txrx.c 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Copyright (c) 2012 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/hardirq.h>
#include <net/ieee80211_radiotap.h>
#include <linux/if_arp.h>
#include <linux/moduleparam.h>

#include "wil6210.h"
#include "wmi.h"
#include "txrx.h"

static bool rtap_include_phy_info;
module_param(rtap_include_phy_info, bool, S_IRUGO);
MODULE_PARM_DESC(rtap_include_phy_info,
		 " Include PHY info in the radiotap header, default - no");

static inline int wil_vring_is_empty(struct vring *vring)
{
	return vring->swhead == vring->swtail;
}

static inline u32 wil_vring_next_tail(struct vring *vring)
{
	return (vring->swtail + 1) % vring->size;
}

static inline void wil_vring_advance_head(struct vring *vring, int n)
{
	vring->swhead = (vring->swhead + n) % vring->size;
}

static inline int wil_vring_is_full(struct vring *vring)
{
	return wil_vring_next_tail(vring) == vring->swhead;
}
/*
 * Available space in Tx Vring
 */
static inline int wil_vring_avail_tx(struct vring *vring)
{
	u32 swhead = vring->swhead;
	u32 swtail = vring->swtail;
	int used = (vring->size + swhead - swtail) % vring->size;

	return vring->size - used - 1;
}

static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
{
	struct device *dev = wil_to_dev(wil);
	size_t sz = vring->size * sizeof(vring->va[0]);
	uint i;

	BUILD_BUG_ON(sizeof(vring->va[0]) != 32);

	vring->swhead = 0;
	vring->swtail = 0;
	vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
	if (!vring->ctx) {
		wil_err(wil, "vring_alloc [%d] failed to alloc ctx mem\n",
			vring->size);
		vring->va = NULL;
		return -ENOMEM;
	}
	/*
	 * vring->va should be aligned on its size rounded up to power of 2
	 * This is granted by the dma_alloc_coherent
	 */
	vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
	if (!vring->va) {
		wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n",
			vring->size);
		kfree(vring->ctx);
		vring->ctx = NULL;
		return -ENOMEM;
	}
	/* initially, all descriptors are SW owned
	 * For Tx and Rx, ownership bit is at the same location, thus
	 * we can use any
	 */
	for (i = 0; i < vring->size; i++) {
		volatile struct vring_tx_desc *d = &(vring->va[i].tx);
		d->dma.status = TX_DMA_STATUS_DU;
	}

103 104
	wil_dbg_MISC(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
		     vring->va, (unsigned long long)vring->pa, vring->ctx);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

	return 0;
}

static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
			   int tx)
{
	struct device *dev = wil_to_dev(wil);
	size_t sz = vring->size * sizeof(vring->va[0]);

	while (!wil_vring_is_empty(vring)) {
		if (tx) {
			volatile struct vring_tx_desc *d =
					&vring->va[vring->swtail].tx;
			dma_addr_t pa = d->dma.addr_low |
					((u64)d->dma.addr_high << 32);
			struct sk_buff *skb = vring->ctx[vring->swtail];
			if (skb) {
				dma_unmap_single(dev, pa, d->dma.length,
						 DMA_TO_DEVICE);
				dev_kfree_skb_any(skb);
				vring->ctx[vring->swtail] = NULL;
			} else {
				dma_unmap_page(dev, pa, d->dma.length,
					       DMA_TO_DEVICE);
			}
			vring->swtail = wil_vring_next_tail(vring);
		} else { /* rx */
			volatile struct vring_rx_desc *d =
					&vring->va[vring->swtail].rx;
			dma_addr_t pa = d->dma.addr_low |
					((u64)d->dma.addr_high << 32);
			struct sk_buff *skb = vring->ctx[vring->swhead];
			dma_unmap_single(dev, pa, d->dma.length,
					 DMA_FROM_DEVICE);
			kfree_skb(skb);
			wil_vring_advance_head(vring, 1);
		}
	}
	dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
	kfree(vring->ctx);
	vring->pa = 0;
	vring->va = NULL;
	vring->ctx = NULL;
}

