tascam-transaction.c 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * tascam-transaction.c - a part of driver for TASCAM FireWire series
 *
 * Copyright (c) 2015 Takashi Sakamoto
 *
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include "tascam.h"

/*
 * When return minus value, given argument is not MIDI status.
 * When return 0, given argument is a beginning of system exclusive.
 * When return the others, given argument is MIDI data.
 */
static inline int calculate_message_bytes(u8 status)
{
	switch (status) {
	case 0xf6:	/* Tune request. */
	case 0xf8:	/* Timing clock. */
	case 0xfa:	/* Start. */
	case 0xfb:	/* Continue. */
	case 0xfc:	/* Stop. */
	case 0xfe:	/* Active sensing. */
	case 0xff:	/* System reset. */
		return 1;
	case 0xf1:	/* MIDI time code quarter frame. */
	case 0xf3:	/* Song select. */
		return 2;
	case 0xf2:	/* Song position pointer. */
		return 3;
	case 0xf0:	/* Exclusive. */
		return 0;
	case 0xf7:	/* End of exclusive. */
		break;
	case 0xf4:	/* Undefined. */
	case 0xf5:	/* Undefined. */
	case 0xf9:	/* Undefined. */
	case 0xfd:	/* Undefined. */
		break;
	default:
		switch (status & 0xf0) {
		case 0x80:	/* Note on. */
		case 0x90:	/* Note off. */
		case 0xa0:	/* Polyphonic key pressure. */
		case 0xb0:	/* Control change and Mode change. */
		case 0xe0:	/* Pitch bend change. */
			return 3;
		case 0xc0:	/* Program change. */
		case 0xd0:	/* Channel pressure. */
			return 2;
		default:
		break;
		}
	break;
	}

	return -EINVAL;
}

61 62
static int fill_message(struct snd_fw_async_midi_port *port,
			struct snd_rawmidi_substream *substream)
63
{
64
	int i, len, consume;
65
	u8 *label, *msg;
66 67
	u8 status;

68
	/* The first byte is used for label, the rest for MIDI bytes. */
69 70
	label = port->buf;
	msg = port->buf + 1;
71 72

	consume = snd_rawmidi_transmit_peek(substream, msg, 3);
73
	if (consume == 0)
74 75 76
		return 0;

	/* On exclusive message. */
77
	if (port->on_sysex) {
78
		/* Seek the end of exclusives. */
79 80
		for (i = 0; i < consume; ++i) {
			if (msg[i] == 0xf7) {
81
				port->on_sysex = false;
82 83 84 85 86
				break;
			}
		}

		/* At the end of exclusive message, use label 0x07. */
87
		if (!port->on_sysex) {
88
			consume = i + 1;
89
			*label = (substream->number << 4) | 0x07;
90
		/* During exclusive message, use label 0x04. */
91
		} else if (consume == 3) {
92
			*label = (substream->number << 4) | 0x04;
93 94
		/* We need to fill whole 3 bytes. Go to next change. */
		} else {
95
			return 0;
96
		}
97 98

		len = consume;
99 100
	} else {
		/* The beginning of exclusives. */
101
		if (msg[0] == 0xf0) {
102
			/* Transfer it in next chance in another condition. */
103
			port->on_sysex = true;
104 105 106
			return 0;
		} else {
			/* On running-status. */
107
			if ((msg[0] & 0x80) != 0x80)
108
				status = port->running_status;
109
			else
110
				status = msg[0];
111 112

			/* Calculate consume bytes. */
113 114
			len = calculate_message_bytes(status);
			if (len <= 0)
115 116 117
				return 0;

			/* On running-status. */
118
			if ((msg[0] & 0x80) != 0x80) {
119 120 121 122 123
				/* Enough MIDI bytes were not retrieved. */
				if (consume < len - 1)
					return 0;
				consume = len - 1;

124 125
				msg[2] = msg[1];
				msg[1] = msg[0];
126
				msg[0] = port->running_status;
127
			} else {
128 129 130 131 132
				/* Enough MIDI bytes were not retrieved. */
				if (consume < len)
					return 0;
				consume = len;

