s3c-hsotg.c 90.3 KB
Newer Older
1
/* linux/drivers/usb/gadget/s3c-hsotg.c
2 3 4
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30 31 32 33 34 35 36 37

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>

#include <mach/map.h>

#include <plat/regs-usb-hsotg-phy.h>
#include <plat/regs-usb-hsotg.h>
38
#include <mach/regs-sys.h>
39
#include <plat/udc-hs.h>
40
#include <plat/cpu.h>
41 42 43 44 45 46

#define DMA_ADDR_INVALID (~((dma_addr_t)0))

/* EP0_MPS_LIMIT
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
47 48
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
99 100 101
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;

	spinlock_t		lock;

	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;

	unsigned int		halted:1;
	unsigned int		periodic:1;
	unsigned int		sent_zlp:1;

	char			name[10];
};

#define S3C_HSOTG_EPS	(8+1)	/* limit to 9 for the moment */

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
 * @plat: The platform specific configuration data.
 * @regs: The memory area mapped for accessing registers.
 * @regs_res: The resource that was allocated when claiming register space.
 * @irq: The IRQ number we are using
138
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
	struct s3c_hsotg_plat	 *plat;

	void __iomem		*regs;
	struct resource		*regs_res;
	int			irq;
156
	struct clk		*clk;
157

158 159
	unsigned int		dedicated_fifos:1;

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
	struct s3c_hsotg_ep	eps[];
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
	u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
		writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
	daint = readl(hsotg->regs + S3C_DAINTMSK);
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
	writel(daint, hsotg->regs + S3C_DAINTMSK);
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
311 312 313
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
314
	int timeout;
315 316
	u32 val;

317 318 319 320 321 322 323
	/* the ryu 2.6.24 release ahs
	   writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
	   writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
		S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
		hsotg->regs + S3C_GNPTXFSIZ);
	*/

324
	/* set FIFO sizes to 2048/1024 */
325 326 327

	writel(2048, hsotg->regs + S3C_GRXFSIZ);
	writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
328
	       S3C_GNPTXFSIZ_NPTxFDep(1024),
329
	       hsotg->regs + S3C_GNPTXFSIZ);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* arange all the rest of the TX FIFOs, as some versions of this
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
	 * known values. */

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

	/* currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size. */

	for (ep = 0; ep <= 15; ep++) {
		val = addr;
		val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
		addr += size;

		writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
	}
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

	/* according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing */

	writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
	       S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
		val = readl(hsotg->regs + S3C_GRSTCTL);

		if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 376 377 378 379 380 381 382
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
383 384
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	req->req.dma = DMA_ADDR_INVALID;
	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
*/
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;
	enum dma_data_direction dir;

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

	if (hs_req->mapped) {
		/* we mapped this, so unmap and remove the dma */

		dma_unmap_single(hsotg->dev, req->dma, req->length, dir);

		req->dma = DMA_ADDR_INVALID;
		hs_req->mapped = 0;
	} else {
440
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	}
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
*/
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
	u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

478
	if (periodic && !hsotg->dedicated_fifos) {
479 480 481 482 483 484 485 486 487
		u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
		int size_left;
		int size_done;

		/* work out how much data was loaded so we can calculate
		 * how much data is left in the fifo. */

		size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);

488 489 490 491 492 493 494 495
		/* if shared fifo, we cannot write anything until the
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
			return -ENOSPC;
		}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
			return -ENOSPC;
		}
516 517 518 519 520
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
		can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));

		can_write &= 0xffff;
		can_write *= 4;
521 522 523 524 525 526 527 528 529 530 531
	} else {
		if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

			s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
			return -ENOSPC;
		}

		can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
532
		can_write *= 4;	/* fifo size is in 32bit quantities. */
533 534 535 536 537 538 539 540 541 542 543 544
	}

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
		 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);

	/* limit to 512 bytes of data, it seems at least on the non-periodic
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
	if (can_write > 512)
		can_write = 512;

545 546 547 548 549 550 551 552 553 554 555
	/* limit the write to one max-packet size worth of data, but allow
	 * the transfer to return that it did not run out of fifo space
	 * doing it. */
	if (to_write > hs_ep->ep.maxpacket) {
		to_write = hs_ep->ep.maxpacket;

		s3c_hsotg_en_gsint(hsotg,
				   periodic ? S3C_GINTSTS_PTxFEmp :
				   S3C_GINTSTS_NPTxFEmp);
	}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
		pkt_round = to_write % hs_ep->ep.maxpacket;

		/* Not sure, but we probably shouldn't be writing partial
		 * packets into the FIFO, so round the write down to an
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

		/* enable correct FIFO interrupt to alert us when there
		 * is more room left. */

		s3c_hsotg_en_gsint(hsotg,
				   periodic ? S3C_GINTSTS_PTxFEmp :
				   S3C_GINTSTS_NPTxFEmp);
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

	writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
		maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
		maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
	} else {
618
		maxsize = 64+64;
619
		if (hs_ep->dir_in)
620
			maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
621
		else
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