/**
 * Allocate one skb for Rx VRING
 *
 * Safe to call from IRQ
 */
static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
			       u32 i, int headroom)
{
	struct device *dev = wil_to_dev(wil);
	unsigned int sz = RX_BUF_LEN;
	volatile struct vring_rx_desc *d = &(vring->va[i].rx);
	dma_addr_t pa;

	/* TODO align */
	struct sk_buff *skb = dev_alloc_skb(sz + headroom);
	if (unlikely(!skb))
		return -ENOMEM;

	skb_reserve(skb, headroom);
	skb_put(skb, sz);

	pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(dev, pa))) {
		kfree_skb(skb);
		return -ENOMEM;
	}

	d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
	d->dma.addr_low = lower_32_bits(pa);
	d->dma.addr_high = (u16)upper_32_bits(pa);
	/* ip_length don't care */
	/* b11 don't care */
	/* error don't care */
	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
	d->dma.length = sz;
	vring->ctx[i] = skb;

	return 0;
}

/**
 * Adds radiotap header
 *
 * Any error indicated as "Bad FCS"
 *
 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
 *  - Rx descriptor: 32 bytes
 *  - Phy info
 */
static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
				       struct sk_buff *skb,
				       volatile struct vring_rx_desc *d)
{
	struct wireless_dev *wdev = wil->wdev;
	struct wil6210_rtap {
		struct ieee80211_radiotap_header rthdr;
		/* fields should be in the order of bits in rthdr.it_present */
		/* flags */
		u8 flags;
		/* channel */
		__le16 chnl_freq __aligned(2);
		__le16 chnl_flags;
		/* MCS */
		u8 mcs_present;
		u8 mcs_flags;
		u8 mcs_index;
	} __packed;
	struct wil6210_rtap_vendor {
		struct wil6210_rtap rtap;
		/* vendor */
		u8 vendor_oui[3] __aligned(2);
		u8 vendor_ns;
		__le16 vendor_skip;
		u8 vendor_data[0];
	} __packed;
	struct wil6210_rtap_vendor *rtap_vendor;
	int rtap_len = sizeof(struct wil6210_rtap);
	int phy_length = 0; /* phy info header size, bytes */
	static char phy_data[128];
	struct ieee80211_channel *ch = wdev->preset_chandef.chan;

	if (rtap_include_phy_info) {
		rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
		/* calculate additional length */
		if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
			/**
			 * PHY info starts from 8-byte boundary
			 * there are 8-byte lines, last line may be partially
			 * written (HW bug), thus FW configures for last line
			 * to be excessive. Driver skips this last line.
			 */
			int len = min_t(int, 8 + sizeof(phy_data),
					wil_rxdesc_phy_length(d));
			if (len > 8) {
				void *p = skb_tail_pointer(skb);
				void *pa = PTR_ALIGN(p, 8);
				if (skb_tailroom(skb) >= len + (pa - p)) {
					phy_length = len - 8;
					memcpy(phy_data, pa, phy_length);
				}
			}
		}
		rtap_len += phy_length;
	}

	if (skb_headroom(skb) < rtap_len &&
	    pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
		wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
		return;
	}

	rtap_vendor = (void *)skb_push(skb, rtap_len);
	memset(rtap_vendor, 0, rtap_len);

	rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
	rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
	rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
			(1 << IEEE80211_RADIOTAP_FLAGS) |
			(1 << IEEE80211_RADIOTAP_CHANNEL) |
			(1 << IEEE80211_RADIOTAP_MCS));
	if (d->dma.status & RX_DMA_STATUS_ERROR)
		rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;

	rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
	rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);

	rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
	rtap_vendor->rtap.mcs_flags = 0;
	rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);

	if (rtap_include_phy_info) {
		rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
				IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
		/* OUI for Wilocity 04:ce:14 */
		rtap_vendor->vendor_oui[0] = 0x04;
		rtap_vendor->vendor_oui[1] = 0xce;
		rtap_vendor->vendor_oui[2] = 0x14;
		rtap_vendor->vendor_ns = 1;
		/* Rx descriptor + PHY data  */
		rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
						       phy_length);
		memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
		memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
		       phy_length);
	}
}

