x86.c 95.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
S
Sheng Yang 已提交
20
#include "i8254.h"
21
#include "tss.h"
22

23
#include <linux/clocksource.h>
24 25 26
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
27
#include <linux/module.h>
28
#include <linux/mman.h>
29
#include <linux/highmem.h>
30 31

#include <asm/uaccess.h>
32
#include <asm/msr.h>
33
#include <asm/desc.h>
34

35
#define MAX_IO_MSRS 256
36 37 38 39 40 41 42 43 44 45 46
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 48 49 50 51 52 53 54 55
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
56

57 58
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59

60 61 62
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

63 64
struct kvm_x86_ops *kvm_x86_ops;

65
struct kvm_stats_debugfs_item debugfs_entries[] = {
66 67 68 69 70 71 72 73 74 75 76
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
77
	{ "hypercalls", VCPU_STAT(hypercalls) },
78 79 80 81 82 83 84
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
85 86 87 88 89 90
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
91
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
92
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
93
	{ "largepages", VM_STAT(lpages) },
94 95 96 97
	{ NULL }
};


98 99 100
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
101
	struct desc_struct *d;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
117 118 119
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
120
#ifdef CONFIG_X86_64
121 122
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
123 124 125 126 127
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

128 129 130
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
131
		return vcpu->arch.apic_base;
132
	else
133
		return vcpu->arch.apic_base;
134 135 136 137 138 139 140 141 142
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
143
		vcpu->arch.apic_base = data;
144 145 146
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

147 148
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
149 150 151 152
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
153 154 155
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

156 157 158 159
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
160 161 162 163 164 165 166 167 168 169
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
170 171
		return;
	}
172
	vcpu->arch.cr2 = addr;
173 174 175
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

176 177
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
178 179 180 181 182
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
183 184 185 186 187
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
188 189 190
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
191 192
}

193 194 195 196 197 198 199 200 201
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
202
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

218
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
219 220 221 222
out:

	return ret;
}
223
EXPORT_SYMBOL_GPL(load_pdptrs);
224

225 226
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
227
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 229 230 231 232 233
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

234
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
235 236
	if (r < 0)
		goto out;
237
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
238 239 240 241 242
out:

	return changed;
}

243
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
244 245 246
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
247
		       cr0, vcpu->arch.cr0);
248
		kvm_inject_gp(vcpu, 0);
249 250 251 252 253
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
254
		kvm_inject_gp(vcpu, 0);
255 256 257 258 259 260
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
261
		kvm_inject_gp(vcpu, 0);
262 263 264 265 266
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
267
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
268 269 270 271 272
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
273
				kvm_inject_gp(vcpu, 0);
274 275 276 277 278 279
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
280
				kvm_inject_gp(vcpu, 0);
281 282 283 284 285
				return;

			}
		} else
#endif
286
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
287 288
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
289
			kvm_inject_gp(vcpu, 0);
290 291 292 293 294 295
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
296
	vcpu->arch.cr0 = cr0;
297 298 299 300

	kvm_mmu_reset_context(vcpu);
	return;
}
301
EXPORT_SYMBOL_GPL(kvm_set_cr0);
302

303
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
304
{
305
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
306 307 308
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
309
}
310
EXPORT_SYMBOL_GPL(kvm_lmsw);
311

312
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
313 314 315
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316
		kvm_inject_gp(vcpu, 0);
317 318 319 320 321 322 323
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
324
			kvm_inject_gp(vcpu, 0);
325 326 327
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330
		kvm_inject_gp(vcpu, 0);
331 332 333 334 335
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336
		kvm_inject_gp(vcpu, 0);
337 338 339
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
340
	vcpu->arch.cr4 = cr4;
341 342
	kvm_mmu_reset_context(vcpu);
}
343
EXPORT_SYMBOL_GPL(kvm_set_cr4);
344

345
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
346
{
347
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 349 350 351
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

352 353 354
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355
			kvm_inject_gp(vcpu, 0);
356 357 358 359 360 361 362
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
363
				kvm_inject_gp(vcpu, 0);
364 365 366 367 368
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
369
				kvm_inject_gp(vcpu, 0);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389
		kvm_inject_gp(vcpu, 0);
390
	else {
391 392
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
393 394
	}
}
395
EXPORT_SYMBOL_GPL(kvm_set_cr3);
396

