crypto.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * This contains encryption functions for per-file encryption.
 *
 * Copyright (C) 2015, Google, Inc.
 * Copyright (C) 2015, Motorola Mobility
 *
 * Written by Michael Halcrow, 2014.
 *
 * Filename encryption additions
 *	Uday Savagaonkar, 2014
 * Encryption policy handling additions
 *	Ildar Muslukhov, 2014
 * Add fscrypt_pullback_bio_page()
 *	Jaegeuk Kim, 2015.
 *
 * This has not yet undergone a rigorous security audit.
 *
 * The usage of AES-XTS should conform to recommendations in NIST
 * Special Publication 800-38E and IEEE P1619/D16.
 */

#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <linux/bio.h>
#include <linux/dcache.h>
29
#include <linux/namei.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include <linux/fscrypto.h>

static unsigned int num_prealloc_crypto_pages = 32;
static unsigned int num_prealloc_crypto_ctxs = 128;

module_param(num_prealloc_crypto_pages, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_pages,
		"Number of crypto pages to preallocate");
module_param(num_prealloc_crypto_ctxs, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
		"Number of crypto contexts to preallocate");

static mempool_t *fscrypt_bounce_page_pool = NULL;

static LIST_HEAD(fscrypt_free_ctxs);
static DEFINE_SPINLOCK(fscrypt_ctx_lock);

static struct workqueue_struct *fscrypt_read_workqueue;
static DEFINE_MUTEX(fscrypt_init_mutex);

static struct kmem_cache *fscrypt_ctx_cachep;
struct kmem_cache *fscrypt_info_cachep;

/**
 * fscrypt_release_ctx() - Releases an encryption context
 * @ctx: The encryption context to release.
 *
 * If the encryption context was allocated from the pre-allocated pool, returns
 * it to that pool. Else, frees it.
 *
 * If there's a bounce page in the context, this frees that.
 */
void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
{
	unsigned long flags;

	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
		ctx->w.bounce_page = NULL;
	}
	ctx->w.control_page = NULL;
	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
		kmem_cache_free(fscrypt_ctx_cachep, ctx);
	} else {
		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
	}
}
EXPORT_SYMBOL(fscrypt_release_ctx);

/**
 * fscrypt_get_ctx() - Gets an encryption context
 * @inode:       The inode for which we are doing the crypto
84
 * @gfp_flags:   The gfp flag for memory allocation
85 86 87 88 89 90
 *
 * Allocates and initializes an encryption context.
 *
 * Return: An allocated and initialized encryption context on success; error
 * value or NULL otherwise.
 */
91
struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
	struct fscrypt_ctx *ctx = NULL;
	struct fscrypt_info *ci = inode->i_crypt_info;
	unsigned long flags;

	if (ci == NULL)
		return ERR_PTR(-ENOKEY);

	/*
	 * We first try getting the ctx from a free list because in
	 * the common case the ctx will have an allocated and
	 * initialized crypto tfm, so it's probably a worthwhile
	 * optimization. For the bounce page, we first try getting it
	 * from the kernel allocator because that's just about as fast
	 * as getting it from a list and because a cache of free pages
	 * should generally be a "last resort" option for a filesystem
	 * to be able to do its job.
	 */
	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
					struct fscrypt_ctx, free_list);
	if (ctx)
		list_del(&ctx->free_list);
	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
	if (!ctx) {
117
		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
118 119 120 121 122 123 124 125 126 127 128 129
		if (!ctx)
			return ERR_PTR(-ENOMEM);
		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
	} else {
		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
	}
	ctx->flags &= ~FS_WRITE_PATH_FL;
	return ctx;
}
EXPORT_SYMBOL(fscrypt_get_ctx);