/*
 * Fast swap in place between 2 registers
 */
static void wil_swap_u16(u16 *a, u16 *b)
{
	*a ^= *b;
	*b ^= *a;
	*a ^= *b;
}

static void wil_swap_ethaddr(void *data)
{
	struct ethhdr *eth = data;
	u16 *s = (u16 *)eth->h_source;
	u16 *d = (u16 *)eth->h_dest;

	wil_swap_u16(s++, d++);
	wil_swap_u16(s++, d++);
	wil_swap_u16(s, d);
}

/**
 * reap 1 frame from @swhead
 *
 * Safe to call from IRQ
 */
static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
					 struct vring *vring)
{
	struct device *dev = wil_to_dev(wil);
	struct net_device *ndev = wil_to_ndev(wil);
	volatile struct vring_rx_desc *d;
	struct sk_buff *skb;
	dma_addr_t pa;
	unsigned int sz = RX_BUF_LEN;
	u8 ftype;
	u8 ds_bits;

	if (wil_vring_is_empty(vring))
		return NULL;

	d = &(vring->va[vring->swhead].rx);
	if (!(d->dma.status & RX_DMA_STATUS_DU)) {
		/* it is not error, we just reached end of Rx done area */
		return NULL;
	}

	pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
	skb = vring->ctx[vring->swhead];
	dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
	skb_trim(skb, d->dma.length);

	wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);

	/* use radiotap header only if required */
	if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
		wil_rx_add_radiotap_header(wil, skb, d);

	wil_dbg_TXRX(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
	wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_NONE, 32, 4,
			  (const void *)d, sizeof(*d), false);

	wil_vring_advance_head(vring, 1);

	/* no extra checks if in sniffer mode */
	if (ndev->type != ARPHRD_ETHER)
		return skb;
	/*
	 * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
	 * Driver should recognize it by frame type, that is found
	 * in Rx descriptor. If type is not data, it is 802.11 frame as is
	 */
	ftype = wil_rxdesc_ftype(d) << 2;
	if (ftype != IEEE80211_FTYPE_DATA) {
		wil_dbg_TXRX(wil, "Non-data frame ftype 0x%08x\n", ftype);
		/* TODO: process it */
		kfree_skb(skb);
		return NULL;
	}

	if (skb->len < ETH_HLEN) {
		wil_err(wil, "Short frame, len = %d\n", skb->len);
		/* TODO: process it (i.e. BAR) */
		kfree_skb(skb);
		return NULL;
	}

	ds_bits = wil_rxdesc_ds_bits(d);
	if (ds_bits == 1) {
		/*
		 * HW bug - in ToDS mode, i.e. Rx on AP side,
		 * addresses get swapped
		 */
		wil_swap_ethaddr(skb->data);
	}

	return skb;
}

/**
 * allocate and fill up to @count buffers in rx ring
 * buffers posted at @swtail
 */
static int wil_rx_refill(struct wil6210_priv *wil, int count)
{
	struct net_device *ndev = wil_to_ndev(wil);
	struct vring *v = &wil->vring_rx;
	u32 next_tail;
	int rc = 0;
	int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
			WIL6210_RTAP_SIZE : 0;

	for (; next_tail = wil_vring_next_tail(v),
			(next_tail != v->swhead) && (count-- > 0);
			v->swtail = next_tail) {
		rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
		if (rc) {
			wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
				rc, v->swtail);
			break;
		}
	}
	iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));

	return rc;
}

/*
 * Pass Rx packet to the netif. Update statistics.
 */
static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
{
	int rc;
	unsigned int len = skb->len;

	if (in_interrupt())
		rc = netif_rx(skb);
	else
		rc = netif_rx_ni(skb);

	if (likely(rc == NET_RX_SUCCESS)) {
		ndev->stats.rx_packets++;
		ndev->stats.rx_bytes += len;

