ttm_page_alloc_dma.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright 2011 (c) Oracle Corp.

 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sub license,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 */

/*
 * A simple DMA pool losely based on dmapool.c. It has certain advantages
 * over the DMA pools:
 * - Pool collects resently freed pages for reuse (and hooks up to
 *   the shrinker).
 * - Tracks currently in use pages
 * - Tracks whether the page is UC, WB or cached (and reverts to WB
 *   when freed).
 */

36
#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
J
Joe Perches 已提交
37 38
#define pr_fmt(fmt) "[TTM] " fmt

39 40 41 42 43 44 45 46 47 48 49 50
#include <linux/dma-mapping.h>
#include <linux/list.h>
#include <linux/seq_file.h> /* for seq_printf */
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/highmem.h>
#include <linux/mm_types.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/atomic.h>
#include <linux/device.h>
#include <linux/kthread.h>
51 52
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_page_alloc.h>
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#ifdef TTM_HAS_AGP
#include <asm/agp.h>
#endif

#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
#define SMALL_ALLOCATION		4
#define FREE_ALL_PAGES			(~0U)
/* times are in msecs */
#define IS_UNDEFINED			(0)
#define IS_WC				(1<<1)
#define IS_UC				(1<<2)
#define IS_CACHED			(1<<3)
#define IS_DMA32			(1<<4)

enum pool_type {
	POOL_IS_UNDEFINED,
	POOL_IS_WC = IS_WC,
	POOL_IS_UC = IS_UC,
	POOL_IS_CACHED = IS_CACHED,
	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
};
/*
 * The pool structure. There are usually six pools:
 *  - generic (not restricted to DMA32):
 *      - write combined, uncached, cached.
 *  - dma32 (up to 2^32 - so up 4GB):
 *      - write combined, uncached, cached.
 * for each 'struct device'. The 'cached' is for pages that are actively used.
 * The other ones can be shrunk by the shrinker API if neccessary.
 * @pools: The 'struct device->dma_pools' link.
 * @type: Type of the pool
 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
 * used with irqsave/irqrestore variants because pool allocator maybe called
 * from delayed work.
 * @inuse_list: Pool of pages that are in use. The order is very important and
 *   it is in the order that the TTM pages that are put back are in.
 * @free_list: Pool of pages that are free to be used. No order requirements.
 * @dev: The device that is associated with these pools.
 * @size: Size used during DMA allocation.
 * @npages_free: Count of available pages for re-use.
 * @npages_in_use: Count of pages that are in use.
 * @nfrees: Stats when pool is shrinking.
 * @nrefills: Stats when the pool is grown.
 * @gfp_flags: Flags to pass for alloc_page.
 * @name: Name of the pool.
 * @dev_name: Name derieved from dev - similar to how dev_info works.
 *   Used during shutdown as the dev_info during release is unavailable.
 */
struct dma_pool {
	struct list_head pools; /* The 'struct device->dma_pools link */
	enum pool_type type;
	spinlock_t lock;
	struct list_head inuse_list;
	struct list_head free_list;
	struct device *dev;
	unsigned size;
	unsigned npages_free;
	unsigned npages_in_use;
	unsigned long nfrees; /* Stats when shrunk. */
	unsigned long nrefills; /* Stats when grown. */
	gfp_t gfp_flags;
	char name[13]; /* "cached dma32" */
	char dev_name[64]; /* Constructed from dev */
};

/*
 * The accounting page keeping track of the allocated page along with
 * the DMA address.
 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 * @vaddr: The virtual address of the page
 * @dma: The bus address of the page. If the page is not allocated
 *   via the DMA API, it will be -1.
 */
struct dma_page {
	struct list_head page_list;
	void *vaddr;
	struct page *p;
	dma_addr_t dma;
};

/*
 * Limits for the pool. They are handled without locks because only place where
 * they may change is in sysfs store. They won't have immediate effect anyway
 * so forcing serialization to access them is pointless.
 */

struct ttm_pool_opts {
	unsigned	alloc_size;
	unsigned	max_size;
	unsigned	small;
};