397
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
398 399 400
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
401
		kvm_inject_gp(vcpu, 0);
402 403 404 405 406
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
407
		vcpu->arch.cr8 = cr8;
408
}
409
EXPORT_SYMBOL_GPL(kvm_set_cr8);
410

411
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
412 413 414 415
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
416
		return vcpu->arch.cr8;
417
}
418
EXPORT_SYMBOL_GPL(kvm_get_cr8);
419

420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
433
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
434
	MSR_IA32_PERF_STATUS,
435 436 437 438 439 440 441 442
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

443 444
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
445
	if (efer & efer_reserved_bits) {
446 447
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
448
		kvm_inject_gp(vcpu, 0);
449 450 451 452
		return;
	}

	if (is_paging(vcpu)
453
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
454
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
455
		kvm_inject_gp(vcpu, 0);
456 457 458 459 460 461
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
462
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
463

464
	vcpu->arch.shadow_efer = efer;
465 466
}

467 468 469 470 471 472 473
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


474 475 476 477 478 479 480 481 482 483
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

484 485 486 487 488 489 490 491
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

492 493 494
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
495 496
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
497 498 499 500 501 502 503 504

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

505 506 507 508 509 510 511 512 513 514 515 516 517
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
518 519 520 521 522 523 524

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

564 565 566 567 568 569 570 571 572 573
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

574 575 576 577 578
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

579 580 581 582 583 584 585 586 587 588 589 590 591 592
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
593
	 * state, we just increase by 2 at the end.
594
	 */
595
	vcpu->hv_clock.version += 2;
596 597 598 599

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
600
	       sizeof(vcpu->hv_clock));
601 602 603 604 605 606

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

607 608 609 610 611 612 613 614 615

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
616
		       __func__, data);
617 618 619
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
620
			__func__, data);
621
		break;
622 623
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
624
			__func__, data);
625
		break;
626 627 628 629 630 631 632 633
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
	case 0x200 ... 0x2ff: /* MTRRs */
		break;
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
634
		vcpu->arch.ia32_misc_enable_msr = data;
635
		break;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
668
	default:
669
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
700
	case MSR_IA32_MCG_CTL:
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		/* MTRR registers */
	case 0xfe:
	case 0x200 ... 0x2ff:
		data = 0;
		break;
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
720
		data = vcpu->arch.ia32_misc_enable_msr;
721
		break;
722 723 724 725 726 727
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
728
	case MSR_EFER:
729
		data = vcpu->arch.shadow_efer;
730
		break;
731 732 733 734 735 736
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
737 738 739 740 741 742 743 744 745
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

760
	down_read(&vcpu->kvm->slots_lock);
761 762 763
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
764
	up_read(&vcpu->kvm->slots_lock);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
 * cached on it.
 */
void decache_vcpus_on_cpu(int cpu)
{
	struct kvm *vm;
	struct kvm_vcpu *vcpu;
	int i;

	spin_lock(&kvm_lock);
	list_for_each_entry(vm, &vm_list, vm_list)
		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
			vcpu = vm->vcpus[i];
			if (!vcpu)
				continue;
			/*
			 * If the vcpu is locked, then it is running on some
			 * other cpu and therefore it is not cached on the
			 * cpu in question.
			 *
			 * If it's not locked, check the last cpu it executed
			 * on.
			 */
			if (mutex_trylock(&vcpu->mutex)) {
				if (vcpu->cpu == cpu) {
					kvm_x86_ops->vcpu_decache(vcpu);
					vcpu->cpu = -1;
				}
				mutex_unlock(&vcpu->mutex);
			}
		}
	spin_unlock(&kvm_lock);
}

855 856 857 858 859 860 861 862 863 864
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
865
	case KVM_CAP_EXT_CPUID:
866
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
867
	case KVM_CAP_PIT:
868
	case KVM_CAP_NOP_IO_DELAY:
869
	case KVM_CAP_MP_STATE:
870 871
		r = 1;
		break;
872 873 874
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
875 876 877
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
878 879 880
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
881 882 883
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
884 885 886 887 888 889 890 891
	default:
		r = 0;
		break;
	}
	return r;