	} else {
		ndev->stats.rx_dropped++;
	}
}

/**
 * Proceed all completed skb's from Rx VRING
 *
 * Safe to call from IRQ
 */
void wil_rx_handle(struct wil6210_priv *wil)
{
	struct net_device *ndev = wil_to_ndev(wil);
	struct vring *v = &wil->vring_rx;
	struct sk_buff *skb;

	if (!v->va) {
		wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
		return;
	}
	wil_dbg_TXRX(wil, "%s()\n", __func__);
	while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
		wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
				  skb->data, skb_headlen(skb), false);

		skb_orphan(skb);

		if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
			skb->dev = ndev;
			skb_reset_mac_header(skb);
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			skb->pkt_type = PACKET_OTHERHOST;
			skb->protocol = htons(ETH_P_802_2);

		} else {
			skb->protocol = eth_type_trans(skb, ndev);
		}

		wil_netif_rx_any(skb, ndev);
	}
	wil_rx_refill(wil, v->size);
}

int wil_rx_init(struct wil6210_priv *wil)
{
	struct net_device *ndev = wil_to_ndev(wil);
	struct wireless_dev *wdev = wil->wdev;
	struct vring *vring = &wil->vring_rx;
	int rc;
	struct wmi_cfg_rx_chain_cmd cmd = {
		.action = WMI_RX_CHAIN_ADD,
		.rx_sw_ring = {
			.max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
		},
		.mid = 0, /* TODO - what is it? */
		.decap_trans_type = WMI_DECAP_TYPE_802_3,
	};
	struct {
		struct wil6210_mbox_hdr_wmi wmi;
		struct wmi_cfg_rx_chain_done_event evt;
	} __packed evt;

	vring->size = WIL6210_RX_RING_SIZE;
	rc = wil_vring_alloc(wil, vring);
	if (rc)
		return rc;

	cmd.rx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
	cmd.rx_sw_ring.ring_size = cpu_to_le16(vring->size);
	if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
		struct ieee80211_channel *ch = wdev->preset_chandef.chan;

		cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
		if (ch)
			cmd.sniffer_cfg.channel = ch->hw_value - 1;
		cmd.sniffer_cfg.phy_info_mode =
			cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
		cmd.sniffer_cfg.phy_support =
			cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
				    ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
	}
	/* typical time for secure PCP is 840ms */
	rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
		      WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
	if (rc)
		goto err_free;

	vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);

531 532
	wil_dbg_MISC(wil, "Rx init: status %d tail 0x%08x\n",
		     le32_to_cpu(evt.evt.status), vring->hwtail);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

	rc = wil_rx_refill(wil, vring->size);
	if (rc)
		goto err_free;

	return 0;
 err_free:
	wil_vring_free(wil, vring, 0);

	return rc;
}

void wil_rx_fini(struct wil6210_priv *wil)
{
	struct vring *vring = &wil->vring_rx;

	if (vring->va) {
		int rc;
		struct wmi_cfg_rx_chain_cmd cmd = {
			.action = cpu_to_le32(WMI_RX_CHAIN_DEL),
			.rx_sw_ring = {
				.max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
			},
		};
		struct {
			struct wil6210_mbox_hdr_wmi wmi;
			struct wmi_cfg_rx_chain_done_event cfg;
		} __packed wmi_rx_cfg_reply;

		rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
			      WMI_CFG_RX_CHAIN_DONE_EVENTID,
			      &wmi_rx_cfg_reply, sizeof(wmi_rx_cfg_reply),
			      100);
		wil_vring_free(wil, vring, 0);
	}
}