/*
 * Contains the list of all of the 'struct device' and their corresponding
 * DMA pools. Guarded by _mutex->lock.
 * @pools: The link to 'struct ttm_pool_manager->pools'
 * @dev: The 'struct device' associated with the 'pool'
 * @pool: The 'struct dma_pool' associated with the 'dev'
 */
struct device_pools {
	struct list_head pools;
	struct device *dev;
	struct dma_pool *pool;
};

/*
 * struct ttm_pool_manager - Holds memory pools for fast allocation
 *
 * @lock: Lock used when adding/removing from pools
 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 * @options: Limits for the pool.
 * @npools: Total amount of pools in existence.
 * @shrinker: The structure used by [un|]register_shrinker
 */
struct ttm_pool_manager {
	struct mutex		lock;
	struct list_head	pools;
	struct ttm_pool_opts	options;
	unsigned		npools;
	struct shrinker		mm_shrink;
	struct kobject		kobj;
};

static struct ttm_pool_manager *_manager;

static struct attribute ttm_page_pool_max = {
	.name = "pool_max_size",
	.mode = S_IRUGO | S_IWUSR
};
static struct attribute ttm_page_pool_small = {
	.name = "pool_small_allocation",
	.mode = S_IRUGO | S_IWUSR
};
static struct attribute ttm_page_pool_alloc_size = {
	.name = "pool_allocation_size",
	.mode = S_IRUGO | S_IWUSR
};

static struct attribute *ttm_pool_attrs[] = {
	&ttm_page_pool_max,
	&ttm_page_pool_small,
	&ttm_page_pool_alloc_size,
	NULL
};

static void ttm_pool_kobj_release(struct kobject *kobj)
{
	struct ttm_pool_manager *m =
		container_of(kobj, struct ttm_pool_manager, kobj);
	kfree(m);
}

static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
			      const char *buffer, size_t size)
{
	struct ttm_pool_manager *m =
		container_of(kobj, struct ttm_pool_manager, kobj);
	int chars;
	unsigned val;
	chars = sscanf(buffer, "%u", &val);
	if (chars == 0)
		return size;

	/* Convert kb to number of pages */
	val = val / (PAGE_SIZE >> 10);

	if (attr == &ttm_page_pool_max)
		m->options.max_size = val;
	else if (attr == &ttm_page_pool_small)
		m->options.small = val;
	else if (attr == &ttm_page_pool_alloc_size) {
		if (val > NUM_PAGES_TO_ALLOC*8) {
J
Joe Perches 已提交
227
			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228 229 230 231
			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
			return size;
		} else if (val > NUM_PAGES_TO_ALLOC) {
J
Joe Perches 已提交
232 233
			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
		}
		m->options.alloc_size = val;
	}

	return size;
}

static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
			     char *buffer)
{
	struct ttm_pool_manager *m =
		container_of(kobj, struct ttm_pool_manager, kobj);
	unsigned val = 0;

	if (attr == &ttm_page_pool_max)
		val = m->options.max_size;
	else if (attr == &ttm_page_pool_small)
		val = m->options.small;
	else if (attr == &ttm_page_pool_alloc_size)
		val = m->options.alloc_size;

	val = val * (PAGE_SIZE >> 10);

	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
}

static const struct sysfs_ops ttm_pool_sysfs_ops = {
	.show = &ttm_pool_show,
	.store = &ttm_pool_store,
};

static struct kobj_type ttm_pool_kobj_type = {
	.release = &ttm_pool_kobj_release,
	.sysfs_ops = &ttm_pool_sysfs_ops,
	.default_attrs = ttm_pool_attrs,
};