133
				port->running_status = msg[0];
134 135 136
			}
		}

137
		*label = (substream->number << 4) | (msg[0] >> 4);
138 139
	}

140 141 142
	if (len > 0 && len < 3)
		memset(msg + len, 0, 3 - len);

143
	return consume;
144 145
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static void async_midi_port_callback(struct fw_card *card, int rcode,
				     void *data, size_t length,
				     void *callback_data)
{
	struct snd_fw_async_midi_port *port = callback_data;
	struct snd_rawmidi_substream *substream = ACCESS_ONCE(port->substream);

	/* This port is closed. */
	if (substream == NULL)
		return;

	if (rcode == RCODE_COMPLETE)
		snd_rawmidi_transmit_ack(substream, port->consume_bytes);
	else if (!rcode_is_permanent_error(rcode))
		/* To start next transaction immediately for recovery. */
		port->next_ktime = 0;
	else
		/* Don't continue processing. */
		port->error = true;

	port->idling = true;

	if (!snd_rawmidi_transmit_empty(substream))
		schedule_work(&port->work);
}

static void midi_port_work(struct work_struct *work)
{
	struct snd_fw_async_midi_port *port =
			container_of(work, struct snd_fw_async_midi_port, work);
	struct snd_rawmidi_substream *substream = ACCESS_ONCE(port->substream);
	int generation;

	/* Under transacting or error state. */
	if (!port->idling || port->error)
		return;

	/* Nothing to do. */
	if (substream == NULL || snd_rawmidi_transmit_empty(substream))
		return;

	/* Do it in next chance. */
	if (ktime_after(port->next_ktime, ktime_get())) {
		schedule_work(&port->work);
		return;
	}

	/*
	 * Fill the buffer. The callee must use snd_rawmidi_transmit_peek().
	 * Later, snd_rawmidi_transmit_ack() is called.
	 */
197
	memset(port->buf, 0, 4);
198
	port->consume_bytes = fill_message(port, substream);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	if (port->consume_bytes <= 0) {
		/* Do it in next chance, immediately. */
		if (port->consume_bytes == 0) {
			port->next_ktime = 0;
			schedule_work(&port->work);
		} else {
			/* Fatal error. */
			port->error = true;
		}
		return;
	}

	/* Set interval to next transaction. */
	port->next_ktime = ktime_add_ns(ktime_get(),
				port->consume_bytes * 8 * NSEC_PER_SEC / 31250);

	/* Start this transaction. */
	port->idling = false;

	/*
	 * In Linux FireWire core, when generation is updated with memory
	 * barrier, node id has already been updated. In this module, After
	 * this smp_rmb(), load/store instructions to memory are completed.
	 * Thus, both of generation and node id are available with recent
	 * values. This is a light-serialization solution to handle bus reset
	 * events on IEEE 1394 bus.
	 */
	generation = port->parent->generation;
	smp_rmb();

229 230
	fw_send_request(port->parent->card, &port->transaction,
			TCODE_WRITE_QUADLET_REQUEST,
231
			port->parent->node_id, generation,
232 233
			port->parent->max_speed,
			TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_RX_QUAD,
234
			port->buf, 4, async_midi_port_callback,
235 236 237
			port);
}

238
void snd_fw_async_midi_port_init(struct snd_fw_async_midi_port *port)
239 240 241
{
	port->idling = true;
	port->error = false;
242 243
	port->running_status = 0;
	port->on_sysex = false;
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static void handle_midi_tx(struct fw_card *card, struct fw_request *request,
			   int tcode, int destination, int source,
			   int generation, unsigned long long offset,
			   void *data, size_t length, void *callback_data)
{
	struct snd_tscm *tscm = callback_data;
	u32 *buf = (u32 *)data;
	unsigned int messages;
	unsigned int i;
	unsigned int port;
	struct snd_rawmidi_substream *substream;
	u8 *b;
	int bytes;

	if (offset != tscm->async_handler.offset)
		goto end;

	messages = length / 8;
	for (i = 0; i < messages; i++) {
		b = (u8 *)(buf + i * 2);

		port = b[0] >> 4;
		/* TODO: support virtual MIDI ports. */
269
		if (port >= tscm->spec->midi_capture_ports)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
			goto end;