	/* constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size. */

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
	epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

684 685 686 687 688 689 690 691
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

	if (ctrl & S3C_DxEPCTL_Stall) {
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	length = ureq->length - ureq->actual;

	if (0)
		dev_dbg(hsotg->dev,
			"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
			ureq->buf, length, ureq->dma,
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

	if (dir_in && index != 0)
		epsize = S3C_DxEPTSIZ_MC(1);
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
		/* test for the packets being exactly right for the
		 * transfer */

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

	epsize |= S3C_DxEPTSIZ_PktCnt(packets);
	epsize |= S3C_DxEPTSIZ_XferSize(length);

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

	if (using_dma(hsotg)) {
		unsigned int dma_reg;

		/* write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().  */

		dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
		writel(ureq->dma, hsotg->regs + dma_reg);

		dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
			__func__, ureq->dma, dma_reg);
	}

	ctrl |= S3C_DxEPCTL_EPEna;	/* ensure ep enabled */
	ctrl |= S3C_DxEPCTL_USBActEp;
	ctrl |= S3C_DxEPCTL_CNAK;	/* clear NAK set by core */

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* set these, it seems that DMA support increments past the end
	 * of the packet buffer so we need to calculate the length from
	 * this information. */
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	/* clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on. */
	if (dir_in)
		writel(S3C_DIEPMSK_INTknTXFEmpMsk,
		       hsotg->regs + S3C_DIEPINT(index));

	/* Note, trying to clear the NAK here causes problems with transmit
L
Lucas De Marchi 已提交
784
	 * on the S3C6400 ending up with the TXFIFO becoming full. */
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

	/* check ep is enabled */
	if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
		dev_warn(hsotg->dev,
			 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
			 index, readl(hsotg->regs + epctrl_reg));

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
*/
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	enum dma_data_direction dir;
	struct s3c_hsotg_req *hs_req = our_req(req);

	dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

	if (req->dma == DMA_ADDR_INVALID) {
		dma_addr_t dma;

		dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);

		if (unlikely(dma_mapping_error(hsotg->dev, dma)))
			goto dma_error;

		if (dma & 3) {
			dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
				__func__);

			dma_unmap_single(hsotg->dev, dma, req->length, dir);
			return -EINVAL;
		}

		hs_req->mapped = 1;
		req->dma = dma;
	} else {
840
		dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		hs_req->mapped = 0;
	}

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long irqflags;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	spin_lock_irqsave(&hs_ep->lock, irqflags);

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	spin_unlock_irqrestore(&hs_ep->lock, irqflags);

	return 0;
}

static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
*/
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

	if (idx > S3C_HSOTG_EPS)
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1062 1063 1064 1065 1066 1067 1068 1069
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1070
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1071 1072
	struct s3c_hsotg_req *hs_req;
	bool restart;
1073 1074
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1075
	int ret;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1091 1092 1093 1094 1095 1096 1097

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

			if (!set) {
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

	/* record the direction of the request, for later use when enquing
	 * packets onto EP0. */

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

	/* if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN. */
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
			dcfg = readl(hsotg->regs + S3C_DCFG);
			dcfg &= ~S3C_DCFG_DevAddr_MASK;
			dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
			writel(dcfg, hsotg->regs + S3C_DCFG);

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

	/* the request is either unhandlable, or is not formatted correctly
	 * so respond with a STALL for the status stage to indicate failure.
	 */

	if (ret < 0) {
		u32 reg;
		u32 ctrl;

		dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
		reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;

		/* S3C_DxEPCTL_Stall will be cleared by EP once it has
		 * taken effect, so no need to clear later. */

		ctrl = readl(hsotg->regs + reg);
		ctrl |= S3C_DxEPCTL_Stall;
		ctrl |= S3C_DxEPCTL_CNAK;
		writel(ctrl, hsotg->regs + reg);

		dev_dbg(hsotg->dev,
L
Lucas De Marchi 已提交
1217
			"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1218 1219
			ctrl, reg, readl(hsotg->regs + reg));

L
Lucas De Marchi 已提交
1220
		/* don't believe we need to anything more to get the EP
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		 * to reply with a STALL packet */
	}
}

static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
		/* Don't think there's much we can do other than watch the
		 * driver fail. */
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
*/
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

	/* only replace the status if we've not already set an error
	 * from a previous transaction */

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

	/* call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint. */

	if (hs_req->req.complete) {
		spin_unlock(&hs_ep->lock);
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
		spin_lock(&hs_ep->lock);
	}

	/* Look to see if there is anything else to do. Note, the completion
	 * of the previous request may have caused a new request to be started
	 * so be careful when doing this. */