#ifndef CONFIG_X86
static int set_pages_array_wb(struct page **pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
	int i;

	for (i = 0; i < addrinarray; i++)
		unmap_page_from_agp(pages[i]);
#endif
	return 0;
}

static int set_pages_array_wc(struct page **pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
	int i;

	for (i = 0; i < addrinarray; i++)
		map_page_into_agp(pages[i]);
#endif
	return 0;
}

static int set_pages_array_uc(struct page **pages, int addrinarray)
{
#ifdef TTM_HAS_AGP
	int i;

	for (i = 0; i < addrinarray; i++)
		map_page_into_agp(pages[i]);
#endif
	return 0;
}
#endif /* for !CONFIG_X86 */

static int ttm_set_pages_caching(struct dma_pool *pool,
				 struct page **pages, unsigned cpages)
{
	int r = 0;
	/* Set page caching */
	if (pool->type & IS_UC) {
		r = set_pages_array_uc(pages, cpages);
		if (r)
J
Joe Perches 已提交
314
			pr_err("%s: Failed to set %d pages to uc!\n",
315 316 317 318 319
			       pool->dev_name, cpages);
	}
	if (pool->type & IS_WC) {
		r = set_pages_array_wc(pages, cpages);
		if (r)
J
Joe Perches 已提交
320
			pr_err("%s: Failed to set %d pages to wc!\n",
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
			       pool->dev_name, cpages);
	}
	return r;
}

static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
{
	dma_addr_t dma = d_page->dma;
	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);

	kfree(d_page);
	d_page = NULL;
}
static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
{
	struct dma_page *d_page;

	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
	if (!d_page)
		return NULL;

	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
					   &d_page->dma,
					   pool->gfp_flags);
	if (d_page->vaddr)
		d_page->p = virt_to_page(d_page->vaddr);
	else {
		kfree(d_page);
		d_page = NULL;
	}
	return d_page;
}
static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
{
	enum pool_type type = IS_UNDEFINED;

	if (flags & TTM_PAGE_FLAG_DMA32)
		type |= IS_DMA32;
	if (cstate == tt_cached)
		type |= IS_CACHED;
	else if (cstate == tt_uncached)
		type |= IS_UC;
	else
		type |= IS_WC;

	return type;
}

static void ttm_pool_update_free_locked(struct dma_pool *pool,
					unsigned freed_pages)
{
	pool->npages_free -= freed_pages;
	pool->nfrees += freed_pages;

}

/* set memory back to wb and free the pages. */
static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
			      struct page *pages[], unsigned npages)
{
	struct dma_page *d_page, *tmp;

383 384 385
	/* Don't set WB on WB page pool. */
	if (npages && !(pool->type & IS_CACHED) &&
	    set_pages_array_wb(pages, npages))
J
Joe Perches 已提交
386 387
		pr_err("%s: Failed to set %d pages to wb!\n",
		       pool->dev_name, npages);
388 389 390 391 392 393 394 395 396

	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
		list_del(&d_page->page_list);
		__ttm_dma_free_page(pool, d_page);
	}
}

static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
{
397 398
	/* Don't set WB on WB page pool. */
	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
J
Joe Perches 已提交
399 400
		pr_err("%s: Failed to set %d pages to wb!\n",
		       pool->dev_name, 1);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

	list_del(&d_page->page_list);
	__ttm_dma_free_page(pool, d_page);
}

/*
 * Free pages from pool.
 *
 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 * number of pages in one go.
 *
 * @pool: to free the pages from
 * @nr_free: If set to true will free all pages in pool
 **/
static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
{
	unsigned long irq_flags;
	struct dma_page *dma_p, *tmp;
	struct page **pages_to_free;
	struct list_head d_pages;
	unsigned freed_pages = 0,
		 npages_to_free = nr_free;

	if (NUM_PAGES_TO_ALLOC < nr_free)
		npages_to_free = NUM_PAGES_TO_ALLOC;
#if 0
	if (nr_free > 1) {
		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
J
Joe Perches 已提交
429 430
			 pool->dev_name, pool->name, current->pid,
			 npages_to_free, nr_free);
431 432 433 434 435 436
	}
#endif
	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
			GFP_KERNEL);

	if (!pages_to_free) {
J
Joe Perches 已提交
437 438
		pr_err("%s: Failed to allocate memory for pool free operation\n",
		       pool->dev_name);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		return 0;
	}
	INIT_LIST_HEAD(&d_pages);
restart:
	spin_lock_irqsave(&pool->lock, irq_flags);

