packet_history.c 13.8 KB
Newer Older
1
/*
I
Ian McDonald 已提交
2
 *  net/dccp/packet_history.c
3
 *
4 5
 *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
 *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
6 7 8 9 10
 *
 *  An implementation of the DCCP protocol
 *
 *  This code has been developed by the University of Waikato WAND
 *  research group. For further information please see http://www.wand.net.nz/
11
 *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 *
 *  This code also uses code from Lulea University, rereleased as GPL by its
 *  authors:
 *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
 *
 *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
 *  and to make it work as a loadable module in the DCCP stack written by
 *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
 *
 *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/string.h>
39
#include <linux/slab.h>
40
#include "packet_history.h"
41
#include "../../dccp.h"
42

43
/*
44
 * Transmitter History Routines
45
 */
46
static struct kmem_cache *tfrc_tx_hist_slab;
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
int __init tfrc_tx_packet_history_init(void)
{
	tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
					      sizeof(struct tfrc_tx_hist_entry),
					      0, SLAB_HWCACHE_ALIGN, NULL);
	return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
}

void tfrc_tx_packet_history_exit(void)
{
	if (tfrc_tx_hist_slab != NULL) {
		kmem_cache_destroy(tfrc_tx_hist_slab);
		tfrc_tx_hist_slab = NULL;
	}
}

64
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
65
{
66
	struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
67 68 69 70 71 72 73 74

	if (entry == NULL)
		return -ENOBUFS;
	entry->seqno = seqno;
	entry->stamp = ktime_get_real();
	entry->next  = *headp;
	*headp	     = entry;
	return 0;
75
}
76
EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
77

78
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
79
{
80
	struct tfrc_tx_hist_entry *head = *headp;
81

82 83
	while (head != NULL) {
		struct tfrc_tx_hist_entry *next = head->next;
84

85
		kmem_cache_free(tfrc_tx_hist_slab, head);
86
		head = next;
87 88
	}

89 90 91
	*headp = NULL;
}
EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
92

G
Gerrit Renker 已提交
93 94 95 96 97
/*
 * 	Receiver History Routines
 */
static struct kmem_cache *tfrc_rx_hist_slab;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int __init tfrc_rx_packet_history_init(void)
{
	tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
					      sizeof(struct tfrc_rx_hist_entry),
					      0, SLAB_HWCACHE_ALIGN, NULL);
	return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
}

void tfrc_rx_packet_history_exit(void)
{
	if (tfrc_rx_hist_slab != NULL) {
		kmem_cache_destroy(tfrc_rx_hist_slab);
		tfrc_rx_hist_slab = NULL;
	}
}

114 115
static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
					       const struct sk_buff *skb,
116
					       const u64 ndp)
117
{
118 119 120 121 122 123 124
	const struct dccp_hdr *dh = dccp_hdr(skb);

	entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
	entry->tfrchrx_ccval = dh->dccph_ccval;
	entry->tfrchrx_type  = dh->dccph_type;
	entry->tfrchrx_ndp   = ndp;
	entry->tfrchrx_tstamp = ktime_get_real();
125
}
126 127 128

void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
			     const struct sk_buff *skb,
129
			     const u64 ndp)
130 131 132 133 134
{
	struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);

	tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
}
135
EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
136

137 138 139 140 141 142 143 144
/* has the packet contained in skb been seen before? */
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
{
	const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
	int i;

	if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
		return 1;
145

146 147 148
	for (i = 1; i <= h->loss_count; i++)
		if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
			return 1;
149

150
	return 0;
151
}
152
EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
{
	const u8 idx_a = tfrc_rx_hist_index(h, a),
		 idx_b = tfrc_rx_hist_index(h, b);
	struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];

	h->ring[idx_a] = h->ring[idx_b];
	h->ring[idx_b] = tmp;
}

/*
 * Private helper functions for loss detection.
 *
 * In the descriptions, `Si' refers to the sequence number of entry number i,
 * whose NDP count is `Ni' (lower case is used for variables).
169 170 171
 * Note: All __xxx_loss functions expect that a test against duplicates has been
 *       performed already: the seqno of the skb must not be less than the seqno
 *       of loss_prev; and it must not equal that of any valid history entry.
172
 */
173 174 175 176 177 178 179 180 181 182 183
static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
{
	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
	    s1 = DCCP_SKB_CB(skb)->dccpd_seq;

	if (!dccp_loss_free(s0, s1, n1)) {	/* gap between S0 and S1 */
		h->loss_count = 1;
		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
	}
}