/**
130 131 132
 * page_crypt_complete() - completion callback for page crypto
 * @req: The asynchronous cipher request context
 * @res: The result of the cipher operation
133
 */
134
static void page_crypt_complete(struct crypto_async_request *req, int res)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
{
	struct fscrypt_completion_result *ecr = req->data;

	if (res == -EINPROGRESS)
		return;
	ecr->res = res;
	complete(&ecr->completion);
}

typedef enum {
	FS_DECRYPT = 0,
	FS_ENCRYPT,
} fscrypt_direction_t;

static int do_page_crypto(struct inode *inode,
			fscrypt_direction_t rw, pgoff_t index,
151 152
			struct page *src_page, struct page *dest_page,
			gfp_t gfp_flags)
153
{
154 155 156 157
	struct {
		__le64 index;
		u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
	} xts_tweak;
158
	struct skcipher_request *req = NULL;
159 160 161
	DECLARE_FS_COMPLETION_RESULT(ecr);
	struct scatterlist dst, src;
	struct fscrypt_info *ci = inode->i_crypt_info;
162
	struct crypto_skcipher *tfm = ci->ci_ctfm;
163 164
	int res = 0;

165
	req = skcipher_request_alloc(tfm, gfp_flags);
166 167 168 169 170 171 172
	if (!req) {
		printk_ratelimited(KERN_ERR
				"%s: crypto_request_alloc() failed\n",
				__func__);
		return -ENOMEM;
	}

173
	skcipher_request_set_callback(
174
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
175
		page_crypt_complete, &ecr);
176

177 178 179
	BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
	xts_tweak.index = cpu_to_le64(index);
	memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
180 181

	sg_init_table(&dst, 1);
182
	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
183
	sg_init_table(&src, 1);
184
	sg_set_page(&src, src_page, PAGE_SIZE, 0);
185
	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, &xts_tweak);
186
	if (rw == FS_DECRYPT)
187
		res = crypto_skcipher_decrypt(req);
188
	else
189
		res = crypto_skcipher_encrypt(req);
190 191 192 193 194
	if (res == -EINPROGRESS || res == -EBUSY) {
		BUG_ON(req->base.data != &ecr);
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
195
	skcipher_request_free(req);
196 197
	if (res) {
		printk_ratelimited(KERN_ERR
198
			"%s: crypto_skcipher_encrypt() returned %d\n",
199 200 201 202 203 204
			__func__, res);
		return res;
	}
	return 0;
}

205
static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
206
{
207
	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208 209 210 211 212 213 214 215 216 217
	if (ctx->w.bounce_page == NULL)
		return ERR_PTR(-ENOMEM);
	ctx->flags |= FS_WRITE_PATH_FL;
	return ctx->w.bounce_page;
}

/**
 * fscypt_encrypt_page() - Encrypts a page
 * @inode:          The inode for which the encryption should take place
 * @plaintext_page: The page to encrypt. Must be locked.
218
 * @gfp_flags:      The gfp flag for memory allocation
219
 *
220 221 222
 * Encrypts plaintext_page using the ctx encryption context. If
 * the filesystem supports it, encryption is performed in-place, otherwise a
 * new ciphertext_page is allocated and returned.
223 224 225 226 227 228 229 230 231
 *
 * Called on the page write path.  The caller must call
 * fscrypt_restore_control_page() on the returned ciphertext page to
 * release the bounce buffer and the encryption context.
 *
 * Return: An allocated page with the encrypted content on success. Else, an
 * error value or NULL.
 */
struct page *fscrypt_encrypt_page(struct inode *inode,
232
				struct page *plaintext_page, gfp_t gfp_flags)
233 234
{
	struct fscrypt_ctx *ctx;
235
	struct page *ciphertext_page = plaintext_page;
236 237 238 239
	int err;

	BUG_ON(!PageLocked(plaintext_page));

240
	ctx = fscrypt_get_ctx(inode, gfp_flags);
241 242 243
	if (IS_ERR(ctx))
		return (struct page *)ctx;

244 245 246 247 248 249
	if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
		/* The encryption operation will require a bounce page. */
		ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
		if (IS_ERR(ciphertext_page))
			goto errout;
	}
250 251 252

	ctx->w.control_page = plaintext_page;
	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
253 254
					plaintext_page, ciphertext_page,
					gfp_flags);
255 256 257 258
	if (err) {
		ciphertext_page = ERR_PTR(err);
		goto errout;
	}
259 260 261 262 263
	if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
		SetPagePrivate(ciphertext_page);
		set_page_private(ciphertext_page, (unsigned long)ctx);
		lock_page(ciphertext_page);
	}
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	return ciphertext_page;

errout:
	fscrypt_release_ctx(ctx);
	return ciphertext_page;
}
EXPORT_SYMBOL(fscrypt_encrypt_page);