	/* We picking the oldest ones off the list */
	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
					 page_list) {
		if (freed_pages >= npages_to_free)
			break;

		/* Move the dma_page from one list to another. */
		list_move(&dma_p->page_list, &d_pages);

		pages_to_free[freed_pages++] = dma_p->p;
		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
		if (freed_pages >= NUM_PAGES_TO_ALLOC) {

			ttm_pool_update_free_locked(pool, freed_pages);
			/**
			 * Because changing page caching is costly
			 * we unlock the pool to prevent stalling.
			 */
			spin_unlock_irqrestore(&pool->lock, irq_flags);

			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
					  freed_pages);

			INIT_LIST_HEAD(&d_pages);

			if (likely(nr_free != FREE_ALL_PAGES))
				nr_free -= freed_pages;

			if (NUM_PAGES_TO_ALLOC >= nr_free)
				npages_to_free = nr_free;
			else
				npages_to_free = NUM_PAGES_TO_ALLOC;

			freed_pages = 0;

			/* free all so restart the processing */
			if (nr_free)
				goto restart;

			/* Not allowed to fall through or break because
			 * following context is inside spinlock while we are
			 * outside here.
			 */
			goto out;

		}
	}

	/* remove range of pages from the pool */
	if (freed_pages) {
		ttm_pool_update_free_locked(pool, freed_pages);
		nr_free -= freed_pages;
	}

	spin_unlock_irqrestore(&pool->lock, irq_flags);

	if (freed_pages)
		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
out:
	kfree(pages_to_free);
	return nr_free;
}

static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
{
	struct device_pools *p;
	struct dma_pool *pool;

	if (!dev)
		return;

	mutex_lock(&_manager->lock);
	list_for_each_entry_reverse(p, &_manager->pools, pools) {
		if (p->dev != dev)
			continue;
		pool = p->pool;
		if (pool->type != type)
			continue;

		list_del(&p->pools);
		kfree(p);
		_manager->npools--;
		break;
	}
	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
		if (pool->type != type)
			continue;
		/* Takes a spinlock.. */
		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
		/* This code path is called after _all_ references to the
		 * struct device has been dropped - so nobody should be
		 * touching it. In case somebody is trying to _add_ we are
		 * guarded by the mutex. */
		list_del(&pool->pools);
		kfree(pool);
		break;
	}
	mutex_unlock(&_manager->lock);
}

/*
 * On free-ing of the 'struct device' this deconstructor is run.
 * Albeit the pool might have already been freed earlier.
 */
static void ttm_dma_pool_release(struct device *dev, void *res)
{
	struct dma_pool *pool = *(struct dma_pool **)res;

	if (pool)
		ttm_dma_free_pool(dev, pool->type);
}

static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
{
	return *(struct dma_pool **)res == match_data;
}

static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
					  enum pool_type type)
{
	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
	struct device_pools *sec_pool = NULL;
	struct dma_pool *pool = NULL, **ptr;
	unsigned i;
	int ret = -ENODEV;
	char *p;

	if (!dev)
		return NULL;

	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return NULL;

	ret = -ENOMEM;

	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
			    dev_to_node(dev));
	if (!pool)
		goto err_mem;

	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
				dev_to_node(dev));
	if (!sec_pool)
		goto err_mem;

	INIT_LIST_HEAD(&sec_pool->pools);
	sec_pool->dev = dev;
	sec_pool->pool =  pool;