}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
944 945 946 947 948 949 950
	default:
		r = -EINVAL;
	}
out:
	return r;
}

951 952 953
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
954
	kvm_write_guest_time(vcpu);
955 956 957 958 959
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
960
	kvm_put_guest_fpu(vcpu);
961 962
}

963
static int is_efer_nx(void)
964 965 966 967
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
968 969 970 971 972 973 974 975
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

976
	entry = NULL;
977 978
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
979 980 981 982 983
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
984
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
985 986 987 988 989
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

990
/* when an old userspace process fills a new kernel module */
991 992 993
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1034 1035 1036 1037 1038 1039 1040
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1041
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1042
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1043
		goto out;
1044
	vcpu->arch.cpuid_nent = cpuid->nent;
1045 1046 1047 1048 1049 1050
	return 0;

out:
	return r;
}

1051 1052 1053 1054 1055 1056 1057
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1058
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1059 1060
		goto out;
	r = -EFAULT;
1061 1062
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1063 1064 1065 1066
		goto out;
	return 0;

out:
1067
	cpuid->nent = vcpu->arch.cpuid_nent;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1150
		int i, cache_type;
1151 1152 1153

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1154 1155
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1156 1157
			if (!cache_type)
				break;
1158 1159
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1160 1161 1162 1163 1164 1165
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1166
		int i, level_type;
1167 1168 1169

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1170 1171
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1172 1173
			if (!level_type)
				break;
1174 1175
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1192
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1233 1234 1235 1236
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1237
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1238 1239 1240 1241 1242 1243 1244 1245 1246
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1247
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1248 1249 1250 1251 1252 1253
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1263 1264
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1265 1266 1267 1268 1269 1270

	vcpu_put(vcpu);

	return 0;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1367 1368 1369 1370 1371 1372
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1401 1402 1403 1404 1405 1406 1407
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1424
	down_write(&kvm->slots_lock);
1425 1426

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1427
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1428

1429
	up_write(&kvm->slots_lock);
1430 1431 1432 1433 1434
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1435
	return kvm->arch.n_alloc_mmu_pages;
1436 1437
}

1438 1439 1440 1441 1442
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1443 1444
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1445 1446 1447 1448 1449 1450 1451
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1478
	down_write(&kvm->slots_lock);
1479

1480
	p = &kvm->arch.aliases[alias->slot];
1481 1482 1483 1484 1485
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1486
		if (kvm->arch.aliases[n - 1].npages)
1487
			break;
1488
	kvm->arch.naliases = n;
1489 1490 1491

	kvm_mmu_zap_all(kvm);

1492
	up_write(&kvm->slots_lock);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1585
	down_write(&kvm->slots_lock);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1601
	up_write(&kvm->slots_lock);
1602 1603 1604
	return r;
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1655 1656
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1657 1658
			r = kvm_ioapic_init(kvm);
			if (r) {
1659 1660
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1661 1662 1663 1664 1665
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1666 1667 1668 1669 1670 1671
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1684
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	case KVM_GET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit(kvm, &ps);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &ps, sizeof ps))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit(kvm, &ps);
		if (r)
			goto out;
		r = 0;
		break;
	}
1758 1759 1760 1761 1762 1763 1764
	default:
		;
	}
out:
	return r;
}

1765
static void kvm_init_msr_list(void)
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1780 1781 1782 1783 1784 1785 1786 1787
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

1788 1789
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		if (dev->in_range(dev, addr))
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

	dev = vcpu_find_pervcpu_dev(vcpu, addr);
	if (dev == NULL)
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1814
	int r = X86EMUL_CONTINUE;
1815 1816

	while (bytes) {
1817
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1818 1819 1820 1821
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1822 1823 1824 1825
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1826
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1827 1828 1829 1830
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1831 1832 1833 1834 1835

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1836 1837
out:
	return r;
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1855
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1871
	mutex_lock(&vcpu->kvm->lock);
1872 1873 1874
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1875
		mutex_unlock(&vcpu->kvm->lock);
1876 1877
		return X86EMUL_CONTINUE;
	}
1878
	mutex_unlock(&vcpu->kvm->lock);
1879 1880 1881 1882 1883 1884 1885 1886 1887