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * See s3c_hsotg_complete_request(), but called with the endpoint's
 * lock held.
*/
static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
					    struct s3c_hsotg_ep *hs_ep,
					    struct s3c_hsotg_req *hs_req,
					    int result)
{
	unsigned long flags;

	spin_lock_irqsave(&hs_ep->lock, flags);
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
	spin_unlock_irqrestore(&hs_ep->lock, flags);
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
		u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
		int ptr;

		dev_warn(hsotg->dev,
			 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	spin_lock(&hs_ep->lock);

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1411 1412 1413
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	if (to_read > max_req) {
		/* more data appeared than we where willing
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

	/* note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data. */
	readsl(fifo, hs_req->req.buf + read_ptr, to_read);

	spin_unlock(&hs_ep->lock);
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1443
 * currently believed that we do not need to wait for any space in
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
	       S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));

	ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
	ctrl |= S3C_DxEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
	ctrl |= S3C_DxEPCTL_USBActEp;
	writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
*/
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1491
	u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1492 1493 1494
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1495
	unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

		/* Calculate the size of the transfer by checking how much
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1520 1521 1522 1523 1524 1525
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

		/* todo - what should we return here? there's no one else
		 * even bothering to check the status. */
	}

	if (epnum == 0) {
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

	s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
*/
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

	dsts = readl(hsotg->regs + S3C_DSTS);
	dsts &= S3C_DSTS_SOFFN_MASK;
	dsts >>= S3C_DSTS_SOFFN_SHIFT;

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1567
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1568 1569 1570 1571 1572 1573 1574
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1575
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

	epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
	status = grxstsr & S3C_GRXSTS_PktSts_MASK;

	size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
	size >>= S3C_GRXSTS_ByteCnt_SHIFT;

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)

	switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
	case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
		dev_dbg(hsotg->dev, "GlobalOutNAK\n");
		break;

	case __status(S3C_GRXSTS_PktSts_OutDone):
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

	case __status(S3C_GRXSTS_PktSts_SetupDone):
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
			readl(hsotg->regs + S3C_DOEPCTL(0)));

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

	case __status(S3C_GRXSTS_PktSts_OutRX):
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	case __status(S3C_GRXSTS_PktSts_SetupRX):
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
			readl(hsotg->regs + S3C_DOEPCTL(0)));

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
*/
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
		return S3C_D0EPCTL_MPS_64;
	case 32:
		return S3C_D0EPCTL_MPS_32;
	case 16:
		return S3C_D0EPCTL_MPS_16;
	case 8:
		return S3C_D0EPCTL_MPS_8;
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
	} else {
		if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
			goto bad_mps;

		mpsval = mps;
	}

	hs_ep->ep.maxpacket = mps;

	/* update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use. */

	reg = readl(regs + S3C_DIEPCTL(ep));
	reg &= ~S3C_DxEPCTL_MPS_MASK;
	reg |= mpsval;
	writel(reg, regs + S3C_DIEPCTL(ep));

	reg = readl(regs + S3C_DOEPCTL(ep));
	reg &= ~S3C_DxEPCTL_MPS_MASK;
	reg |= mpsval;
	writel(reg, regs + S3C_DOEPCTL(ep));

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

	writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
		hsotg->regs + S3C_GRSTCTL);

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
		val = readl(hsotg->regs + S3C_GRSTCTL);

		if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

	if (!hs_ep->dir_in || !hs_req)
		return 0;

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

	/* Calculate the size of the transfer by checking how much is left
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

	size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;

	/* if we did all of the transfer, and there is more data left
	 * around, then try restarting the rest of the request */

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
		s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
*/
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
	u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
	u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
	u32 ints;

	ints = readl(hsotg->regs + epint_reg);

1836 1837 1838
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

	if (ints & S3C_DxEPINT_XferCompl) {
		dev_dbg(hsotg->dev,
			"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

		/* we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here */
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1853
			if (idx == 0 && !hs_ep->req)
1854 1855 1856 1857 1858 1859 1860 1861 1862
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
			/* We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO. */

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1863
	if (ints & S3C_DxEPINT_EPDisbld) {
1864 1865
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

			if ((epctl & S3C_DxEPCTL_Stall) &&
				(epctl & S3C_DxEPCTL_EPType_Bulk)) {
				int dctl = readl(hsotg->regs + S3C_DCTL);

				dctl |= S3C_DCTL_CGNPInNAK;
				writel(dctl, hsotg->regs + S3C_DCTL);
			}
		}
	}

1881
	if (ints & S3C_DxEPINT_AHBErr)
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

	if (ints & S3C_DxEPINT_Setup) {  /* Setup or Timeout */
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
			/* this is the notification we've received a
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
			 * the setup here. */

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1900
	if (ints & S3C_DxEPINT_Back2BackSetup)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

	if (dir_in) {
		/* not sure if this is important, but we'll clear it anyway
		 */
		if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
		if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1916 1917 1918 1919 1920 1921 1922 1923