	INIT_LIST_HEAD(&pool->free_list);
	INIT_LIST_HEAD(&pool->inuse_list);
	INIT_LIST_HEAD(&pool->pools);
	spin_lock_init(&pool->lock);
	pool->dev = dev;
	pool->npages_free = pool->npages_in_use = 0;
	pool->nfrees = 0;
	pool->gfp_flags = flags;
	pool->size = PAGE_SIZE;
	pool->type = type;
	pool->nrefills = 0;
	p = pool->name;
	for (i = 0; i < 5; i++) {
		if (type & t[i]) {
			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
				      "%s", n[i]);
		}
	}
	*p = 0;
	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
	 * - the kobj->name has already been deallocated.*/
	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
		 dev_driver_string(dev), dev_name(dev));
	mutex_lock(&_manager->lock);
	/* You can get the dma_pool from either the global: */
	list_add(&sec_pool->pools, &_manager->pools);
	_manager->npools++;
	/* or from 'struct device': */
	list_add(&pool->pools, &dev->dma_pools);
	mutex_unlock(&_manager->lock);

	*ptr = pool;
	devres_add(dev, ptr);

	return pool;
err_mem:
	devres_free(ptr);
	kfree(sec_pool);
	kfree(pool);
	return ERR_PTR(ret);
}

static struct dma_pool *ttm_dma_find_pool(struct device *dev,
					  enum pool_type type)
{
	struct dma_pool *pool, *tmp, *found = NULL;

	if (type == IS_UNDEFINED)
		return found;

	/* NB: We iterate on the 'struct dev' which has no spinlock, but
	 * it does have a kref which we have taken. The kref is taken during
	 * graphic driver loading - in the drm_pci_init it calls either
	 * pci_dev_get or pci_register_driver which both end up taking a kref
	 * on 'struct device'.
	 *
	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
	 * thing is at that point of time there are no pages associated with the
	 * driver so this function will not be called.
	 */
	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
		if (pool->type != type)
			continue;
		found = pool;
		break;
	}
	return found;
}

/*
 * Free pages the pages that failed to change the caching state. If there
 * are pages that have changed their caching state already put them to the
 * pool.
 */
static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
						 struct list_head *d_pages,
						 struct page **failed_pages,
						 unsigned cpages)
{
	struct dma_page *d_page, *tmp;
	struct page *p;
	unsigned i = 0;

	p = failed_pages[0];
	if (!p)
		return;
	/* Find the failed page. */
	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
		if (d_page->p != p)
			continue;
		/* .. and then progress over the full list. */
		list_del(&d_page->page_list);
		__ttm_dma_free_page(pool, d_page);
		if (++i < cpages)
			p = failed_pages[i];
		else
			break;
	}

}

/*
 * Allocate 'count' pages, and put 'need' number of them on the
 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 * The full list of pages should also be on 'd_pages'.
 * We return zero for success, and negative numbers as errors.
 */
static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
					struct list_head *d_pages,
					unsigned count)
{
	struct page **caching_array;
	struct dma_page *dma_p;
	struct page *p;
	int r = 0;
	unsigned i, cpages;
	unsigned max_cpages = min(count,
			(unsigned)(PAGE_SIZE/sizeof(struct page *)));

	/* allocate array for page caching change */
	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);

	if (!caching_array) {
J
Joe Perches 已提交
721 722
		pr_err("%s: Unable to allocate table for new pages\n",
		       pool->dev_name);
723 724 725 726 727
		return -ENOMEM;
	}

	if (count > 1) {
		pr_debug("%s: (%s:%d) Getting %d pages\n",
J
Joe Perches 已提交
728
			 pool->dev_name, pool->name, current->pid, count);
729 730 731 732 733
	}

	for (i = 0, cpages = 0; i < count; ++i) {
		dma_p = __ttm_dma_alloc_page(pool);
		if (!dma_p) {
J
Joe Perches 已提交
734 735
			pr_err("%s: Unable to get page %u\n",
			       pool->dev_name, i);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

