fsl_ssi.c 31.8 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41 42
#include <linux/of_address.h>
#include <linux/of_irq.h>
43
#include <linux/of_platform.h>
44 45 46 47 48 49

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51 52

#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54

55 56 57 58
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59
#else
60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

74 75 76 77 78 79 80 81
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
82
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

108 109 110 111 112 113 114
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

115 116 117 118 119 120
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
121 122
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
123 124 125 126 127
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
128
 * @name: name for this device
129 130 131 132 133
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
134 135
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
136
	unsigned int fifo_depth;
137
	struct snd_soc_dai_driver cpu_dai_drv;
138
	struct device_attribute dev_attr;
139
	struct platform_device *pdev;
140

141 142
	bool new_binding;
	bool ssi_on_imx;
143
	bool imx_ac97;
144
	bool use_dma;
145
	struct clk *clk;
146 147 148 149
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
150
	struct imx_pcm_fiq_params fiq_params;
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
175 176

	char name[1];
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
203
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
318
		write_ssi(sisr2, &ssi->sisr);
319 320 321 322

	return ret;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u8 i2s_mode;
	u8 wm;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;

	if (ssi_private->imx_ac97)
		i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
	else
		i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;

	/*
	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
	 * to be disabled before updating the registers we set here.
	 */
	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

	/*
	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
	 * enable the transmit and receive FIFO.
	 *
	 * FIXME: Little-endian samples require a different shift dir
	 */
	write_ssi_mask(&ssi->scr,
		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
		CCSR_SSI_SCR_TFR_CLK_DIS |
		i2s_mode |
		(synchronous ? CCSR_SSI_SCR_SYN : 0));

	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);

	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
	/*
	 * The DC and PM bits are only used if the SSI is the clock master.
	 */

	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
		&ssi->sfcsr);

	/*
	 * For ac97 interrupts are enabled with the startup of the substream
	 * because it is also running without an active substream. Normally SSI
	 * is only enabled when there is a substream.
	 */
389
	if (ssi_private->imx_ac97) {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		/*
		 * Setup the clock control register
		 */
		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
				&ssi->stccr);
		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
				&ssi->srccr);

		/*
		 * Enable AC97 mode and startup the SSI
		 */
		write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
				&ssi->sacnt);
		write_ssi(0xff, &ssi->saccdis);
		write_ssi(0x300, &ssi->saccen);

		/*
407
		 * Enable SSI, Transmit and Receive
408
		 */
409 410
		write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
				CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
411

412
		write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
413 414 415 416 417 418
	}

	return 0;
}


419 420 421 422 423 424 425 426
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
427 428
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
429 430
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
431 432 433
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
434 435 436 437 438

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
439 440 441
	if (!ssi_private->first_stream) {
		ssi_private->first_stream = substream;

442
		/*
443 444
		 * fsl_ssi_setup was already called by ac97_init earlier if
		 * the driver is in ac97 mode.
445
		 */
446 447
		if (!ssi_private->imx_ac97)
			fsl_ssi_setup(ssi_private);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
471 472 473
			if (first_runtime->sample_bits) {
				snd_pcm_hw_constraint_minmax(substream->runtime,
						SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
474 475
				first_runtime->sample_bits,
				first_runtime->sample_bits);
476
			}
477
		}
478 479 480 481

		ssi_private->second_stream = substream;
	}

482 483 484 485
	return 0;
}

/**
486
 * fsl_ssi_hw_params - program the sample size
487 488 489 490 491 492 493 494 495 496 497
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
498 499
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
500
{
501
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
502 503 504 505
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
506
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
507

508 509 510 511 512 513
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
514

515 516 517 518 519 520 521 522 523
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
524

525 526 527
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
528
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
529
	else
530
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
531 532 533 534 535 536 537 538 539 540 541 542 543

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
544 545
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
546 547
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
548
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
549
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	unsigned int sier_bits;

	/*
	 *  Enable only the interrupts and DMA requests
	 *  that are needed for the channel. As the fiq
	 *  is polling for this bits, we have to ensure
	 *  that this are aligned with the preallocated
	 *  buffers
	 */

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
	} else {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
	}
571 572 573 574

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
575
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
576
			write_ssi_mask(&ssi->scr, 0,
577
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
578
		else
579
			write_ssi_mask(&ssi->scr, 0,
580
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
581 582 583 584 585
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
586
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
587
		else
588
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
589

590 591
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
592
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
593 594 595 596 597 598
		break;

	default:
		return -EINVAL;
	}

599 600
	write_ssi(sier_bits, &ssi->sier);

601 602 603 604 605 606 607 608
	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
609 610
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
611 612
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
613
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
614

615 616 617 618
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;
619 620
}

621 622 623 624
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

625
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
626 627 628 629 630 631 632
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

633
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
634 635 636 637 638 639
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

640 641
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
642
	.probe = fsl_ssi_dai_probe,
643 644 645 646 647 648 649 650 651 652 653 654 655
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
656
	.ops = &fsl_ssi_dai_ops,
657 658
};

659 660 661 662
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
/**
 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 *
 * This function is called by ALSA to start, stop, pause, and resume the
 * transfer of data.
 */
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
			rtd->cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN);
		else
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN, 0);
		else
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, 0);
		break;

	default:
		return -EINVAL;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
	else
		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);

	return 0;
}

static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
	.startup	= fsl_ssi_startup,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_ac97_trigger,
};

static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_ssi_ac97_dai_ops,
};


static struct fsl_ssi_private *fsl_ac97_data;

static void fsl_ssi_ac97_init(void)
{
	fsl_ssi_setup(fsl_ac97_data);
}

743
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

765
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

790 791 792 793 794 795 796 797 798 799 800 801
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