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
		    ints & S3C_DIEPMSK_TxFIFOEmpty) {
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
			s3c_hsotg_trytx(hsotg, hs_ep);
		}
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
*/
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
	u32 dsts = readl(hsotg->regs + S3C_DSTS);
	int ep0_mps = 0, ep_mps;

	/* This should signal the finish of the enumeration phase
	 * of the USB handshaking, so we should now know what rate
	 * we connected at. */

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

	/* note, since we're limited by the size of transfer on EP0, and
	 * it seems IN transfers must be a even number of packets we do
	 * not advertise a 64byte MPS on EP0. */

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
	switch (dsts & S3C_DSTS_EnumSpd_MASK) {
	case S3C_DSTS_EnumSpd_FS:
	case S3C_DSTS_EnumSpd_FS48:
		hsotg->gadget.speed = USB_SPEED_FULL;
		dev_info(hsotg->dev, "new device is full-speed\n");

		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 64;
		break;

	case S3C_DSTS_EnumSpd_HS:
		dev_info(hsotg->dev, "new device is high-speed\n");
		hsotg->gadget.speed = USB_SPEED_HIGH;

		ep0_mps = EP0_MPS_LIMIT;
		ep_mps = 512;
		break;

	case S3C_DSTS_EnumSpd_LS:
		hsotg->gadget.speed = USB_SPEED_LOW;
		dev_info(hsotg->dev, "new device is low-speed\n");

		/* note, we don't actually support LS in this driver at the
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}

	/* we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value. */

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
		for (i = 1; i < S3C_HSOTG_EPS; i++)
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		readl(hsotg->regs + S3C_DIEPCTL0),
		readl(hsotg->regs + S3C_DOEPCTL0));
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
	unsigned long flags;

	spin_lock_irqsave(&ep->lock, flags);

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		/* currently, we can't do much about an already
		 * running request on an in endpoint */

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}

	spin_unlock_irqrestore(&ep->lock, flags);
}

#define call_gadget(_hs, _entry) \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
	    (_hs)->driver && (_hs)->driver->_entry)	\
		(_hs)->driver->_entry(&(_hs)->gadget);

/**
 * s3c_hsotg_disconnect_irq - disconnect irq service
 * @hsotg: The device state.
 *
 * A disconnect IRQ has been received, meaning that the host has
 * lost contact with the bus. Remove all current transactions
 * and signal the gadget driver that this has happened.
*/
static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
{
	unsigned ep;

	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

	for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

static struct s3c_hsotg *our_hsotg;

/* IRQ flags which will trigger a retry around the IRQ loop */
#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
			S3C_GINTSTS_PTxFEmp |  \
			S3C_GINTSTS_RxFLvl)

/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

irq_retry:
	gintsts = readl(hsotg->regs + S3C_GINTSTS);
	gintmsk = readl(hsotg->regs + S3C_GINTMSK);

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

	if (gintsts & S3C_GINTSTS_OTGInt) {
		u32 otgint = readl(hsotg->regs + S3C_GOTGINT);

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

		writel(otgint, hsotg->regs + S3C_GOTGINT);
	}

	if (gintsts & S3C_GINTSTS_DisconnInt) {
		dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
		writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);

		s3c_hsotg_disconnect_irq(hsotg);
	}

	if (gintsts & S3C_GINTSTS_SessReqInt) {
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
		writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
	}

	if (gintsts & S3C_GINTSTS_EnumDone) {
		writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2132 2133

		s3c_hsotg_irq_enumdone(hsotg);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	}

	if (gintsts & S3C_GINTSTS_ConIDStsChng) {
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
			readl(hsotg->regs + S3C_DSTS),
			readl(hsotg->regs + S3C_GOTGCTL));

		writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
	}

	if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
		u32 daint = readl(hsotg->regs + S3C_DAINT);
		u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
		u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
		int ep;

		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

	if (gintsts & S3C_GINTSTS_USBRst) {
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			readl(hsotg->regs + S3C_GNPTXSTS));

2168 2169
		writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);

2170 2171 2172
		kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);

		/* it seems after a reset we can end up with a situation
2173 2174 2175
		 * where the TXFIFO still has data in it... the docs
		 * suggest resetting all the fifos, so use the init_fifo
		 * code to relayout and flush the fifos.
2176 2177
		 */

2178
		s3c_hsotg_init_fifo(hsotg);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

		s3c_hsotg_enqueue_setup(hsotg);
	}

	/* check both FIFOs */

	if (gintsts & S3C_GINTSTS_NPTxFEmp) {
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

		/* Disable the interrupt to stop it happening again
		 * unless one of these endpoint routines decides that
		 * it needs re-enabling */

		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

	if (gintsts & S3C_GINTSTS_PTxFEmp) {
		dev_dbg(hsotg->dev, "PTxFEmp\n");