			/* store already allocated pages in the pool after
			 * setting the caching state */
			if (cpages) {
				r = ttm_set_pages_caching(pool, caching_array,
							  cpages);
				if (r)
					ttm_dma_handle_caching_state_failure(
						pool, d_pages, caching_array,
						cpages);
			}
			r = -ENOMEM;
			goto out;
		}
		p = dma_p->p;
#ifdef CONFIG_HIGHMEM
		/* gfp flags of highmem page should never be dma32 so we
		 * we should be fine in such case
		 */
		if (!PageHighMem(p))
#endif
		{
			caching_array[cpages++] = p;
			if (cpages == max_cpages) {
				/* Note: Cannot hold the spinlock */
				r = ttm_set_pages_caching(pool, caching_array,
						 cpages);
				if (r) {
					ttm_dma_handle_caching_state_failure(
						pool, d_pages, caching_array,
						cpages);
					goto out;
				}
				cpages = 0;
			}
		}
		list_add(&dma_p->page_list, d_pages);
	}

	if (cpages) {
		r = ttm_set_pages_caching(pool, caching_array, cpages);
		if (r)
			ttm_dma_handle_caching_state_failure(pool, d_pages,
					caching_array, cpages);
	}
out:
	kfree(caching_array);
	return r;
}

/*
 * @return count of pages still required to fulfill the request.
788
 */
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
					 unsigned long *irq_flags)
{
	unsigned count = _manager->options.small;
	int r = pool->npages_free;

	if (count > pool->npages_free) {
		struct list_head d_pages;

		INIT_LIST_HEAD(&d_pages);

		spin_unlock_irqrestore(&pool->lock, *irq_flags);

		/* Returns how many more are neccessary to fulfill the
		 * request. */
		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);

		spin_lock_irqsave(&pool->lock, *irq_flags);
		if (!r) {
			/* Add the fresh to the end.. */
			list_splice(&d_pages, &pool->free_list);
			++pool->nrefills;
			pool->npages_free += count;
			r = count;
		} else {
			struct dma_page *d_page;
			unsigned cpages = 0;

J
Joe Perches 已提交
817 818
			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
			       pool->dev_name, pool->name, r);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

			list_for_each_entry(d_page, &d_pages, page_list) {
				cpages++;
			}
			list_splice_tail(&d_pages, &pool->free_list);
			pool->npages_free += cpages;
			r = cpages;
		}
	}
	return r;
}

/*
 * @return count of pages still required to fulfill the request.
 * The populate list is actually a stack (not that is matters as TTM
 * allocates one page at a time.
 */
static int ttm_dma_pool_get_pages(struct dma_pool *pool,
837
				  struct ttm_dma_tt *ttm_dma,
838 839 840
				  unsigned index)
{
	struct dma_page *d_page;
841
	struct ttm_tt *ttm = &ttm_dma->ttm;
842 843 844 845 846 847 848 849
	unsigned long irq_flags;
	int count, r = -ENOMEM;

	spin_lock_irqsave(&pool->lock, irq_flags);
	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
	if (count) {
		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
		ttm->pages[index] = d_page->p;
850 851
		ttm_dma->dma_address[index] = d_page->dma;
		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
852 853 854 855 856 857 858 859 860 861 862 863
		r = 0;
		pool->npages_in_use += 1;
		pool->npages_free -= 1;
	}
	spin_unlock_irqrestore(&pool->lock, irq_flags);
	return r;
}

/*
 * On success pages list will hold count number of correctly
 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 */
864
int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
865
{
866
	struct ttm_tt *ttm = &ttm_dma->ttm;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
	struct dma_pool *pool;
	enum pool_type type;
	unsigned i;
	gfp_t gfp_flags;
	int ret;

	if (ttm->state != tt_unpopulated)
		return 0;

	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
		gfp_flags = GFP_USER | GFP_DMA32;
	else
		gfp_flags = GFP_HIGHUSER;
	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
		gfp_flags |= __GFP_ZERO;

	pool = ttm_dma_find_pool(dev, type);
	if (!pool) {
		pool = ttm_dma_pool_init(dev, gfp_flags, type);
		if (IS_ERR_OR_NULL(pool)) {
			return -ENOMEM;
		}
	}