int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
		      int cid, int tid)
{
	int rc;
	struct wmi_vring_cfg_cmd cmd = {
		.action = cpu_to_le32(WMI_VRING_CMD_ADD),
		.vring_cfg = {
			.tx_sw_ring = {
				.max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
			},
			.ringid = id,
			.cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
			.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
			.mac_ctrl = 0,
			.to_resolution = 0,
			.agg_max_wsize = 16,
			.schd_params = {
				.priority = cpu_to_le16(0),
				.timeslot_us = cpu_to_le16(0xfff),
			},
		},
	};
	struct {
		struct wil6210_mbox_hdr_wmi wmi;
		struct wmi_vring_cfg_done_event cmd;
	} __packed reply;
	struct vring *vring = &wil->vring_tx[id];

	if (vring->va) {
		wil_err(wil, "Tx ring [%d] already allocated\n", id);
		rc = -EINVAL;
		goto out;
	}

	vring->size = size;
	rc = wil_vring_alloc(wil, vring);
	if (rc)
		goto out;

	cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
	cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size);

	rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
		      WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
	if (rc)
		goto out_free;

	if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) {
		wil_err(wil, "Tx config failed, status 0x%02x\n",
			reply.cmd.status);
		goto out_free;
	}
	vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);

	return 0;
 out_free:
	wil_vring_free(wil, vring, 1);
 out:

	return rc;
}

void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
{
	struct vring *vring = &wil->vring_tx[id];

	if (!vring->va)
		return;

	wil_vring_free(wil, vring, 1);
}

static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
				       struct sk_buff *skb)
{
	struct vring *v = &wil->vring_tx[0];

	if (v->va)
		return v;

	return NULL;
}

static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
			   dma_addr_t pa, u32 len)
{
	d->dma.addr_low = lower_32_bits(pa);
	d->dma.addr_high = (u16)upper_32_bits(pa);
	d->dma.ip_length = 0;
	/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
	d->dma.b11 = 0/*14 | BIT(7)*/;
	d->dma.error = 0;
	d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
	d->dma.length = len;
	d->dma.d0 = 0;
	d->mac.d[0] = 0;
	d->mac.d[1] = 0;
	d->mac.d[2] = 0;
	d->mac.ucode_cmd = 0;
	/* use dst index 0 */
	d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
		       (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
	/* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
	d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
		      (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);

	return 0;
}

static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
			struct sk_buff *skb)
{
	struct device *dev = wil_to_dev(wil);
	volatile struct vring_tx_desc *d;
	u32 swhead = vring->swhead;
	int avail = wil_vring_avail_tx(vring);
	int nr_frags = skb_shinfo(skb)->nr_frags;
	uint f;
	int vring_index = vring - wil->vring_tx;
	uint i = swhead;
	dma_addr_t pa;

	wil_dbg_TXRX(wil, "%s()\n", __func__);

	if (avail < vring->size/8)
		netif_tx_stop_all_queues(wil_to_ndev(wil));
	if (avail < 1 + nr_frags) {
		wil_err(wil, "Tx ring full. No space for %d fragments\n",
			1 + nr_frags);
		return -ENOMEM;
	}
	d = &(vring->va[i].tx);

	/* FIXME FW can accept only unicast frames for the peer */
	memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);

	pa = dma_map_single(dev, skb->data,
			skb_headlen(skb), DMA_TO_DEVICE);

	wil_dbg_TXRX(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
		     skb->data, (unsigned long long)pa);
	wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
			  skb->data, skb_headlen(skb), false);

	if (unlikely(dma_mapping_error(dev, pa)))
		return -EINVAL;
	/* 1-st segment */
	wil_tx_desc_map(d, pa, skb_headlen(skb));
	d->mac.d[2] |= ((nr_frags + 1) <<
		       MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
	/* middle segments */
	for (f = 0; f < nr_frags; f++) {
		const struct skb_frag_struct *frag =
				&skb_shinfo(skb)->frags[f];
		int len = skb_frag_size(frag);
		i = (swhead + f + 1) % vring->size;
		d = &(vring->va[i].tx);
		pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
				DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(dev, pa)))
			goto dma_error;
		wil_tx_desc_map(d, pa, len);
		vring->ctx[i] = NULL;
	}
	/* for the last seg only */
	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
	d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
	d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
	d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);

	wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_NONE, 32, 4,
			  (const void *)d, sizeof(*d), false);