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

1888
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1889
			  const void *val, int bytes)
1890 1891 1892 1893
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1894
	if (ret < 0)
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1906 1907 1908
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1909 1910

	if (gpa == UNMAPPED_GVA) {
1911
		kvm_inject_page_fault(vcpu, addr, 2);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1926
	mutex_lock(&vcpu->kvm->lock);
1927 1928 1929
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1930
		mutex_unlock(&vcpu->kvm->lock);
1931 1932
		return X86EMUL_CONTINUE;
	}
1933
	mutex_unlock(&vcpu->kvm->lock);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
1977 1978 1979
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
1980
		gpa_t gpa;
1981
		struct page *page;
A
Andrew Morton 已提交
1982
		char *kaddr;
1983 1984
		u64 val;

1985 1986
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

1987 1988 1989 1990 1991 1992 1993 1994
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
1995 1996

		down_read(&current->mm->mmap_sem);
1997
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1998 1999
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2000 2001 2002
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2003 2004
		kvm_release_page_dirty(page);
	}
2005
emul_write:
2006 2007
#endif

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
2023
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2036
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	static int reported;
	u8 opcodes[4];
2058
	unsigned long rip = vcpu->arch.rip;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	unsigned long rip_linear;

	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

	if (reported)
		return;

	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
	reported = 1;
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2074
static struct x86_emulate_ops emulate_ops = {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2085
			int emulation_type)
2086 2087
{
	int r;
2088
	struct decode_cache *c;
2089

2090
	vcpu->arch.mmio_fault_cr2 = cr2;
2091 2092 2093
	kvm_x86_ops->cache_regs(vcpu);

	vcpu->mmio_is_write = 0;
2094
	vcpu->arch.pio.string = 0;
2095

2096
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2097 2098 2099
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2100 2101 2102 2103
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2104 2105 2106 2107
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2108 2109 2110 2111 2112
		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
			vcpu->arch.emulate_ctxt.cs_base = 0;
			vcpu->arch.emulate_ctxt.ds_base = 0;
			vcpu->arch.emulate_ctxt.es_base = 0;
			vcpu->arch.emulate_ctxt.ss_base = 0;
2113
		} else {
2114
			vcpu->arch.emulate_ctxt.cs_base =
2115
					get_segment_base(vcpu, VCPU_SREG_CS);
2116
			vcpu->arch.emulate_ctxt.ds_base =
2117
					get_segment_base(vcpu, VCPU_SREG_DS);
2118
			vcpu->arch.emulate_ctxt.es_base =
2119
					get_segment_base(vcpu, VCPU_SREG_ES);
2120
			vcpu->arch.emulate_ctxt.ss_base =
2121 2122 2123
					get_segment_base(vcpu, VCPU_SREG_SS);
		}

2124
		vcpu->arch.emulate_ctxt.gs_base =
2125
					get_segment_base(vcpu, VCPU_SREG_GS);
2126
		vcpu->arch.emulate_ctxt.fs_base =
2127 2128
					get_segment_base(vcpu, VCPU_SREG_FS);

2129
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2140
		++vcpu->stat.insn_emulation;
2141
		if (r)  {
2142
			++vcpu->stat.insn_emulation_fail;
2143 2144 2145 2146 2147 2148
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2149
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2150

2151
	if (vcpu->arch.pio.string)
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

	kvm_x86_ops->decache_regs(vcpu);
2173
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2184 2185 2186 2187
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2188 2189 2190 2191
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2192 2193 2194 2195 2196
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2197
	void *p = vcpu->arch.pio_data;
2198 2199
	void *q;
	unsigned bytes;
2200
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2201

2202
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2203 2204 2205 2206 2207
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2208 2209 2210
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2211 2212 2213
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2214
	q -= vcpu->arch.pio.guest_page_offset;
2215 2216 2217 2218 2219 2220 2221
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2222
	struct kvm_pio_request *io = &vcpu->arch.pio;
2223 2224 2225 2226 2227 2228 2229
	long delta;
	int r;

	kvm_x86_ops->cache_regs(vcpu);

	if (!io->string) {
		if (io->in)
2230
			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
			       io->size);
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
			if (r) {
				kvm_x86_ops->cache_regs(vcpu);
				return r;
			}
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2248
			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2249 2250 2251 2252 2253
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
		if (io->in)
2254
			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2255
		else
2256
			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	}

	kvm_x86_ops->decache_regs(vcpu);