/**
 * f2crypt_decrypt_page() - Decrypts a page in-place
 * @page: The page to decrypt. Must be locked.
 *
 * Decrypts page in-place using the ctx encryption context.
 *
 * Called from the read completion callback.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int fscrypt_decrypt_page(struct page *page)
{
	BUG_ON(!PageLocked(page));

	return do_page_crypto(page->mapping->host,
287
			FS_DECRYPT, page->index, page, page, GFP_NOFS);
288 289 290 291 292 293 294 295 296 297 298
}
EXPORT_SYMBOL(fscrypt_decrypt_page);

int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
				sector_t pblk, unsigned int len)
{
	struct fscrypt_ctx *ctx;
	struct page *ciphertext_page = NULL;
	struct bio *bio;
	int ret, err = 0;

299
	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
300

301
	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
302 303 304
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

305
	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
306 307 308 309 310 311 312
	if (IS_ERR(ciphertext_page)) {
		err = PTR_ERR(ciphertext_page);
		goto errout;
	}

	while (len--) {
		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
313 314
					ZERO_PAGE(0), ciphertext_page,
					GFP_NOFS);
315 316 317
		if (err)
			goto errout;

318
		bio = bio_alloc(GFP_NOWAIT, 1);
319 320 321 322 323 324 325
		if (!bio) {
			err = -ENOMEM;
			goto errout;
		}
		bio->bi_bdev = inode->i_sb->s_bdev;
		bio->bi_iter.bi_sector =
			pblk << (inode->i_sb->s_blocksize_bits - 9);
326
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
327 328 329 330 331 332 333 334 335
		ret = bio_add_page(bio, ciphertext_page,
					inode->i_sb->s_blocksize, 0);
		if (ret != inode->i_sb->s_blocksize) {
			/* should never happen! */
			WARN_ON(1);
			bio_put(bio);
			err = -EIO;
			goto errout;
		}
336
		err = submit_bio_wait(bio);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		if ((err == 0) && bio->bi_error)
			err = -EIO;
		bio_put(bio);
		if (err)
			goto errout;
		lblk++;
		pblk++;
	}
	err = 0;
errout:
	fscrypt_release_ctx(ctx);
	return err;
}
EXPORT_SYMBOL(fscrypt_zeroout_range);

/*
 * Validate dentries for encrypted directories to make sure we aren't
 * potentially caching stale data after a key has been added or
 * removed.
 */
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
{
359 360
	struct dentry *dir;
	struct fscrypt_info *ci;
361 362
	int dir_has_key, cached_with_key;

363 364 365
	if (flags & LOOKUP_RCU)
		return -ECHILD;

366 367 368
	dir = dget_parent(dentry);
	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
		dput(dir);
369
		return 0;
370
	}
371

372
	ci = d_inode(dir)->i_crypt_info;
373 374 375 376 377 378 379 380 381 382 383
	if (ci && ci->ci_keyring_key &&
	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
					  (1 << KEY_FLAG_REVOKED) |
					  (1 << KEY_FLAG_DEAD))))
		ci = NULL;

	/* this should eventually be an flag in d_flags */
	spin_lock(&dentry->d_lock);
	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
	spin_unlock(&dentry->d_lock);
	dir_has_key = (ci != NULL);
384
	dput(dir);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	/*
	 * If the dentry was cached without the key, and it is a
	 * negative dentry, it might be a valid name.  We can't check
	 * if the key has since been made available due to locking
	 * reasons, so we fail the validation so ext4_lookup() can do
	 * this check.
	 *
	 * We also fail the validation if the dentry was created with
	 * the key present, but we no longer have the key, or vice versa.
	 */
	if ((!cached_with_key && d_is_negative(dentry)) ||
			(!cached_with_key && dir_has_key) ||
			(cached_with_key && !dir_has_key))
		return 0;
	return 1;
}

const struct dentry_operations fscrypt_d_ops = {
	.d_revalidate = fscrypt_d_revalidate,
};
EXPORT_SYMBOL(fscrypt_d_ops);