		/* See note in S3C_GINTSTS_NPTxFEmp */

		s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

	if (gintsts & S3C_GINTSTS_RxFLvl) {
		/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
		 * we need to retry s3c_hsotg_handle_rx if this is still
		 * set. */

		s3c_hsotg_handle_rx(hsotg);
	}

	if (gintsts & S3C_GINTSTS_ModeMis) {
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
		writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
	}

	if (gintsts & S3C_GINTSTS_USBSusp) {
		dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
		writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);

		call_gadget(hsotg, suspend);
	}

	if (gintsts & S3C_GINTSTS_WkUpInt) {
		dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
		writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);

		call_gadget(hsotg, resume);
	}

	if (gintsts & S3C_GINTSTS_ErlySusp) {
		dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
		writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
	}

	/* these next two seem to crop-up occasionally causing the core
	 * to shutdown the USB transfer, so try clearing them and logging
L
Lucas De Marchi 已提交
2239
	 * the occurrence. */
2240 2241 2242 2243 2244

	if (gintsts & S3C_GINTSTS_GOUTNakEff) {
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

		writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2245 2246

		s3c_hsotg_dump(hsotg);
2247 2248 2249 2250 2251 2252
	}

	if (gintsts & S3C_GINTSTS_GINNakEff) {
		dev_info(hsotg->dev, "GINNakEff triggered\n");

		writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2253 2254

		s3c_hsotg_dump(hsotg);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	}

	/* if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet. */

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
*/
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2284
	int ret = 0;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

	mps = le16_to_cpu(desc->wMaxPacketSize);

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

	spin_lock_irqsave(&hs_ep->lock, flags);

	epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
	epctrl |= S3C_DxEPCTL_MPS(mps);

	/* mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint */
	epctrl |= S3C_DxEPCTL_USBActEp;

	/* set the NAK status on the endpoint, otherwise we might try and
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

	epctrl |= S3C_DxEPCTL_SNAK;

	/* update the endpoint state */
	hs_ep->ep.maxpacket = mps;

	/* default, set to non-periodic */
	hs_ep->periodic = 0;

	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
		dev_err(hsotg->dev, "no current ISOC support\n");
2336 2337
		ret = -EINVAL;
		goto out;
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

	case USB_ENDPOINT_XFER_BULK:
		epctrl |= S3C_DxEPCTL_EPType_Bulk;
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
			/* Allocate our TxFNum by simply using the index
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
			 * many FIFOs we are expecting to use. */

			hs_ep->periodic = 1;
			epctrl |= S3C_DxEPCTL_TxFNum(index);
		}

		epctrl |= S3C_DxEPCTL_EPType_Intterupt;
		break;

	case USB_ENDPOINT_XFER_CONTROL:
		epctrl |= S3C_DxEPCTL_EPType_Control;
		break;
	}

2362 2363 2364 2365 2366 2367
	/* if the hardware has dedicated fifos, we must give each IN EP
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
		epctrl |= S3C_DxEPCTL_TxFNum(index);

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	/* for non control endpoints, set PID to D0 */
	if (index)
		epctrl |= S3C_DxEPCTL_SetD0PID;

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2382
out:
2383
	spin_unlock_irqrestore(&hs_ep->lock, flags);
2384
	return ret;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
}

static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

	epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);

	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

	spin_lock_irqsave(&hs_ep->lock, flags);

	ctrl = readl(hsotg->regs + epctrl_reg);
	ctrl &= ~S3C_DxEPCTL_EPEna;
	ctrl &= ~S3C_DxEPCTL_USBActEp;
	ctrl |= S3C_DxEPCTL_SNAK;

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

	spin_unlock_irqrestore(&hs_ep->lock, flags);
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
*/
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

	spin_lock_irqsave(&hs_ep->lock, flags);

	if (!on_list(hs_ep, hs_req)) {
		spin_unlock_irqrestore(&hs_ep->lock, flags);
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
	spin_unlock_irqrestore(&hs_ep->lock, flags);

	return 0;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	unsigned long irqflags;
	u32 epreg;
	u32 epctl;
2473
	u32 xfertype;
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

	spin_lock_irqsave(&hs_ep->lock, irqflags);

	/* write both IN and OUT control registers */

	epreg = S3C_DIEPCTL(index);
	epctl = readl(hs->regs + epreg);

2484 2485 2486 2487 2488
	if (value) {
		epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
		if (epctl & S3C_DxEPCTL_EPEna)
			epctl |= S3C_DxEPCTL_EPDis;
	} else {
2489
		epctl &= ~S3C_DxEPCTL_Stall;
2490 2491 2492 2493 2494
		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
			xfertype == S3C_DxEPCTL_EPType_Intterupt)
				epctl |= S3C_DxEPCTL_SetD0PID;
	}
2495 2496 2497 2498 2499 2500 2501 2502

	writel(epctl, hs->regs + epreg);

	epreg = S3C_DOEPCTL(index);
	epctl = readl(hs->regs + epreg);

	if (value)
		epctl |= S3C_DxEPCTL_Stall;
2503
	else {
2504
		epctl &= ~S3C_DxEPCTL_Stall;
2505 2506 2507 2508 2509
		xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
		if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
			xfertype == S3C_DxEPCTL_EPType_Intterupt)
				epctl |= S3C_DxEPCTL_SetD0PID;
	}
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	writel(epctl, hs->regs + epreg);

	spin_unlock_irqrestore(&hs_ep->lock, irqflags);

	return 0;
}

static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
	.queue		= s3c_hsotg_ep_queue,
	.dequeue	= s3c_hsotg_ep_dequeue,
	.set_halt	= s3c_hsotg_ep_sethalt,
L
Lucas De Marchi 已提交
2526
	/* note, don't believe we have any call for the fifo routines */
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
};