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2274 2275 2276
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2277 2278
				  pd);
	else
2279 2280
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2281 2282 2283 2284 2285 2286 2287
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2288 2289
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
					       gpa_t addr)
{
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2315
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2316
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2317 2318 2319 2320 2321 2322 2323
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2324

F
Feng (Eric) Liu 已提交
2325 2326 2327 2328 2329 2330 2331
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2332
	kvm_x86_ops->cache_regs(vcpu);
2333
	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2334 2335 2336 2337 2338 2339
	kvm_x86_ops->decache_regs(vcpu);

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	pio_dev = vcpu_find_pio_dev(vcpu, port);
	if (pio_dev) {
2340
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2360
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2361
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2362 2363 2364 2365 2366 2367 2368
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2369

F
Feng (Eric) Liu 已提交
2370 2371 2372 2373 2374 2375 2376
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2401
		kvm_inject_gp(vcpu, 0);
2402 2403 2404
		return 1;
	}
	vcpu->run->io.count = now;
2405
	vcpu->arch.pio.cur_count = now;
2406

2407
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2408 2409 2410 2411
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2412
		vcpu->arch.pio.guest_pages[i] = page;
2413
		if (!page) {
2414
			kvm_inject_gp(vcpu, 0);
2415 2416 2417 2418 2419 2420
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

	pio_dev = vcpu_find_pio_dev(vcpu, port);
2421
	if (!vcpu->arch.pio.in) {
2422 2423 2424 2425 2426
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2427
			if (vcpu->arch.pio.count == 0)
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2439
int kvm_arch_init(void *opaque)
2440
{
2441
	int r;
2442 2443 2444 2445
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2446 2447
		r = -EEXIST;
		goto out;
2448 2449 2450 2451
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2452 2453
		r = -EOPNOTSUPP;
		goto out;
2454 2455 2456
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2457 2458
		r = -EOPNOTSUPP;
		goto out;
2459 2460
	}

2461 2462 2463 2464 2465 2466
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2467
	kvm_x86_ops = ops;
2468
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2469 2470 2471
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2472
	return 0;
2473 2474 2475

out:
	return r;
2476
}
2477

2478 2479 2480
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2481 2482
	kvm_mmu_module_exit();
}
2483

2484 2485 2486
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2487
	KVMTRACE_0D(HLT, vcpu, handler);
2488
	if (irqchip_in_kernel(vcpu->kvm)) {
2489
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2490
		up_read(&vcpu->kvm->slots_lock);
2491
		kvm_vcpu_block(vcpu);
2492
		down_read(&vcpu->kvm->slots_lock);
2493
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2494 2495 2496 2497 2498 2499 2500 2501 2502
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2503 2504 2505 2506 2507 2508 2509 2510 2511
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2512 2513 2514
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2515
	int r = 1;
2516 2517 2518

	kvm_x86_ops->cache_regs(vcpu);

2519 2520 2521 2522 2523
	nr = vcpu->arch.regs[VCPU_REGS_RAX];
	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2524

F
Feng (Eric) Liu 已提交
2525 2526
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2527 2528 2529 2530 2531 2532 2533 2534 2535
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2536 2537 2538
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2539 2540 2541
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2542 2543 2544 2545
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2546
	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2547
	kvm_x86_ops->decache_regs(vcpu);
A
Amit Shah 已提交
2548
	++vcpu->stat.hypercalls;
2549
	return r;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->cache_regs(vcpu);
	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2568
	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2597
	kvm_lmsw(vcpu, msw);
2598 2599 2600 2601 2602 2603 2604 2605
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
2606
		return vcpu->arch.cr0;
2607
	case 2:
2608
		return vcpu->arch.cr2;
2609
	case 3:
2610
		return vcpu->arch.cr3;
2611
	case 4:
2612
		return vcpu->arch.cr4;
2613
	case 8:
2614
		return kvm_get_cr8(vcpu);
2615
	default:
2616
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2617 2618 2619 2620 2621 2622 2623 2624 2625
		return 0;
	}
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
	switch (cr) {
	case 0:
2626
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2627 2628 2629
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2630
		vcpu->arch.cr2 = val;
2631 2632
		break;
	case 3:
2633
		kvm_set_cr3(vcpu, val);
2634 2635
		break;
	case 4:
2636
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2637
		break;
2638
	case 8:
2639
		kvm_set_cr8(vcpu, val & 0xfUL);
2640
		break;
2641
	default:
2642
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2643 2644 2645
	}
}