		/* Assume the message length. */
		bytes = calculate_message_bytes(b[1]);
		/* On MIDI data or exclusives. */
		if (bytes <= 0) {
			/* Seek the end of exclusives. */
			for (bytes = 1; bytes < 4; bytes++) {
				if (b[bytes] == 0xf7)
					break;
			}
			if (bytes == 4)
				bytes = 3;
		}

		substream = ACCESS_ONCE(tscm->tx_midi_substreams[port]);
		if (substream != NULL)
			snd_rawmidi_receive(substream, b + 1, bytes);
	}
end:
	fw_send_response(card, request, RCODE_COMPLETE);
}

int snd_tscm_transaction_register(struct snd_tscm *tscm)
{
	static const struct fw_address_region resp_register_region = {
		.start	= 0xffffe0000000ull,
		.end	= 0xffffe000ffffull,
	};
299
	unsigned int i;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	int err;

	/*
	 * Usually, two quadlets are transferred by one transaction. The first
	 * quadlet has MIDI messages, the rest includes timestamp.
	 * Sometimes, 8 set of the data is transferred by a block transaction.
	 */
	tscm->async_handler.length = 8 * 8;
	tscm->async_handler.address_callback = handle_midi_tx;
	tscm->async_handler.callback_data = tscm;

	err = fw_core_add_address_handler(&tscm->async_handler,
					  &resp_register_region);
	if (err < 0)
		return err;

	err = snd_tscm_transaction_reregister(tscm);
	if (err < 0)
318 319 320
		goto error;

	for (i = 0; i < TSCM_MIDI_OUT_PORT_MAX; i++) {
321 322 323
		tscm->out_ports[i].parent = fw_parent_device(tscm->unit);
		tscm->out_ports[i].next_ktime = 0;
		INIT_WORK(&tscm->out_ports[i].work, midi_port_work);
324
	}
325

326 327 328
	return err;
error:
	fw_core_remove_address_handler(&tscm->async_handler);
329
	tscm->async_handler.callback_data = NULL;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	return err;
}

/* At bus reset, these registers are cleared. */
int snd_tscm_transaction_reregister(struct snd_tscm *tscm)
{
	struct fw_device *device = fw_parent_device(tscm->unit);
	__be32 reg;
	int err;

	/* Register messaging address. Block transaction is not allowed. */
	reg = cpu_to_be32((device->card->node_id << 16) |
			  (tscm->async_handler.offset >> 32));
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				 TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
				 &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	reg = cpu_to_be32(tscm->async_handler.offset);
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				 TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
				 &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	/* Turn on messaging. */
	reg = cpu_to_be32(0x00000001);
358
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
359 360
				  TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
				  &reg, sizeof(reg), 0);
361 362 363 364 365 366 367 368
	if (err < 0)
		return err;

	/* Turn on FireWire LED. */
	reg = cpu_to_be32(0x0001008e);
	return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				  TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
				  &reg, sizeof(reg), 0);
369 370 371 372 373 374
}

void snd_tscm_transaction_unregister(struct snd_tscm *tscm)
{
	__be32 reg;

375 376 377
	if (tscm->async_handler.callback_data == NULL)
		return;

378 379 380 381 382 383
	/* Turn off FireWire LED. */
	reg = cpu_to_be32(0x0000008e);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
			   &reg, sizeof(reg), 0);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/* Turn off messaging. */
	reg = cpu_to_be32(0x00000000);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
			   &reg, sizeof(reg), 0);

	/* Unregister the address. */
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
			   &reg, sizeof(reg), 0);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
			   &reg, sizeof(reg), 0);

	fw_core_remove_address_handler(&tscm->async_handler);
399
	tscm->async_handler.callback_data = NULL;
400
}