gaccess.c 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * guest access functions
 *
 * Copyright IBM Corp. 2014
 *
 */

#include <linux/vmalloc.h>
#include <linux/err.h>
#include <asm/pgtable.h>
11
#include <asm/gmap.h>
12 13
#include "kvm-s390.h"
#include "gaccess.h"
14
#include <asm/switch_to.h>
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

union asce {
	unsigned long val;
	struct {
		unsigned long origin : 52; /* Region- or Segment-Table Origin */
		unsigned long	 : 2;
		unsigned long g  : 1; /* Subspace Group Control */
		unsigned long p  : 1; /* Private Space Control */
		unsigned long s  : 1; /* Storage-Alteration-Event Control */
		unsigned long x  : 1; /* Space-Switch-Event Control */
		unsigned long r  : 1; /* Real-Space Control */
		unsigned long	 : 1;
		unsigned long dt : 2; /* Designation-Type Control */
		unsigned long tl : 2; /* Region- or Segment-Table Length */
	};
};

enum {
	ASCE_TYPE_SEGMENT = 0,
	ASCE_TYPE_REGION3 = 1,
	ASCE_TYPE_REGION2 = 2,
	ASCE_TYPE_REGION1 = 3
};

union region1_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Second-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Second-Table Length */
	};
};

union region2_table_entry {
	unsigned long val;
	struct {
		unsigned long rto: 52;/* Region-Table Origin */
		unsigned long	 : 2;
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long	 : 1;
		unsigned long tf : 2; /* Region-Third-Table Offset */
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long	 : 1;
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long tl : 2; /* Region-Third-Table Length */
	};
};

struct region3_table_entry_fc0 {
	unsigned long sto: 52;/* Segment-Table Origin */
	unsigned long	 : 1;
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 1;
	unsigned long tf : 2; /* Segment-Table Offset */
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long tl : 2; /* Segment-Table Length */
};

struct region3_table_entry_fc1 {
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long	 : 14;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Region-Invalid Bit */
	unsigned long cr : 1; /* Common-Region Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union region3_table_entry {
	unsigned long val;
	struct region3_table_entry_fc0 fc0;
	struct region3_table_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Region-Invalid Bit */
		unsigned long cr : 1; /* Common-Region Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

struct segment_entry_fc0 {
	unsigned long pto: 53;/* Page-Table Origin */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long	 : 3;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

struct segment_entry_fc1 {
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long	 : 3;
	unsigned long av : 1; /* ACCF-Validity Control */
	unsigned long acc: 4; /* Access-Control Bits */
	unsigned long f  : 1; /* Fetch-Protection Bit */
	unsigned long fc : 1; /* Format-Control */
	unsigned long p  : 1; /* DAT-Protection Bit */
	unsigned long co : 1; /* Change-Recording Override */
	unsigned long	 : 2;
	unsigned long i  : 1; /* Segment-Invalid Bit */
	unsigned long cs : 1; /* Common-Segment Bit */
	unsigned long tt : 2; /* Table-Type Bits */
	unsigned long	 : 2;
};

union segment_table_entry {
	unsigned long val;
	struct segment_entry_fc0 fc0;
	struct segment_entry_fc1 fc1;
	struct {
		unsigned long	 : 53;
		unsigned long fc : 1; /* Format-Control */
		unsigned long	 : 4;
		unsigned long i  : 1; /* Segment-Invalid Bit */
		unsigned long cs : 1; /* Common-Segment Bit */
		unsigned long tt : 2; /* Table-Type Bits */
		unsigned long	 : 2;
	};
};

enum {
	TABLE_TYPE_SEGMENT = 0,
	TABLE_TYPE_REGION3 = 1,
	TABLE_TYPE_REGION2 = 2,
	TABLE_TYPE_REGION1 = 3
};

union page_table_entry {
	unsigned long val;
	struct {
		unsigned long pfra : 52; /* Page-Frame Real Address */
		unsigned long z  : 1; /* Zero Bit */
		unsigned long i  : 1; /* Page-Invalid Bit */
		unsigned long p  : 1; /* DAT-Protection Bit */
		unsigned long co : 1; /* Change-Recording Override */
		unsigned long	 : 8;
	};
};

/*
 * vaddress union in order to easily decode a virtual address into its
 * region first index, region second index etc. parts.
 */
union vaddress {
	unsigned long addr;
	struct {
		unsigned long rfx : 11;
		unsigned long rsx : 11;
		unsigned long rtx : 11;
		unsigned long sx  : 11;
		unsigned long px  : 8;
		unsigned long bx  : 12;
	};
	struct {
		unsigned long rfx01 : 2;
		unsigned long	    : 9;
		unsigned long rsx01 : 2;
		unsigned long	    : 9;
		unsigned long rtx01 : 2;
		unsigned long	    : 9;
		unsigned long sx01  : 2;
		unsigned long	    : 29;
	};
};