802 803 804
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
805 806
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
807 808 809 810 811
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
836 837 838 839 840

	return length;
}

/**
841
 * Make every character in a string lower-case
842
 */
843 844 845 846 847 848 849 850 851 852 853 854
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

855
static int fsl_ssi_probe(struct platform_device *pdev)
856 857 858
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
859
	struct device_attribute *dev_attr = NULL;
860
	struct device_node *np = pdev->dev.of_node;
861
	const char *p, *sprop;
862
	const uint32_t *iprop;
863 864
	struct resource res;
	char name[64];
865
	bool shared;
866
	bool ac97 = false;
867

868 869 870
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
871
	 */
872
	if (!of_device_is_available(np))
873 874 875 876
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
877 878 879 880 881 882 883
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
	if (!strcmp(sprop, "ac97-slave")) {
		ac97 = true;
	} else if (strcmp(sprop, "i2s-slave")) {
884
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
885 886 887 888 889
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
890
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
891
			      GFP_KERNEL);
892
	if (!ssi_private) {
893
		dev_err(&pdev->dev, "could not allocate DAI object\n");
894
		return -ENOMEM;
895 896
	}

897
	strcpy(ssi_private->name, p);
898

899 900 901
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

902 903 904 905 906 907 908 909 910 911 912 913 914
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
915 916 917 918 919
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
920
		dev_err(&pdev->dev, "could not determine device resources\n");
921
		return ret;
922
	}
923 924 925
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
926
		return -ENOMEM;
927
	}
928
	ssi_private->ssi_phys = res.start;
929

930
	ssi_private->irq = irq_of_parse_and_map(np, 0);
931
	if (!ssi_private->irq) {
932
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
933
		return -ENXIO;
934 935
	}

936
	/* Are the RX and the TX clocks locked? */
937
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
938
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
939

940 941 942
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
943
		ssi_private->fifo_depth = be32_to_cpup(iprop);
944 945 946 947
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

948 949 950
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
951

952
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
953 954 955
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
956
			goto error_irqmap;
957
		}
958 959 960 961 962 963
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
964

965 966 967 968
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
969
		ssi_private->dma_params_tx.maxburst =
970
			ssi_private->fifo_depth - 2;
971
		ssi_private->dma_params_rx.maxburst =
972
			ssi_private->fifo_depth - 2;
973
		ssi_private->dma_params_tx.addr =
974
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
975
		ssi_private->dma_params_rx.addr =
976
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
977 978 979 980
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
981 982 983 984 985 986 987 988
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
989
					"fsl,ssi-dma-events", dma_events, 2);
990 991 992 993
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
994
		}
995 996 997 998

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

999
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1000
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1001
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1002
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	} else if (ssi_private->use_dma) {
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
1013 1014
	}

1015
	/* Initialize the the device_attribute structure */
1016
	dev_attr = &ssi_private->dev_attr;
1017
	sysfs_attr_init(&dev_attr->attr);
1018
	dev_attr->attr.name = "statistics";
1019 1020 1021
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

1022
	ret = device_create_file(&pdev->dev, dev_attr);
1023
	if (ret) {
1024
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
1025
			ssi_private->dev_attr.attr.name);
1026
		goto error_clk;
1027 1028
	}

1029
	/* Register with ASoC */
1030
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1031

1032 1033
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1034
	if (ret) {
1035
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1036
		goto error_dev;
1037 1038
	}

1039
	if (ssi_private->ssi_on_imx) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
				goto error_dev;
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
				goto error_dev;
		}
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1076
	/* Trigger the machine driver's probe function.  The platform driver
1077
	 * name of the machine driver is taken from /compatible property of the
1078 1079 1080
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1081 1082
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1083 1084 1085 1086 1087 1088 1089
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1090
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1091 1092
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1093
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1094
		goto error_dai;
M
Mark Brown 已提交
1095
	}
1096

1097
done:
1098 1099 1100
	if (ssi_private->imx_ac97)
		fsl_ssi_ac97_init();

1101
	return 0;
1102

1103
error_dai:
1104
	if (ssi_private->ssi_on_imx)
1105
		imx_pcm_dma_exit(pdev);
1106
	snd_soc_unregister_component(&pdev->dev);
1107 1108 1109 1110

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1111
error_clk:
1112
	if (ssi_private->ssi_on_imx)
1113
		clk_disable_unprepare(ssi_private->clk);
1114 1115

error_irqmap:
1116
	irq_dispose_mapping(ssi_private->irq);
1117

1118
	return ret;
1119 1120
}

1121
static int fsl_ssi_remove(struct platform_device *pdev)
1122
{
1123
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1124

1125 1126
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1127
	if (ssi_private->ssi_on_imx)
1128
		imx_pcm_dma_exit(pdev);
1129
	snd_soc_unregister_component(&pdev->dev);
1130
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1131 1132
	if (ssi_private->ssi_on_imx)
		clk_disable_unprepare(ssi_private->clk);
1133
	irq_dispose_mapping(ssi_private->irq);
1134 1135

	return 0;
1136
}
1137 1138 1139

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
1140
	{ .compatible = "fsl,imx21-ssi", },
1141 1142 1143 1144
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

1145
static struct platform_driver fsl_ssi_driver = {
1146 1147 1148 1149 1150 1151 1152 1153
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1154

1155
module_platform_driver(fsl_ssi_driver);
1156

1157
MODULE_ALIAS("platform:fsl-ssi-dai");
1158 1159
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1160
MODULE_LICENSE("GPL v2");