893
	INIT_LIST_HEAD(&ttm_dma->pages_list);
894
	for (i = 0; i < ttm->num_pages; ++i) {
895
		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
896
		if (ret != 0) {
897
			ttm_dma_unpopulate(ttm_dma, dev);
898 899 900 901 902 903
			return -ENOMEM;
		}

		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
						false, false);
		if (unlikely(ret != 0)) {
904
			ttm_dma_unpopulate(ttm_dma, dev);
905 906 907 908 909 910 911
			return -ENOMEM;
		}
	}

	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
		ret = ttm_tt_swapin(ttm);
		if (unlikely(ret != 0)) {
912
			ttm_dma_unpopulate(ttm_dma, dev);
913 914 915 916 917 918 919 920 921 922
			return ret;
		}
	}

	ttm->state = tt_unbound;
	return 0;
}
EXPORT_SYMBOL_GPL(ttm_dma_populate);

/* Put all pages in pages list to correct pool to wait for reuse */
923
void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
924
{
925
	struct ttm_tt *ttm = &ttm_dma->ttm;
926 927 928 929
	struct dma_pool *pool;
	struct dma_page *d_page, *next;
	enum pool_type type;
	bool is_cached = false;
930
	unsigned count = 0, i, npages = 0;
931 932 933 934
	unsigned long irq_flags;

	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
	pool = ttm_dma_find_pool(dev, type);
935
	if (!pool)
936
		return;
937

938 939 940 941
	is_cached = (ttm_dma_find_pool(pool->dev,
		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);

	/* make sure pages array match list and count number of pages */
942
	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
943 944 945 946 947 948 949 950 951 952
		ttm->pages[count] = d_page->p;
		count++;
	}

	spin_lock_irqsave(&pool->lock, irq_flags);
	pool->npages_in_use -= count;
	if (is_cached) {
		pool->nfrees += count;
	} else {
		pool->npages_free += count;
953
		list_splice(&ttm_dma->pages_list, &pool->free_list);
954
		npages = count;
955
		if (pool->npages_free > _manager->options.max_size) {
956 957 958 959 960
			npages = pool->npages_free - _manager->options.max_size;
			/* free at least NUM_PAGES_TO_ALLOC number of pages
			 * to reduce calls to set_memory_wb */
			if (npages < NUM_PAGES_TO_ALLOC)
				npages = NUM_PAGES_TO_ALLOC;
961 962 963 964 965
		}
	}
	spin_unlock_irqrestore(&pool->lock, irq_flags);

	if (is_cached) {
966
		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
967 968 969 970 971 972 973 974 975 976 977
			ttm_mem_global_free_page(ttm->glob->mem_glob,
						 d_page->p);
			ttm_dma_page_put(pool, d_page);
		}
	} else {
		for (i = 0; i < count; i++) {
			ttm_mem_global_free_page(ttm->glob->mem_glob,
						 ttm->pages[i]);
		}
	}

978
	INIT_LIST_HEAD(&ttm_dma->pages_list);
979 980
	for (i = 0; i < ttm->num_pages; i++) {
		ttm->pages[i] = NULL;
981
		ttm_dma->dma_address[i] = 0;
982 983
	}

984 985 986
	/* shrink pool if necessary (only on !is_cached pools)*/
	if (npages)
		ttm_dma_page_pool_free(pool, npages);
987 988 989 990 991 992
	ttm->state = tt_unpopulated;
}
EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);