/*
 * raddress union which will contain the result (real or absolute address)
 * after a page table walk. The rfaa, sfaa and pfra members are used to
 * simply assign them the value of a region, segment or page table entry.
 */
union raddress {
	unsigned long addr;
	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
	unsigned long pfra : 52; /* Page-Frame Real Address */
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
union alet {
	u32 val;
	struct {
		u32 reserved : 7;
		u32 p        : 1;
		u32 alesn    : 8;
		u32 alen     : 16;
	};
};

union ald {
	u32 val;
	struct {
		u32     : 1;
		u32 alo : 24;
		u32 all : 7;
	};
};

struct ale {
	unsigned long i      : 1; /* ALEN-Invalid Bit */
	unsigned long        : 5;
	unsigned long fo     : 1; /* Fetch-Only Bit */
	unsigned long p      : 1; /* Private Bit */
	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
	unsigned long        : 32;
	unsigned long        : 1;
	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
	unsigned long        : 6;
	unsigned long astesn : 32; /* ASTE Sequence Number */
} __packed;

struct aste {
	unsigned long i      : 1; /* ASX-Invalid Bit */
	unsigned long ato    : 29; /* Authority-Table Origin */
	unsigned long        : 1;
	unsigned long b      : 1; /* Base-Space Bit */
	unsigned long ax     : 16; /* Authorization Index */
	unsigned long atl    : 12; /* Authority-Table Length */
	unsigned long        : 2;
	unsigned long ca     : 1; /* Controlled-ASN Bit */
	unsigned long ra     : 1; /* Reusable-ASN Bit */
	unsigned long asce   : 64; /* Address-Space-Control Element */
	unsigned long ald    : 32;
	unsigned long astesn : 32;
	/* .. more fields there */
} __packed;
260 261 262

int ipte_lock_held(struct kvm_vcpu *vcpu)
{
263 264 265 266 267 268 269 270
	if (vcpu->arch.sie_block->eca & 1) {
		int rc;

		read_lock(&vcpu->kvm->arch.sca_lock);
		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
		read_unlock(&vcpu->kvm->arch.sca_lock);
		return rc;
	}
271
	return vcpu->kvm->arch.ipte_lock_count != 0;
272 273 274 275 276 277
}

static void ipte_lock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

278 279 280
	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
	vcpu->kvm->arch.ipte_lock_count++;
	if (vcpu->kvm->arch.ipte_lock_count > 1)
281
		goto out;
282 283
retry:
	read_lock(&vcpu->kvm->arch.sca_lock);
284
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
285
	do {
286
		old = READ_ONCE(*ic);
287 288
		if (old.k) {
			read_unlock(&vcpu->kvm->arch.sca_lock);
289
			cond_resched();
290
			goto retry;
291 292 293 294
		}
		new = old;
		new.k = 1;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
295
	read_unlock(&vcpu->kvm->arch.sca_lock);
296
out:
297
	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
298 299 300 301 302 303
}

static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

304 305 306
	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
	vcpu->kvm->arch.ipte_lock_count--;
	if (vcpu->kvm->arch.ipte_lock_count)
307
		goto out;
308
	read_lock(&vcpu->kvm->arch.sca_lock);
309
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
310
	do {
311
		old = READ_ONCE(*ic);
312
		new = old;
313 314
		new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
315
	read_unlock(&vcpu->kvm->arch.sca_lock);
316
	wake_up(&vcpu->kvm->arch.ipte_wq);
317
out:
318
	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
319 320 321 322 323 324
}

static void ipte_lock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

325 326
retry:
	read_lock(&vcpu->kvm->arch.sca_lock);
327
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
328
	do {
329
		old = READ_ONCE(*ic);
330 331
		if (old.kg) {
			read_unlock(&vcpu->kvm->arch.sca_lock);
332
			cond_resched();
333
			goto retry;
334 335 336 337 338
		}
		new = old;
		new.k = 1;
		new.kh++;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
339
	read_unlock(&vcpu->kvm->arch.sca_lock);
340 341 342 343 344 345
}

static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
{
	union ipte_control old, new, *ic;