/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
*/
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
	writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);

	timeout = 1000;
	do {
		grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2548
	} while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2549

2550
	if (grstctl & S3C_GRSTCTL_CSftRst) {
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

	timeout = 1000;

	while (1) {
		u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

		if (!(grstctl & S3C_GRSTCTL_AHBIdle))
			continue;

2570
		break;		/* reset done */
2571 2572 2573 2574 2575 2576
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2577 2578
int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
		int (*bind)(struct usb_gadget *))
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
{
	struct s3c_hsotg *hsotg = our_hsotg;
	int ret;

	if (!hsotg) {
		printk(KERN_ERR "%s: called with no device\n", __func__);
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

	if (driver->speed != USB_SPEED_HIGH &&
	    driver->speed != USB_SPEED_FULL) {
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
	}

2598
	if (!bind || !driver->setup) {
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
	hsotg->gadget.dev.driver = &driver->driver;
	hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

	ret = device_add(&hsotg->gadget.dev);
	if (ret) {
		dev_err(hsotg->dev, "failed to register gadget device\n");
		goto err;
	}

2617
	ret = bind(&hsotg->gadget);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	if (ret) {
		dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);

		hsotg->gadget.dev.driver = NULL;
		hsotg->driver = NULL;
		goto err;
	}

	/* we must now enable ep0 ready for host detection and then
	 * set configuration. */

	s3c_hsotg_corereset(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
	       (0x5 << 10), hsotg->regs + S3C_GUSBCFG);

	/* looks like soft-reset changes state of FIFOs */
	s3c_hsotg_init_fifo(hsotg);

	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);

	writel(1 << 18 | S3C_DCFG_DevSpd_HS,  hsotg->regs + S3C_DCFG);

2642 2643 2644 2645 2646 2647
	/* Clear any pending OTG interrupts */
	writel(0xffffffff, hsotg->regs + S3C_GOTGINT);

	/* Clear any pending interrupts */
	writel(0xffffffff, hsotg->regs + S3C_GINTSTS);

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
	       S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
	       S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
	       S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
	       S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
	       S3C_GINTSTS_ErlySusp,
	       hsotg->regs + S3C_GINTMSK);

	if (using_dma(hsotg))
		writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
		       S3C_GAHBCFG_HBstLen_Incr4,
		       hsotg->regs + S3C_GAHBCFG);
	else
		writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);

	/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
	 * up being flooded with interrupts if the host is polling the
	 * endpoint to try and read data. */

	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
	       S3C_DIEPMSK_INTknEPMisMsk |
2669 2670
	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
	       ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2671 2672 2673 2674 2675 2676
	       hsotg->regs + S3C_DIEPMSK);

	/* don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this. */
	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
	       S3C_DOEPMSK_EPDisbldMsk |
2677 2678
	       (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
				   S3C_DIEPMSK_TimeOUTMsk) : 0),
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	       hsotg->regs + S3C_DOEPMSK);

	writel(0, hsotg->regs + S3C_DAINTMSK);

	dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		 readl(hsotg->regs + S3C_DIEPCTL0),
		 readl(hsotg->regs + S3C_DOEPCTL0));

	/* enable in and out endpoint interrupts */
	s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);

	/* Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it. */
	if (!using_dma(hsotg))
		s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
	udelay(10);  /* see openiboot */
	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);

	dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));

	/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
	   writing to the EPCTL register.. */

	/* set to read 1 8byte packet */
	writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
	       S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
	       S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
	       S3C_DxEPCTL_USBActEp,
	       hsotg->regs + S3C_DOEPCTL0);

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
	       S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);

	s3c_hsotg_enqueue_setup(hsotg);

	dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		 readl(hsotg->regs + S3C_DIEPCTL0),
		 readl(hsotg->regs + S3C_DOEPCTL0));

	/* clear global NAKs */
	writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
	       hsotg->regs + S3C_DCTL);

2732 2733 2734
	/* must be at-least 3ms to allow bus to see disconnect */
	msleep(3);

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/* remove the soft-disconnect and let's go */
	__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);