2646 2647
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2648 2649
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2650 2651 2652 2653

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2654
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2678 2679 2680
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2681 2682
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2683 2684

	kvm_x86_ops->cache_regs(vcpu);
2685 2686 2687 2688 2689 2690
	function = vcpu->arch.regs[VCPU_REGS_RAX];
	index = vcpu->arch.regs[VCPU_REGS_RCX];
	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2691
	best = NULL;
2692 2693
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2694 2695 2696
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2708 2709 2710 2711
		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2712 2713 2714
	}
	kvm_x86_ops->decache_regs(vcpu);
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
2715 2716 2717 2718 2719
	KVMTRACE_5D(CPUID, vcpu, function,
		    (u32)vcpu->arch.regs[VCPU_REGS_RAX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RBX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RCX],
		    (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2720 2721
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2732
	return (!vcpu->arch.irq_summary &&
2733
		kvm_run->request_interrupt_window &&
2734
		vcpu->arch.interrupt_window_open &&
2735 2736 2737 2738 2739 2740 2741
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2742
	kvm_run->cr8 = kvm_get_cr8(vcpu);
2743 2744 2745 2746 2747
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2748 2749
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2750 2751
}

A
Avi Kivity 已提交
2752 2753 2754 2755 2756 2757 2758 2759
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2760
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2761
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2762
	up_read(&current->mm->mmap_sem);
2763 2764

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}

2778 2779 2780 2781
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2782
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2783
		pr_debug("vcpu %d received sipi with vector # %x\n",
2784
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2785 2786 2787 2788
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2789
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2790 2791
	}

2792
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2793 2794
	vapic_enter(vcpu);

2795 2796 2797 2798 2799
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2800 2801 2802 2803
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2804 2805 2806 2807
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2808 2809
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
2810
			__kvm_migrate_timers(vcpu);
2811 2812
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
2813 2814 2815 2816 2817 2818
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
2819 2820 2821 2822 2823
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
2824
	}
A
Avi Kivity 已提交
2825

2826
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2827 2828 2829 2830 2831 2832 2833 2834 2835
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2836
	if (vcpu->requests || need_resched()) {
2837 2838 2839 2840 2841 2842
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2843 2844 2845 2846 2847 2848 2849 2850 2851
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2852 2853 2854 2855 2856 2857 2858
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

2859
	if (vcpu->arch.exception.pending)
2860 2861
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2862
		kvm_x86_ops->inject_pending_irq(vcpu);
2863
	else
2864 2865
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2866 2867
	kvm_lapic_sync_to_vapic(vcpu);

2868 2869
	up_read(&vcpu->kvm->slots_lock);

2870 2871 2872
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
2873
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

2893 2894
	down_read(&vcpu->kvm->slots_lock);

2895 2896 2897 2898 2899
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
		kvm_x86_ops->cache_regs(vcpu);
2900
		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2901 2902
	}

2903 2904
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2905

A
Avi Kivity 已提交
2906 2907
	kvm_lapic_sync_from_vapic(vcpu);

2908 2909 2910 2911 2912 2913 2914 2915 2916
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2917
		if (!need_resched())
2918 2919 2920 2921
			goto again;
	}

out:
2922
	up_read(&vcpu->kvm->slots_lock);
2923 2924
	if (r > 0) {
		kvm_resched(vcpu);
2925
		down_read(&vcpu->kvm->slots_lock);
2926 2927 2928 2929 2930
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

2931
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2932
	vapic_exit(vcpu);
2933
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2945
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		kvm_vcpu_block(vcpu);
		vcpu_put(vcpu);
		return -EAGAIN;
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
2956
		kvm_set_cr8(vcpu, kvm_run->cr8);
2957