346
	read_lock(&vcpu->kvm->arch.sca_lock);
347
	ic = kvm_s390_get_ipte_control(vcpu->kvm);
348
	do {
349
		old = READ_ONCE(*ic);
350
		new = old;
351 352 353 354
		new.kh--;
		if (!new.kh)
			new.k = 0;
	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
355
	read_unlock(&vcpu->kvm->arch.sca_lock);
356 357 358 359
	if (!new.kh)
		wake_up(&vcpu->kvm->arch.ipte_wq);
}

360
void ipte_lock(struct kvm_vcpu *vcpu)
361 362 363 364 365 366 367
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_lock_siif(vcpu);
	else
		ipte_lock_simple(vcpu);
}

368
void ipte_unlock(struct kvm_vcpu *vcpu)
369 370 371 372 373 374 375
{
	if (vcpu->arch.sie_block->eca & 1)
		ipte_unlock_siif(vcpu);
	else
		ipte_unlock_simple(vcpu);
}

376
static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
377
			  enum gacc_mode mode)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
{
	union alet alet;
	struct ale ale;
	struct aste aste;
	unsigned long ald_addr, authority_table_addr;
	union ald ald;
	int eax, rc;
	u8 authority_table;

	if (ar >= NUM_ACRS)
		return -EINVAL;

	save_access_regs(vcpu->run->s.regs.acrs);
	alet.val = vcpu->run->s.regs.acrs[ar];

	if (ar == 0 || alet.val == 0) {
		asce->val = vcpu->arch.sie_block->gcr[1];
		return 0;
	} else if (alet.val == 1) {
		asce->val = vcpu->arch.sie_block->gcr[7];
		return 0;
	}

	if (alet.reserved)
		return PGM_ALET_SPECIFICATION;

	if (alet.p)
		ald_addr = vcpu->arch.sie_block->gcr[5];
	else
		ald_addr = vcpu->arch.sie_block->gcr[2];
	ald_addr &= 0x7fffffc0;

	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
	if (rc)
		return rc;

	if (alet.alen / 8 > ald.all)
		return PGM_ALEN_TRANSLATION;

	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
		return PGM_ADDRESSING;

	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
			     sizeof(struct ale));
	if (rc)
		return rc;

	if (ale.i == 1)
		return PGM_ALEN_TRANSLATION;
	if (ale.alesn != alet.alesn)
		return PGM_ALE_SEQUENCE;

	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
	if (rc)
		return rc;

	if (aste.i)
		return PGM_ASTE_VALIDITY;
	if (aste.astesn != ale.astesn)
		return PGM_ASTE_SEQUENCE;

	if (ale.p == 1) {
		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
		if (ale.aleax != eax) {
			if (eax / 16 > aste.atl)
				return PGM_EXTENDED_AUTHORITY;

			authority_table_addr = aste.ato * 4 + eax / 4;

			rc = read_guest_real(vcpu, authority_table_addr,
					     &authority_table,
					     sizeof(u8));
			if (rc)
				return rc;

			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
				return PGM_EXTENDED_AUTHORITY;
		}
	}

458
	if (ale.fo == 1 && mode == GACC_STORE)
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		return PGM_PROTECTION;

	asce->val = aste.asce;
	return 0;
}

struct trans_exc_code_bits {
	unsigned long addr : 52; /* Translation-exception Address */
	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
	unsigned long	   : 6;
	unsigned long b60  : 1;
	unsigned long b61  : 1;
	unsigned long as   : 2;  /* ASCE Identifier */
};

enum {
	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
	FSI_STORE   = 1, /* Exception was due to store operation */
	FSI_FETCH   = 2  /* Exception was due to fetch operation */
};

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
enum prot_type {
	PROT_TYPE_LA   = 0,
	PROT_TYPE_KEYC = 1,
	PROT_TYPE_ALC  = 2,
	PROT_TYPE_DAT  = 3,
};

static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
		     ar_t ar, enum gacc_mode mode, enum prot_type prot)
{
	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
	struct trans_exc_code_bits *tec;

	memset(pgm, 0, sizeof(*pgm));
	pgm->code = code;
	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;

	switch (code) {
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
		/*
		 * op_access_id only applies to MOVE_PAGE -> set bit 61
		 * exc_access_id has to be set to 0 for some instructions. Both
		 * cases have to be handled by the caller. We can always store
		 * exc_access_id, as it is undefined for non-ar cases.
		 */
		tec->addr = gva >> PAGE_SHIFT;
		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
		/* FALL THROUGH */
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_ASTE_SEQUENCE:
	case PGM_EXTENDED_AUTHORITY:
		pgm->exc_access_id = ar;
		break;
	case PGM_PROTECTION:
		switch (prot) {
		case PROT_TYPE_ALC:
			tec->b60 = 1;
			/* FALL THROUGH */
		case PROT_TYPE_DAT:
			tec->b61 = 1;
			tec->addr = gva >> PAGE_SHIFT;
			tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
			tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
			/* exc_access_id is undefined for most cases */
			pgm->exc_access_id = ar;
			break;
		default: /* LA and KEYC set b61 to 0, other params undefined */
			break;
		}
		break;
	}
	return code;
}

