perf_event.c 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Performance event support framework for SuperH hardware counters.
 *
 *  Copyright (C) 2009  Paul Mundt
 *
 * Heavily based on the x86 and PowerPC implementations.
 *
 * x86:
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 *
 * ppc:
 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/perf_event.h>
#include <asm/processor.h>

struct cpu_hw_events {
	struct perf_event	*events[MAX_HWEVENTS];
	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
};

DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);

static struct sh_pmu *sh_pmu __read_mostly;

/* Number of perf_events counting hardware events */
static atomic_t num_events;
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
 * Stub these out for now, do something more profound later.
 */
int reserve_pmc_hardware(void)
{
	return 0;
}

void release_pmc_hardware(void)
{
}

static inline int sh_pmu_initialized(void)
{
	return !!sh_pmu;
}

/*
 * Release the PMU if this is the last perf_event.
 */
static void hw_perf_event_destroy(struct perf_event *event)
{
	if (!atomic_add_unless(&num_events, -1, 1)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_dec_return(&num_events) == 0)
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

static int hw_perf_cache_event(int config, int *evp)
{
	unsigned long type, op, result;
	int ev;

	if (!sh_pmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*sh_pmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*evp = ev;
	return 0;
}

static int __hw_perf_event_init(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
106
	int config = -1;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	int err;

	if (!sh_pmu_initialized())
		return -ENODEV;

	/*
	 * All of the on-chip counters are "limited", in that they have
	 * no interrupts, and are therefore unable to do sampling without
	 * further work and timer assistance.
	 */
	if (hwc->sample_period)
		return -EINVAL;

	/*
	 * See if we need to reserve the counter.
	 *
	 * If no events are currently in use, then we have to take a
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
	if (!atomic_inc_not_zero(&num_events)) {
		mutex_lock(&pmc_reserve_mutex);
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware())
			err = -EBUSY;
		else
			atomic_inc(&num_events);
		mutex_unlock(&pmc_reserve_mutex);
	}

	if (err)
		return err;

	event->destroy = hw_perf_event_destroy;

	switch (attr->type) {
	case PERF_TYPE_RAW:
		config = attr->config & sh_pmu->raw_event_mask;
		break;
	case PERF_TYPE_HW_CACHE:
		err = hw_perf_cache_event(attr->config, &config);
		if (err)
			return err;
		break;
	case PERF_TYPE_HARDWARE:
		if (attr->config >= sh_pmu->max_events)
			return -EINVAL;

		config = sh_pmu->event_map(attr->config);
		break;
	}

	if (config == -1)
		return -EINVAL;

	hwc->config |= config;

	return 0;
}

static void sh_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	u64 prev_raw_count, new_raw_count;
	s64 delta;
	int shift = 0;

	/*
	 * Depending on the counter configuration, they may or may not
	 * be chained, in which case the previous counter value can be
	 * updated underneath us if the lower-half overflows.
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
	 * count to the generic counter atomically.
	 *
	 * As there is no interrupt associated with the overflow events,
	 * this is the simplest approach for maintaining consistency.
	 */
again:
188
	prev_raw_count = local64_read(&hwc->prev_count);
189 190
	new_raw_count = sh_pmu->read(idx);

191
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
192 193 194 195 196 197 198 199 200 201 202 203 204 205
			     new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
	 * (counter-)time and add that to the generic counter.
	 *
	 * Careful, not all hw sign-extends above the physical width
	 * of the count.
	 */
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

206
	local64_add(delta, &event->count);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
}

static void sh_pmu_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	clear_bit(idx, cpuc->active_mask);
	sh_pmu->disable(hwc, idx);

	barrier();

	sh_perf_event_update(event, &event->hw, idx);

	cpuc->events[idx] = NULL;
	clear_bit(idx, cpuc->used_mask);

	perf_event_update_userpage(event);
}

static int sh_pmu_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
233 234 235
	int ret = -EAGAIN;

	perf_disable();
236 237 238 239

	if (test_and_set_bit(idx, cpuc->used_mask)) {
		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
		if (idx == sh_pmu->num_events)
240
			goto out;
241 242 243 244 245 246 247 248 249 250 251 252 253

		set_bit(idx, cpuc->used_mask);
		hwc->idx = idx;
	}

	sh_pmu->disable(hwc, idx);

	cpuc->events[idx] = event;
	set_bit(idx, cpuc->active_mask);

	sh_pmu->enable(hwc, idx);

	perf_event_update_userpage(event);
254 255 256 257
	ret = 0;
out:
	perf_enable();
	return ret;
258 259 260 261 262 263 264
}

static void sh_pmu_read(struct perf_event *event)
{
	sh_perf_event_update(event, &event->hw, event->hw.idx);
}

265
static int sh_pmu_event_init(struct perf_event *event)
266
{
267 268 269 270 271 272 273 274 275 276 277 278 279
	int err;

	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HW_CACHE:
	case PERF_TYPE_HARDWARE:
		err = __hw_perf_event_init(event);
		break;

	default:
		return -ENOENT;
	}

280 281 282 283 284
	if (unlikely(err)) {
		if (event->destroy)
			event->destroy(event);
	}

285
	return err;
286 287
}

288 289 290 291 292 293 294
static struct pmu pmu = {
	.event_init	= sh_pmu_event_init,
	.enable		= sh_pmu_enable,
	.disable	= sh_pmu_disable,
	.read		= sh_pmu_read,
};

295
static void sh_pmu_setup(int cpu)
296

297 298 299 300 301
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);

	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static int __cpuinit
sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		sh_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
void hw_perf_enable(void)
{
	if (!sh_pmu_initialized())
		return;

	sh_pmu->enable_all();
}

void hw_perf_disable(void)
{
	if (!sh_pmu_initialized())
		return;

	sh_pmu->disable_all();
}

335
int __cpuinit register_sh_pmu(struct sh_pmu *pmu)
336 337 338 339 340 341 342
{
	if (sh_pmu)
		return -EBUSY;
	sh_pmu = pmu;

	pr_info("Performance Events: %s support registered\n", pmu->name);

343
	WARN_ON(pmu->num_events > MAX_HWEVENTS);
344

345
	perf_pmu_register(&pmu);
346
	perf_cpu_notifier(sh_pmu_notifier);
347 348
	return 0;
}