	/* report to the user, and return */

	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	hsotg->gadget.dev.driver = NULL;
	return ret;
}
2748
EXPORT_SYMBOL(usb_gadget_probe_driver);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
	struct s3c_hsotg *hsotg = our_hsotg;
	int ep;

	if (!hsotg)
		return -ENODEV;

	if (!driver || driver != hsotg->driver || !driver->unbind)
		return -EINVAL;

	/* all endpoints should be shutdown */
	for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

	call_gadget(hsotg, disconnect);

	driver->unbind(&hsotg->gadget);
	hsotg->driver = NULL;
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

	device_del(&hsotg->gadget.dev);

	dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
		 driver->driver.name);

	return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);

static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
	.get_frame	= s3c_hsotg_gadget_getframe,
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	spin_lock_init(&hs_ep->lock);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
	hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

	/* Read the FIFO size for the Periodic TX FIFO, even if we're
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

	ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2839
	hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

	/* if we're using dma, we need to set the next-endpoint pointer
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
		u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
		writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
		writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
	}
}

/**
 * s3c_hsotg_otgreset - reset the OtG phy block
 * @hsotg: The host state.
 *
 * Power up the phy, set the basic configuration and start the PHY.
 */
static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
{
2860
	struct clk *xusbxti;
2861
	u32 pwr, osc;
2862

2863 2864 2865
	pwr = readl(S3C_PHYPWR);
	pwr &= ~0x19;
	writel(pwr, S3C_PHYPWR);
2866 2867 2868 2869
	mdelay(1);

	osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	xusbxti = clk_get(hsotg->dev, "xusbxti");
	if (xusbxti && !IS_ERR(xusbxti)) {
		switch (clk_get_rate(xusbxti)) {
		case 12*MHZ:
			osc |= S3C_PHYCLK_CLKSEL_12M;
			break;
		case 24*MHZ:
			osc |= S3C_PHYCLK_CLKSEL_24M;
			break;
		default:
		case 48*MHZ:
			/* default reference clock */
			break;
		}
		clk_put(xusbxti);
	}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	writel(osc | 0x10, S3C_PHYCLK);

	/* issue a full set of resets to the otg and core */

	writel(S3C_RSTCON_PHY, S3C_RSTCON);
	udelay(20);	/* at-least 10uS */
	writel(0, S3C_RSTCON);
}


static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
2899 2900
	u32 cfg4;

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	/* unmask subset of endpoint interrupts */

	writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
	       S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
	       hsotg->regs + S3C_DIEPMSK);

	writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
	       S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
	       hsotg->regs + S3C_DOEPMSK);

	writel(0, hsotg->regs + S3C_DAINTMSK);

2913 2914 2915
	/* Be in disconnected state until gadget is registered */
	__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	if (0) {
		/* post global nak until we're ready */
		writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
		       hsotg->regs + S3C_DCTL);
	}

	/* setup fifos */

	dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
		 readl(hsotg->regs + S3C_GRXFSIZ),
		 readl(hsotg->regs + S3C_GNPTXFSIZ));

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
	writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
	       hsotg->regs + S3C_GUSBCFG);

	writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
	       hsotg->regs + S3C_GAHBCFG);
2936 2937 2938 2939 2940 2941 2942 2943

	/* check hardware configuration */

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
}

static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
		 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
		 readl(regs + S3C_DIEPMSK));

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
		 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
		 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
		val = readl(regs + S3C_DPTXFSIZn(idx));
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
			 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
			 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
			 readl(regs + S3C_DIEPCTL(idx)),
			 readl(regs + S3C_DIEPTSIZ(idx)),
			 readl(regs + S3C_DIEPDMA(idx)));

		val = readl(regs + S3C_DOEPCTL(idx));
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
			 idx, readl(regs + S3C_DOEPCTL(idx)),
			 readl(regs + S3C_DOEPTSIZ(idx)),
			 readl(regs + S3C_DOEPDMA(idx)));

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
		 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
}


/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
		 readl(regs + S3C_DCFG),
		 readl(regs + S3C_DCTL),
		 readl(regs + S3C_DSTS));

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
		   readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
		   readl(regs + S3C_GINTMSK),
		   readl(regs + S3C_GINTSTS));

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
		   readl(regs + S3C_DAINTMSK),
		   readl(regs + S3C_DAINT));

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
		   readl(regs + S3C_GNPTXSTS),
		   readl(regs + S3C_GRXSTSR));

	seq_printf(seq, "\nEndpoint status:\n");

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

		in = readl(regs + S3C_DIEPCTL(idx));
		out = readl(regs + S3C_DOEPCTL(idx));

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

		in = readl(regs + S3C_DIEPTSIZ(idx));
		out = readl(regs + S3C_DOEPTSIZ(idx));

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

		seq_printf(seq, "\n");
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
*/
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	seq_printf(seq, "Non-periodic FIFOs:\n");
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));

	val = readl(regs + S3C_GNPTXFSIZ);
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
		   val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
		   val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);

	seq_printf(seq, "\nPeriodic TXFIFOs:\n");

	for (idx = 1; idx <= 15; idx++) {
		val = readl(regs + S3C_DPTXFSIZn(idx));