	/* advance swhead */
	wil_vring_advance_head(vring, nr_frags + 1);
	wil_dbg_TXRX(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
	iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
	/* hold reference to skb
	 * to prevent skb release before accounting
	 * in case of immediate "tx done"
	 */
	vring->ctx[i] = skb_get(skb);

	return 0;
 dma_error:
	/* unmap what we have mapped */
	/* Note: increment @f to operate with positive index */
	for (f++; f > 0; f--) {
		i = (swhead + f) % vring->size;
		d = &(vring->va[i].tx);
		d->dma.status = TX_DMA_STATUS_DU;
		pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
		if (vring->ctx[i])
			dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
	}

	return -EINVAL;
}


netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
	struct wil6210_priv *wil = ndev_to_wil(ndev);
	struct vring *vring;
	int rc;

	wil_dbg_TXRX(wil, "%s()\n", __func__);
	if (!test_bit(wil_status_fwready, &wil->status)) {
		wil_err(wil, "FW not ready\n");
		goto drop;
	}
	if (!test_bit(wil_status_fwconnected, &wil->status)) {
		wil_err(wil, "FW not connected\n");
		goto drop;
	}
	if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
		wil_err(wil, "Xmit in monitor mode not supported\n");
		goto drop;
	}
	if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
		rc = wmi_tx_eapol(wil, skb);
	} else {
		/* find vring */
		vring = wil_find_tx_vring(wil, skb);
		if (!vring) {
			wil_err(wil, "No Tx VRING available\n");
			goto drop;
		}
		/* set up vring entry */
		rc = wil_tx_vring(wil, vring, skb);
	}
	switch (rc) {
	case 0:
		ndev->stats.tx_packets++;
		ndev->stats.tx_bytes += skb->len;
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	case -ENOMEM:
		return NETDEV_TX_BUSY;
	default:
		; /* goto drop; */
		break;
	}
 drop:
	netif_tx_stop_all_queues(ndev);
	ndev->stats.tx_dropped++;
	dev_kfree_skb_any(skb);

	return NET_XMIT_DROP;
}

/**
 * Clean up transmitted skb's from the Tx VRING
 *
 * Safe to call from IRQ
 */
void wil_tx_complete(struct wil6210_priv *wil, int ringid)
{
	struct device *dev = wil_to_dev(wil);
	struct vring *vring = &wil->vring_tx[ringid];

	if (!vring->va) {
		wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
		return;
	}

	wil_dbg_TXRX(wil, "%s(%d)\n", __func__, ringid);

	while (!wil_vring_is_empty(vring)) {
		volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
		dma_addr_t pa;
		struct sk_buff *skb;
		if (!(d->dma.status & TX_DMA_STATUS_DU))
			break;

		wil_dbg_TXRX(wil,
			     "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
			     vring->swtail, d->dma.length, d->dma.status,
			     d->dma.error);
		wil_hex_dump_TXRX("TxC ", DUMP_PREFIX_NONE, 32, 4,
				  (const void *)d, sizeof(*d), false);

		pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
		skb = vring->ctx[vring->swtail];
		if (skb) {
			dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
			dev_kfree_skb_any(skb);
			vring->ctx[vring->swtail] = NULL;
		} else {
			dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
		}
		d->dma.addr_low = 0;
		d->dma.addr_high = 0;
		d->dma.length = 0;
		d->dma.status = TX_DMA_STATUS_DU;
		vring->swtail = wil_vring_next_tail(vring);
	}
	if (wil_vring_avail_tx(vring) > vring->size/4)
		netif_tx_wake_all_queues(wil_to_ndev(wil));
}