184 185 186 187 188 189
static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
{
	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
	    s2 = DCCP_SKB_CB(skb)->dccpd_seq;

190
	if (likely(dccp_delta_seqno(s1, s2) > 0)) {	/* S1  <  S2 */
191 192 193 194 195 196 197
		h->loss_count = 2;
		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
		return;
	}

	/* S0  <  S2  <  S1 */

198 199
	if (dccp_loss_free(s0, s2, n2)) {
		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
200

201
		if (dccp_loss_free(s2, s1, n1)) {
202 203 204 205 206 207 208
			/* hole is filled: S0, S2, and S1 are consecutive */
			h->loss_count = 0;
			h->loss_start = tfrc_rx_hist_index(h, 1);
		} else
			/* gap between S2 and S1: just update loss_prev */
			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);

209
	} else {	/* gap between S0 and S2 */
210
		/*
211
		 * Reorder history to insert S2 between S0 and S1
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		 */
		tfrc_rx_hist_swap(h, 0, 3);
		h->loss_start = tfrc_rx_hist_index(h, 3);
		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
		h->loss_count = 2;
	}
}

/* return 1 if a new loss event has been identified */
static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
{
	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
	    s3 = DCCP_SKB_CB(skb)->dccpd_seq;

228
	if (likely(dccp_delta_seqno(s2, s3) > 0)) {	/* S2  <  S3 */
229 230 231 232 233 234 235
		h->loss_count = 3;
		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
		return 1;
	}

	/* S3  <  S2 */

236
	if (dccp_delta_seqno(s1, s3) > 0) {		/* S1  <  S3  <  S2 */
237
		/*
238
		 * Reorder history to insert S3 between S1 and S2
239 240 241 242 243 244 245 246 247
		 */
		tfrc_rx_hist_swap(h, 2, 3);
		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
		h->loss_count = 3;
		return 1;
	}

	/* S0  <  S3  <  S1 */

248 249
	if (dccp_loss_free(s0, s3, n3)) {
		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
250

251
		if (dccp_loss_free(s3, s1, n1)) {
252
			/* hole between S0 and S1 filled by S3 */
253
			u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
254

255
			if (dccp_loss_free(s1, s2, n2)) {
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
				/* entire hole filled by S0, S3, S1, S2 */
				h->loss_start = tfrc_rx_hist_index(h, 2);
				h->loss_count = 0;
			} else {
				/* gap remains between S1 and S2 */
				h->loss_start = tfrc_rx_hist_index(h, 1);
				h->loss_count = 1;
			}

		} else /* gap exists between S3 and S1, loss_count stays at 2 */
			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);

		return 0;
	}

	/*
272 273
	 * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
	 * Reorder history to insert S3 between S0 and S1.
274 275 276 277 278 279 280 281 282 283 284 285 286
	 */
	tfrc_rx_hist_swap(h, 0, 3);
	h->loss_start = tfrc_rx_hist_index(h, 3);
	tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
	h->loss_count = 3;

	return 1;
}

/* recycle RX history records to continue loss detection if necessary */
static void __three_after_loss(struct tfrc_rx_hist *h)
{
	/*
287 288 289 290
	 * At this stage we know already that there is a gap between S0 and S1
	 * (since S0 was the highest sequence number received before detecting
	 * the loss). To recycle the loss record, it is	thus only necessary to
	 * check for other possible gaps between S1/S2 and between S2/S3.
291
	 */
292 293 294 295
	u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
	    s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
	u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
296 297
	    n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;

298
	if (dccp_loss_free(s1, s2, n2)) {
299

300 301
		if (dccp_loss_free(s2, s3, n3)) {
			/* no gap between S2 and S3: entire hole is filled */
302 303 304 305 306 307 308 309
			h->loss_start = tfrc_rx_hist_index(h, 3);
			h->loss_count = 0;
		} else {
			/* gap between S2 and S3 */
			h->loss_start = tfrc_rx_hist_index(h, 2);
			h->loss_count = 1;
		}

310
	} else {	/* gap between S1 and S2 */
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
		h->loss_start = tfrc_rx_hist_index(h, 1);
		h->loss_count = 2;
	}
}