2958
	if (vcpu->arch.pio.cur_count) {
2959 2960 2961 2962 2963 2964 2965 2966 2967
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
2968 2969

		down_read(&vcpu->kvm->slots_lock);
2970
		r = emulate_instruction(vcpu, kvm_run,
2971 2972
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
2973
		up_read(&vcpu->kvm->slots_lock);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
		kvm_x86_ops->cache_regs(vcpu);
2985
		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		kvm_x86_ops->decache_regs(vcpu);
	}

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

	kvm_x86_ops->cache_regs(vcpu);

3005 3006 3007 3008 3009 3010 3011 3012
	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3013
#ifdef CONFIG_X86_64
3014 3015 3016 3017 3018 3019 3020 3021
	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3022 3023
#endif

3024
	regs->rip = vcpu->arch.rip;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3042 3043 3044 3045 3046 3047 3048 3049
	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3050
#ifdef CONFIG_X86_64
3051 3052 3053 3054 3055 3056 3057 3058
	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3059 3060
#endif

3061
	vcpu->arch.rip = regs->rip;
3062 3063 3064 3065
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);

	kvm_x86_ops->decache_regs(vcpu);

3066 3067
	vcpu->arch.exception.pending = false;

3068 3069 3070 3071 3072 3073 3074 3075
	vcpu_put(vcpu);

	return 0;
}

static void get_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
3076
	kvm_x86_ops->get_segment(vcpu, var, seg);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

	get_segment(vcpu, &cs, VCPU_SREG_CS);
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

	get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3115 3116 3117 3118
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3119
	sregs->cr8 = kvm_get_cr8(vcpu);
3120
	sregs->efer = vcpu->arch.shadow_efer;
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3131
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3132 3133 3134 3135 3136 3137 3138
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3157 3158 3159
static void set_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
3160
	kvm_x86_ops->set_segment(vcpu, var, seg);
3161 3162
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

		get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
	return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
	return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

	return base_addr;
}

static int load_tss_segment32(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_32 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_read_guest(vcpu->kvm, base_addr, tss,
			      sizeof(struct tss_segment_32));
}

static int save_tss_segment32(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_32 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_write_guest(vcpu->kvm, base_addr, tss,
			       sizeof(struct tss_segment_32));
}

static int load_tss_segment16(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_16 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_read_guest(vcpu->kvm, base_addr, tss,
			      sizeof(struct tss_segment_16));
}

static int save_tss_segment16(struct kvm_vcpu *vcpu,
			      struct desc_struct *seg_desc,
			      struct tss_segment_16 *tss)
{
	u32 base_addr;

	base_addr = get_tss_base_addr(vcpu, seg_desc);

	return kvm_write_guest(vcpu->kvm, base_addr, tss,
			       sizeof(struct tss_segment_16));
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

	get_segment(vcpu, &kvm_seg, seg);
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				   int type_bits, int seg)
{
	struct kvm_segment kvm_seg;

	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

	set_segment(vcpu, &kvm_seg, seg);
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
	tss->eip = vcpu->arch.rip;
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
	tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
	tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
	tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
	tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
	tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
	tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
	tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
	tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

	vcpu->arch.rip = tss->eip;
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

	vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
	vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
	vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
	vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
	vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
	vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
	vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
	vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;

	if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
		return 1;

	if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
		return 1;

	if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
	tss->ip = vcpu->arch.rip;
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
	tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
	tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
	tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
	tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
	tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
	tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
	tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
	tss->di = vcpu->arch.regs[VCPU_REGS_RDI];

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
	vcpu->arch.rip = tss->ip;
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
	vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
	vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
	vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
	vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
	vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
	vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
	vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
	vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;

	if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
		return 1;

	if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
		return 1;

	if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
		return 1;

	if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
		return 1;
	return 0;
}

int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
		       struct desc_struct *cseg_desc,
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

	if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);
	save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);

	if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
		goto out;
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
		       struct desc_struct *cseg_desc,
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

	if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);
	save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);

	if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
		goto out;
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;

	get_segment(vcpu, &tr_seg, VCPU_SREG_TR);

