = "power well 2",
		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_2,
	},
	{
		.name = "DDI A/E power well",
		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_A_E,
	},
	{
		.name = "DDI B power well",
		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_B,
	},
	{
		.name = "DDI C power well",
		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_C,
	},
	{
		.name = "DDI D power well",
		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_D,
	},
};

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *well;

	if (!IS_SKYLAKE(dev_priv))
		return;

	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
	intel_power_well_enable(dev_priv, well);

	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
	intel_power_well_enable(dev_priv, well);
}

void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *well;

	if (!IS_SKYLAKE(dev_priv))
		return;

	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
	intel_power_well_disable(dev_priv, well);

	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
	intel_power_well_disable(dev_priv, well);
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static struct i915_power_well bxt_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "power well 1",
		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_1,
	},
1893 1894 1895 1896 1897 1898
	{
		.name = "DC off",
		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
		.ops = &gen9_dc_off_power_well_ops,
		.data = SKL_DISP_PW_DC_OFF,
	},
1899 1900 1901 1902 1903
	{
		.name = "power well 2",
		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_2,
1904
	},
1905 1906
};

1907 1908 1909 1910 1911 1912 1913
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
				   int disable_power_well)
{
	if (disable_power_well >= 0)
		return !!disable_power_well;

1914 1915 1916 1917 1918
	if (IS_BROXTON(dev_priv)) {
		DRM_DEBUG_KMS("Disabling display power well support\n");
		return 0;
	}

1919 1920 1921
	return 1;
}

1922 1923 1924 1925 1926
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

1927 1928 1929 1930 1931 1932 1933
/**
 * intel_power_domains_init - initializes the power domain structures
 * @dev_priv: i915 device instance
 *
 * Initializes the power domain structures for @dev_priv depending upon the
 * supported platform.
 */
1934 1935 1936 1937
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

1938 1939 1940
	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
						     i915.disable_power_well);

1941 1942
	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	mutex_init(&power_domains->lock);

	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
	if (IS_HASWELL(dev_priv->dev)) {
		set_power_wells(power_domains, hsw_power_wells);
	} else if (IS_BROADWELL(dev_priv->dev)) {
		set_power_wells(power_domains, bdw_power_wells);
1953
	} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1954
		set_power_wells(power_domains, skl_power_wells);
1955 1956
	} else if (IS_BROXTON(dev_priv->dev)) {
		set_power_wells(power_domains, bxt_power_wells);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
	} else {
		set_power_wells(power_domains, i9xx_always_on_power_well);
	}

	return 0;
}

1968 1969 1970 1971 1972 1973 1974 1975
/**
 * intel_power_domains_fini - finalizes the power domain structures
 * @dev_priv: i915 device instance
 *
 * Finalizes the power domain structures for @dev_priv depending upon the
 * supported platform. This function also disables runtime pm and ensures that
 * the device stays powered up so that the driver can be reloaded.
 */
1976
void intel_power_domains_fini(struct drm_i915_private *dev_priv)
1977
{
1978 1979
	struct device *device = &dev_priv->dev->pdev->dev;

1980 1981
	/*
	 * The i915.ko module is still not prepared to be loaded when
1982
	 * the power well is not enabled, so just enable it in case
1983 1984 1985 1986 1987 1988
	 * we're going to unload/reload.
	 * The following also reacquires the RPM reference the core passed
	 * to the driver during loading, which is dropped in
	 * intel_runtime_pm_enable(). We have to hand back the control of the
	 * device to the core with this reference held.
	 */
1989
	intel_display_set_init_power(dev_priv, true);
1990 1991 1992 1993

	/* Remove the refcount we took to keep power well support disabled. */
	if (!i915.disable_power_well)
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1994 1995 1996 1997 1998 1999 2000

	/*
	 * Remove the refcount we took in intel_runtime_pm_enable() in case
	 * the platform doesn't support runtime PM.
	 */
	if (!HAS_RUNTIME_PM(dev_priv))
		pm_runtime_put(device);
2001 2002
}

2003
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	mutex_lock(&power_domains->lock);
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		power_well->ops->sync_hw(dev_priv, power_well);
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
	mutex_unlock(&power_domains->lock);
}

2018 2019 2020 2021 2022 2023
static void skl_display_core_init(struct drm_i915_private *dev_priv,
				  bool resume)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	uint32_t val;

2024 2025
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/* enable PCH reset handshake */
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);

	/* enable PG1 and Misc I/O */
	mutex_lock(&power_domains->lock);
	skl_pw1_misc_io_init(dev_priv);
	mutex_unlock(&power_domains->lock);

	if (!resume)
		return;

	skl_init_cdclk(dev_priv);

	if (dev_priv->csr.dmc_payload)
		intel_csr_load_program(dev_priv);
}

static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

2048 2049
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);

2050 2051 2052 2053 2054 2055 2056 2057 2058
	skl_uninit_cdclk(dev_priv);

	/* The spec doesn't call for removing the reset handshake flag */
	/* disable PG1 and Misc I/O */
	mutex_lock(&power_domains->lock);
	skl_pw1_misc_io_fini(dev_priv);
	mutex_unlock(&power_domains->lock);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn_bc =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *cmn_d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
	 * workaround never ever read DISPLAY_PHY_CONTROL, and
	 * instead maintain a shadow copy ourselves. Use the actual
2070 2071
	 * power well state and lane status to reconstruct the
	 * expected initial value.
2072 2073
	 */
	dev_priv->chv_phy_control =
2074 2075
		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);