/**
 *  tfrc_rx_handle_loss  -  Loss detection and further processing
 *  @h:		    The non-empty RX history object
 *  @lh:	    Loss Intervals database to update
 *  @skb:	    Currently received packet
 *  @ndp:	    The NDP count belonging to @skb
 *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
 *  @sk:	    Used by @calc_first_li (see tfrc_lh_interval_add)
 *  Chooses action according to pending loss, updates LI database when a new
 *  loss was detected, and does required post-processing. Returns 1 when caller
 *  should send feedback, 0 otherwise.
327 328 329
 *  Since it also takes care of reordering during loss detection and updates the
 *  records accordingly, the caller should not perform any more RX history
 *  operations when loss_count is greater than 0 after calling this function.
330 331 332
 */
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
			struct tfrc_loss_hist *lh,
333
			struct sk_buff *skb, const u64 ndp,
334 335 336 337
			u32 (*calc_first_li)(struct sock *), struct sock *sk)
{
	int is_new_loss = 0;

338 339 340
	if (h->loss_count == 0) {
		__do_track_loss(h, skb, ndp);
	} else if (h->loss_count == 1) {
341 342 343 344 345 346 347 348 349 350 351 352 353 354
		__one_after_loss(h, skb, ndp);
	} else if (h->loss_count != 2) {
		DCCP_BUG("invalid loss_count %d", h->loss_count);
	} else if (__two_after_loss(h, skb, ndp)) {
		/*
		 * Update Loss Interval database and recycle RX records
		 */
		is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
		__three_after_loss(h);
	}
	return is_new_loss;
}
EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);

355
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
356
{
357 358 359 360 361 362
	int i;

	for (i = 0; i <= TFRC_NDUPACK; ++i)
		if (h->ring[i] != NULL) {
			kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
			h->ring[i] = NULL;
363 364
		}
}
365
EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
{
	int i;

	memset(h, 0, sizeof(*h));

	for (i = 0; i <= TFRC_NDUPACK; i++) {
		h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
		if (h->ring[i] == NULL) {
			tfrc_rx_hist_purge(h);
			return -ENOBUFS;
		}
	}
	return 0;
}

int tfrc_rx_hist_init(struct tfrc_rx_hist *h, struct sock *sk)
{
	if (tfrc_rx_hist_alloc(h))
		return -ENOBUFS;
	/*
	 * Initialise first entry with GSR to start loss detection as early as
	 * possible. Code using this must not use any other fields. The entry
	 * will be overwritten once the CCID updates its received packets.
	 */
	tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno = dccp_sk(sk)->dccps_gsr;
	return 0;
}
EXPORT_SYMBOL_GPL(tfrc_rx_hist_init);

397 398 399 400 401 402 403 404
/**
 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
 */
static inline struct tfrc_rx_hist_entry *
			tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
{
	return h->ring[0];
}
405

406 407 408 409 410
/**
 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
 */
static inline struct tfrc_rx_hist_entry *
			tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
411
{
412 413
	return h->ring[h->rtt_sample_prev];
}
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/**
 * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
 * to compute a sample with given data - calling function should check this.
 */
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
{
	u32 sample = 0,
	    delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
			    tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);

	if (delta_v < 1 || delta_v > 4) {	/* unsuitable CCVal delta */
		if (h->rtt_sample_prev == 2) {	/* previous candidate stored */
			sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
				       tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
			if (sample)
				sample = 4 / sample *
				         ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
							tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
			else    /*
				 * FIXME: This condition is in principle not
				 * possible but occurs when CCID is used for
				 * two-way data traffic. I have tried to trace
				 * it, but the cause does not seem to be here.
				 */
				DCCP_BUG("please report to dccp@vger.kernel.org"
					 " => prev = %u, last = %u",
					 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
					 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
		} else if (delta_v < 1) {
			h->rtt_sample_prev = 1;
			goto keep_ref_for_next_time;
		}

	} else if (delta_v == 4) /* optimal match */
		sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
	else {			 /* suboptimal match */
		h->rtt_sample_prev = 2;
		goto keep_ref_for_next_time;
454 455
	}

456 457 458 459 460 461 462 463 464 465 466
	if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
		DCCP_WARN("RTT sample %u too large, using max\n", sample);
		sample = DCCP_SANE_RTT_MAX;
	}

	h->rtt_sample_prev = 0;	       /* use current entry as next reference */
keep_ref_for_next_time:

	return sample;
}
EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);