/*
 * Call fscrypt_decrypt_page on every single page, reusing the encryption
 * context.
 */
static void completion_pages(struct work_struct *work)
{
	struct fscrypt_ctx *ctx =
		container_of(work, struct fscrypt_ctx, r.work);
	struct bio *bio = ctx->r.bio;
	struct bio_vec *bv;
	int i;

	bio_for_each_segment_all(bv, bio, i) {
		struct page *page = bv->bv_page;
		int ret = fscrypt_decrypt_page(page);

		if (ret) {
			WARN_ON_ONCE(1);
			SetPageError(page);
		} else {
			SetPageUptodate(page);
		}
		unlock_page(page);
	}
	fscrypt_release_ctx(ctx);
	bio_put(bio);
}

void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
{
	INIT_WORK(&ctx->r.work, completion_pages);
	ctx->r.bio = bio;
	queue_work(fscrypt_read_workqueue, &ctx->r.work);
}
EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);

void fscrypt_pullback_bio_page(struct page **page, bool restore)
{
	struct fscrypt_ctx *ctx;
	struct page *bounce_page;

	/* The bounce data pages are unmapped. */
	if ((*page)->mapping)
		return;

	/* The bounce data page is unmapped. */
	bounce_page = *page;
	ctx = (struct fscrypt_ctx *)page_private(bounce_page);

	/* restore control page */
	*page = ctx->w.control_page;

	if (restore)
		fscrypt_restore_control_page(bounce_page);
}
EXPORT_SYMBOL(fscrypt_pullback_bio_page);

void fscrypt_restore_control_page(struct page *page)
{
	struct fscrypt_ctx *ctx;

	ctx = (struct fscrypt_ctx *)page_private(page);
	set_page_private(page, (unsigned long)NULL);
	ClearPagePrivate(page);
	unlock_page(page);
	fscrypt_release_ctx(ctx);
}
EXPORT_SYMBOL(fscrypt_restore_control_page);

static void fscrypt_destroy(void)
{
	struct fscrypt_ctx *pos, *n;

	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
		kmem_cache_free(fscrypt_ctx_cachep, pos);
	INIT_LIST_HEAD(&fscrypt_free_ctxs);
	mempool_destroy(fscrypt_bounce_page_pool);
	fscrypt_bounce_page_pool = NULL;
}

/**
 * fscrypt_initialize() - allocate major buffers for fs encryption.
 *
 * We only call this when we start accessing encrypted files, since it
 * results in memory getting allocated that wouldn't otherwise be used.
 *
 * Return: Zero on success, non-zero otherwise.
 */
int fscrypt_initialize(void)
{
	int i, res = -ENOMEM;

	if (fscrypt_bounce_page_pool)
		return 0;

	mutex_lock(&fscrypt_init_mutex);
	if (fscrypt_bounce_page_pool)
		goto already_initialized;

	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
		struct fscrypt_ctx *ctx;

		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
		if (!ctx)
			goto fail;
		list_add(&ctx->free_list, &fscrypt_free_ctxs);
	}

	fscrypt_bounce_page_pool =
		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
	if (!fscrypt_bounce_page_pool)
		goto fail;

already_initialized:
	mutex_unlock(&fscrypt_init_mutex);
	return 0;
fail:
	fscrypt_destroy();
	mutex_unlock(&fscrypt_init_mutex);
	return res;
}
EXPORT_SYMBOL(fscrypt_initialize);

/**
 * fscrypt_init() - Set up for fs encryption.
 */
static int __init fscrypt_init(void)
{
	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
							WQ_HIGHPRI, 0);
	if (!fscrypt_read_workqueue)
		goto fail;

	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
	if (!fscrypt_ctx_cachep)
		goto fail_free_queue;

	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
	if (!fscrypt_info_cachep)
		goto fail_free_ctx;

	return 0;

fail_free_ctx:
	kmem_cache_destroy(fscrypt_ctx_cachep);
fail_free_queue:
	destroy_workqueue(fscrypt_read_workqueue);
fail:
	return -ENOMEM;
}
module_init(fscrypt_init)

/**
 * fscrypt_exit() - Shutdown the fs encryption system
 */
static void __exit fscrypt_exit(void)
{
	fscrypt_destroy();

	if (fscrypt_read_workqueue)
		destroy_workqueue(fscrypt_read_workqueue);
	kmem_cache_destroy(fscrypt_ctx_cachep);
	kmem_cache_destroy(fscrypt_info_cachep);
}
module_exit(fscrypt_exit);

MODULE_LICENSE("GPL");