	/*
	 * If all lanes are disabled we leave the override disabled
	 * with all power down bits cleared to match the state we
	 * would use after disabling the port. Otherwise enable the
	 * override and set the lane powerdown bits accding to the
	 * current lane status.
	 */
	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
		uint32_t status = I915_READ(DPLL(PIPE_A));
		unsigned int mask;

		mask = status & DPLL_PORTB_READY_MASK;
		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);

		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);

2111
		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2112 2113 2114 2115

		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
	} else {
		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	}

	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
		uint32_t status = I915_READ(DPIO_PHY_STATUS);
		unsigned int mask;

		mask = status & DPLL_PORTD_READY_MASK;

		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);

2133
		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2134 2135 2136 2137

		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
	} else {
		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2138 2139 2140 2141 2142 2143
	}

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
		      dev_priv->chv_phy_control);
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* If the display might be already active skip this */
2154 2155
	if (cmn->ops->is_enabled(dev_priv, cmn) &&
	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

2174 2175 2176 2177 2178 2179 2180
/**
 * intel_power_domains_init_hw - initialize hardware power domain state
 * @dev_priv: i915 device instance
 *
 * This function initializes the hardware power domain state and enables all
 * power domains using intel_display_set_init_power().
 */
2181
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2182 2183 2184 2185 2186 2187
{
	struct drm_device *dev = dev_priv->dev;
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;

2188 2189 2190
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
		skl_display_core_init(dev_priv, resume);
	} else if (IS_CHERRYVIEW(dev)) {
2191
		mutex_lock(&power_domains->lock);
2192
		chv_phy_control_init(dev_priv);
2193
		mutex_unlock(&power_domains->lock);
2194
	} else if (IS_VALLEYVIEW(dev)) {
2195 2196 2197 2198 2199 2200 2201
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

	/* For now, we need the power well to be always enabled. */
	intel_display_set_init_power(dev_priv, true);
2202 2203 2204
	/* Disable power support if the user asked so. */
	if (!i915.disable_power_well)
		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2205
	intel_power_domains_sync_hw(dev_priv);
2206 2207 2208
	power_domains->initializing = false;
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/**
 * intel_power_domains_suspend - suspend power domain state
 * @dev_priv: i915 device instance
 *
 * This function prepares the hardware power domain state before entering
 * system suspend. It must be paired with intel_power_domains_init_hw().
 */
void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
		skl_display_core_uninit(dev_priv);
2220 2221 2222 2223 2224 2225 2226

	/*
	 * Even if power well support was disabled we still want to disable
	 * power wells while we are system suspended.
	 */
	if (!i915.disable_power_well)
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/**
 * intel_runtime_pm_get - grab a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function grabs a device-level runtime pm reference (mostly used for GEM
 * code to ensure the GTT or GT is on) and ensures that it is powered up.
 *
 * Any runtime pm reference obtained by this function must have a symmetric
 * call to intel_runtime_pm_put() to release the reference again.
 */
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
/**
 * intel_runtime_pm_get_noresume - grab a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function grabs a device-level runtime pm reference (mostly used for GEM
 * code to ensure the GTT or GT is on).
 *
 * It will _not_ power up the device but instead only check that it's powered
 * on.  Therefore it is only valid to call this functions from contexts where
 * the device is known to be powered up and where trying to power it up would
 * result in hilarity and deadlocks. That pretty much means only the system
 * suspend/resume code where this is used to grab runtime pm references for
 * delayed setup down in work items.
 *
 * Any runtime pm reference obtained by this function must have a symmetric
 * call to intel_runtime_pm_put() to release the reference again.
 */
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

2280 2281 2282 2283 2284 2285 2286 2287
/**
 * intel_runtime_pm_put - release a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function drops the device-level runtime pm reference obtained by
 * intel_runtime_pm_get() and might power down the corresponding
 * hardware block right away if this is the last reference.
 */
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/**
 * intel_runtime_pm_enable - enable runtime pm
 * @dev_priv: i915 device instance
 *
 * This function enables runtime pm at the end of the driver load sequence.
 *
 * Note that this function does currently not enable runtime pm for the
 * subordinate display power domains. That is only done on the first modeset
 * using intel_display_set_init_power().
 */
2310
void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2311 2312 2313 2314
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

2315 2316 2317 2318 2319 2320
	/*
	 * Take a permanent reference to disable the RPM functionality and drop
	 * it only when unloading the driver. Use the low level get/put helpers,
	 * so the driver's own RPM reference tracking asserts also work on
	 * platforms without RPM support.
	 */
2321
	if (!HAS_RUNTIME_PM(dev))
2322
		pm_runtime_get_sync(device);
2323 2324 2325 2326 2327

	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);

2328 2329 2330 2331 2332
	/*
	 * The core calls the driver load handler with an RPM reference held.
	 * We drop that here and will reacquire it during unloading in
	 * intel_power_domains_fini().
	 */
2333 2334 2335
	pm_runtime_put_autosuspend(device);
}