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
			   val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
			   val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
*/
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
		   readl(regs + S3C_DIEPCTL(index)),
		   readl(regs + S3C_DOEPCTL(index)));

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
		   readl(regs + S3C_DIEPDMA(index)),
		   readl(regs + S3C_DOEPDMA(index)));

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
		   readl(regs + S3C_DIEPINT(index)),
		   readl(regs + S3C_DOEPINT(index)));

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
		   readl(regs + S3C_DIEPTSIZ(index)),
		   readl(regs + S3C_DOEPTSIZ(index)));

	seq_printf(seq, "\n");
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

	spin_lock_irqsave(&ep->lock, flags);

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
			seq_printf(seq, "not showing more requests...\n");
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

	spin_unlock_irqrestore(&ep->lock, flags);

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
*/
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
*/
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
	unsigned epidx;

	for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

/**
 * s3c_hsotg_gate - set the hardware gate for the block
 * @pdev: The device we bound to
 * @on: On or off.
 *
 * Set the hardware gate setting into the block. If we end up on
 * something other than an S3C64XX, then we might need to change this
 * to using a platform data callback, or some other mechanism.
 */
static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
{
	unsigned long flags;
	u32 others;

	local_irq_save(flags);

	others = __raw_readl(S3C64XX_OTHERS);
	if (on)
		others |= S3C64XX_OTHERS_USBMASK;
	else
		others &= ~S3C64XX_OTHERS_USBMASK;
	__raw_writel(others, S3C64XX_OTHERS);

	local_irq_restore(flags);
}

3293
static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
	struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
	struct device *dev = &pdev->dev;
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;

	if (!plat)
		plat = &s3c_hsotg_default_pdata;

	hsotg = kzalloc(sizeof(struct s3c_hsotg) +
			sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
			GFP_KERNEL);
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

	hsotg->dev = dev;
	hsotg->plat = plat;

3318 3319 3320
	hsotg->clk = clk_get(&pdev->dev, "otg");
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3321
		ret = PTR_ERR(hsotg->clk);
3322 3323 3324
		goto err_mem;
	}

3325 3326 3327 3328 3329 3330
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(dev, "cannot find register resource 0\n");
		ret = -EINVAL;
3331
		goto err_clk;
3332 3333 3334 3335 3336 3337 3338
	}

	hsotg->regs_res = request_mem_region(res->start, resource_size(res),
					     dev_name(dev));
	if (!hsotg->regs_res) {
		dev_err(dev, "cannot reserve registers\n");
		ret = -ENOENT;
3339
		goto err_clk;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	}

	hsotg->regs = ioremap(res->start, resource_size(res));
	if (!hsotg->regs) {
		dev_err(dev, "cannot map registers\n");
		ret = -ENXIO;
		goto err_regs_res;
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
		goto err_regs;
	}

	hsotg->irq = ret;

	ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
		goto err_regs;
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

	device_initialize(&hsotg->gadget.dev);

	dev_set_name(&hsotg->gadget.dev, "gadget");

	hsotg->gadget.is_dualspeed = 1;
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	hsotg->gadget.dev.parent = dev;
	hsotg->gadget.dev.dma_mask = dev->dma_mask;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
		goto err_regs;
	}

	/* reset the system */

3392 3393
	clk_enable(hsotg->clk);

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	s3c_hsotg_gate(pdev, true);

	s3c_hsotg_otgreset(hsotg);
	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);

	/* initialise the endpoints now the core has been initialised */
	for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	our_hsotg = hsotg;
	return 0;

err_regs:
	iounmap(hsotg->regs);

err_regs_res:
	release_resource(hsotg->regs_res);
	kfree(hsotg->regs_res);
3417 3418
err_clk:
	clk_put(hsotg->clk);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
err_mem:
	kfree(hsotg);
	return ret;
}

static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

	s3c_hsotg_delete_debug(hsotg);

	usb_gadget_unregister_driver(hsotg->driver);

	free_irq(hsotg->irq, hsotg);
	iounmap(hsotg->regs);

	release_resource(hsotg->regs_res);
	kfree(hsotg->regs_res);

	s3c_hsotg_gate(pdev, false);

3440 3441 3442
	clk_disable(hsotg->clk);
	clk_put(hsotg->clk);

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	kfree(hsotg);
	return 0;
}

#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif

static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
	},
	.probe		= s3c_hsotg_probe,
	.remove		= __devexit_p(s3c_hsotg_remove),
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

static int __init s3c_hsotg_modinit(void)
{
	return platform_driver_register(&s3c_hsotg_driver);
}

static void __exit s3c_hsotg_modexit(void)
{
	platform_driver_unregister(&s3c_hsotg_driver);
}

module_init(s3c_hsotg_modinit);
module_exit(s3c_hsotg_modexit);

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");