/**
 * Callback for mm to request pool to reduce number of page held.
993 994 995 996 997 998 999 1000 1001 1002
 *
 * XXX: (dchinner) Deadlock warning!
 *
 * ttm_dma_page_pool_free() does GFP_KERNEL memory allocation, and so attention
 * needs to be paid to sc->gfp_mask to determine if this can be done or not.
 * GFP_KERNEL memory allocation in a GFP_ATOMIC reclaim context woul dbe really
 * bad.
 *
 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
 * shrinkers
1003
 */
1004 1005
static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1006
{
1007
	static unsigned start_pool;
1008
	unsigned idx = 0;
1009
	unsigned pool_offset;
1010 1011
	unsigned shrink_pages = sc->nr_to_scan;
	struct device_pools *p;
1012
	unsigned long freed = 0;
1013 1014

	if (list_empty(&_manager->pools))
1015
		return SHRINK_STOP;
1016

1017 1018
	if (!mutex_trylock(&_manager->lock))
		return SHRINK_STOP;
1019 1020
	if (!_manager->npools)
		goto out;
1021
	pool_offset = ++start_pool % _manager->npools;
1022 1023 1024
	list_for_each_entry(p, &_manager->pools, pools) {
		unsigned nr_free;

1025
		if (!p->dev)
1026 1027 1028 1029 1030 1031 1032 1033
			continue;
		if (shrink_pages == 0)
			break;
		/* Do it in round-robin fashion. */
		if (++idx < pool_offset)
			continue;
		nr_free = shrink_pages;
		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1034 1035
		freed += nr_free - shrink_pages;

1036
		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
J
Joe Perches 已提交
1037 1038
			 p->pool->dev_name, p->pool->name, current->pid,
			 nr_free, shrink_pages);
1039
	}
1040
out:
1041
	mutex_unlock(&_manager->lock);
1042 1043 1044 1045 1046 1047 1048 1049 1050
	return freed;
}

static unsigned long
ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
	struct device_pools *p;
	unsigned long count = 0;

1051 1052
	if (!mutex_trylock(&_manager->lock))
		return 0;
1053 1054 1055 1056
	list_for_each_entry(p, &_manager->pools, pools)
		count += p->pool->npages_free;
	mutex_unlock(&_manager->lock);
	return count;
1057 1058 1059 1060
}

static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
{
1061 1062
	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	manager->mm_shrink.seeks = 1;
	register_shrinker(&manager->mm_shrink);
}

static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
{
	unregister_shrinker(&manager->mm_shrink);
}

int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
{
	int ret = -ENOMEM;

	WARN_ON(_manager);

J
Joe Perches 已提交
1078
	pr_info("Initializing DMA pool allocator\n");
1079 1080 1081

	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
	if (!_manager)
1082
		goto err;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	mutex_init(&_manager->lock);
	INIT_LIST_HEAD(&_manager->pools);

	_manager->options.max_size = max_pages;
	_manager->options.small = SMALL_ALLOCATION;
	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;

	/* This takes care of auto-freeing the _manager */
	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
				   &glob->kobj, "dma_pool");
	if (unlikely(ret != 0)) {
		kobject_put(&_manager->kobj);
		goto err;
	}
	ttm_dma_pool_mm_shrink_init(_manager);
	return 0;
err:
	return ret;
}

void ttm_dma_page_alloc_fini(void)
{
	struct device_pools *p, *t;

J
Joe Perches 已提交
1108
	pr_info("Finalizing DMA pool allocator\n");
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	ttm_dma_pool_mm_shrink_fini(_manager);

	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
			current->pid);
		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
			ttm_dma_pool_match, p->pool));
		ttm_dma_free_pool(p->dev, p->pool->type);
	}
	kobject_put(&_manager->kobj);
	_manager = NULL;
}

int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
{
	struct device_pools *p;
	struct dma_pool *pool = NULL;
	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
		     "name", "virt", "busaddr"};

	if (!_manager) {
		seq_printf(m, "No pool allocator running.\n");
		return 0;
	}
	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
		   h[0], h[1], h[2], h[3], h[4], h[5]);
	mutex_lock(&_manager->lock);
	list_for_each_entry(p, &_manager->pools, pools) {
		struct device *dev = p->dev;
		if (!dev)
			continue;
		pool = p->pool;
		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
				pool->name, pool->nrefills,
				pool->nfrees, pool->npages_in_use,
				pool->npages_free,
				pool->dev_name);
	}
	mutex_unlock(&_manager->lock);
	return 0;
}
EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1151 1152

#endif