	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

	if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
		goto out;


	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3530
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
		save_guest_segment_descriptor(vcpu, tr_seg.selector,
					      &cseg_desc);
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);
	kvm_x86_ops->cache_regs(vcpu);

	if (nseg_desc.type & 8)
		ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
					 &nseg_desc);
	else
		ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3556
		nseg_desc.type |= (1 << 1);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
	set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
out:
	kvm_x86_ops->decache_regs(vcpu);
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3587 3588 3589
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3590

3591
	kvm_set_cr8(vcpu, sregs->cr8);
3592

3593
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3594 3595 3596 3597 3598
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3599
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3600
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3601
	vcpu->arch.cr0 = sregs->cr0;
3602

3603
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3604 3605
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3606
		load_pdptrs(vcpu, vcpu->arch.cr3);
3607 3608 3609 3610 3611

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3612 3613 3614 3615 3616 3617
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

	set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3691
	down_read(&vcpu->kvm->slots_lock);
3692
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3693
	up_read(&vcpu->kvm->slots_lock);
3694 3695 3696 3697 3698 3699 3700 3701 3702
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3703 3704
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3705
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3725
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

3747 3748 3749 3750 3751 3752 3753 3754 3755
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
		fx_save(&vcpu->arch.host_fx_image);

3756 3757
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3758
	fx_save(&vcpu->arch.host_fx_image);
3759
	fx_finit();
3760 3761
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
3762 3763
	preempt_enable();

3764
	vcpu->arch.cr0 |= X86_CR0_ET;
3765
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3766 3767
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3778 3779
	fx_save(&vcpu->arch.host_fx_image);
	fx_restore(&vcpu->arch.guest_fx_image);
3780 3781 3782 3783 3784 3785 3786 3787 3788
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3789 3790
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3791
	++vcpu->stat.fpu_reload;
3792 3793
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3794 3795 3796 3797 3798 3799 3800 3801 3802

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3803 3804
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3805

3806 3807 3808
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3809 3810

	/* We do fxsave: this must be aligned. */
3811
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3812 3813 3814 3815 3816 3817 3818 3819 3820

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3821
	return 0;
3822 3823
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3824
	return r;
3825 3826
}

3827
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3875
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3876
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3877
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3878
	else
3879
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3880 3881 3882 3883 3884 3885

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3886
	vcpu->arch.pio_data = page_address(page);
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3903
	free_page((unsigned long)vcpu->arch.pio_data);
3904 3905 3906 3907 3908 3909 3910
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
3911
	down_read(&vcpu->kvm->slots_lock);
3912
	kvm_mmu_destroy(vcpu);
3913
	up_read(&vcpu->kvm->slots_lock);
3914
	free_page((unsigned long)vcpu->arch.pio_data);
3915
}
3916 3917 3918 3919 3920 3921 3922 3923

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3924
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
S
Sheng Yang 已提交
3957
	kvm_free_pit(kvm);
3958 3959
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3960 3961
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
3962 3963
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
3964 3965
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
3966 3967
	kfree(kvm);
}
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
3982
			down_write(&current->mm->mmap_sem);
3983 3984 3985 3986 3987
			memslot->userspace_addr = do_mmap(NULL, 0,
						     npages * PAGE_SIZE,
						     PROT_READ | PROT_WRITE,
						     MAP_SHARED | MAP_ANONYMOUS,
						     0);
3988
			up_write(&current->mm->mmap_sem);
3989 3990 3991 3992 3993 3994 3995

			if (IS_ERR((void *)memslot->userspace_addr))
				return PTR_ERR((void *)memslot->userspace_addr);
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

3996
				down_write(&current->mm->mmap_sem);
3997 3998
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
3999
				up_write(&current->mm->mmap_sem);
4000 4001 4002 4003 4004 4005 4006 4007
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4008
	if (!kvm->arch.n_requested_mmu_pages) {
4009 4010 4011 4012 4013 4014 4015 4016 4017
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4018 4019 4020

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4021 4022
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4023
}
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4036
	int cpu = get_cpu();
4037 4038 4039 4040 4041

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4042 4043 4044 4045 4046
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4047
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4048
	put_cpu();
4049
}