542
static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
543
			 unsigned long ga, ar_t ar, enum gacc_mode mode)
544
{
545
	int rc;
546
	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
547

548
	if (!psw.t) {
549 550 551 552 553
		asce->val = 0;
		asce->r = 1;
		return 0;
	}

554 555 556 557
	if (mode == GACC_IFETCH)
		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;

	switch (psw.as) {
558
	case PSW_AS_PRIMARY:
559 560
		asce->val = vcpu->arch.sie_block->gcr[1];
		return 0;
561
	case PSW_AS_SECONDARY:
562 563
		asce->val = vcpu->arch.sie_block->gcr[7];
		return 0;
564
	case PSW_AS_HOME:
565 566 567
		asce->val = vcpu->arch.sie_block->gcr[13];
		return 0;
	case PSW_AS_ACCREG:
568
		rc = ar_translation(vcpu, asce, ar, mode);
569
		if (rc > 0)
570
			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
571
		return rc;
572 573 574 575 576 577 578 579 580 581 582 583 584 585
	}
	return 0;
}

static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
{
	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
}

/**
 * guest_translate - translate a guest virtual into a guest absolute address
 * @vcpu: virtual cpu
 * @gva: guest virtual address
 * @gpa: points to where guest physical (absolute) address should be stored
586
 * @asce: effective asce
587
 * @mode: indicates the access mode to be used
588 589
 *
 * Translate a guest virtual address into a guest absolute address by means
590
 * of dynamic address translation as specified by the architecture.
591 592 593 594 595 596 597 598 599 600 601
 * If the resulting absolute address is not available in the configuration
 * an addressing exception is indicated and @gpa will not be changed.
 *
 * Returns: - zero on success; @gpa contains the resulting absolute address
 *	    - a negative value if guest access failed due to e.g. broken
 *	      guest mapping
 *	    - a positve value if an access exception happened. In this case
 *	      the returned value is the program interruption code as defined
 *	      by the architecture
 */
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
602
				     unsigned long *gpa, const union asce asce,
603
				     enum gacc_mode mode)
604 605 606 607 608 609 610 611 612 613
{
	union vaddress vaddr = {.addr = gva};
	union raddress raddr = {.addr = gva};
	union page_table_entry pte;
	int dat_protection = 0;
	union ctlreg0 ctlreg0;
	unsigned long ptr;
	int edat1, edat2;

	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
614 615
	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	if (asce.r)
		goto real_address;
	ptr = asce.origin * 4096;
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:
		if (vaddr.rfx01 > asce.tl)
			return PGM_REGION_FIRST_TRANS;
		ptr += vaddr.rfx * 8;
		break;
	case ASCE_TYPE_REGION2:
		if (vaddr.rfx)
			return PGM_ASCE_TYPE;
		if (vaddr.rsx01 > asce.tl)
			return PGM_REGION_SECOND_TRANS;
		ptr += vaddr.rsx * 8;
		break;
	case ASCE_TYPE_REGION3:
		if (vaddr.rfx || vaddr.rsx)
			return PGM_ASCE_TYPE;
		if (vaddr.rtx01 > asce.tl)
			return PGM_REGION_THIRD_TRANS;
		ptr += vaddr.rtx * 8;
		break;
	case ASCE_TYPE_SEGMENT:
		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
			return PGM_ASCE_TYPE;
		if (vaddr.sx01 > asce.tl)
			return PGM_SEGMENT_TRANSLATION;
		ptr += vaddr.sx * 8;
		break;
	}
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:	{
		union region1_table_entry rfte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rfte.val))
			return -EFAULT;
		if (rfte.i)
			return PGM_REGION_FIRST_TRANS;
		if (rfte.tt != TABLE_TYPE_REGION1)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
			return PGM_REGION_SECOND_TRANS;
		if (edat1)
			dat_protection |= rfte.p;
		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION2: {
		union region2_table_entry rste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rste.val))
			return -EFAULT;
		if (rste.i)
			return PGM_REGION_SECOND_TRANS;
		if (rste.tt != TABLE_TYPE_REGION2)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
			return PGM_REGION_THIRD_TRANS;
		if (edat1)
			dat_protection |= rste.p;
		ptr = rste.rto * 4096 + vaddr.rtx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_REGION3: {
		union region3_table_entry rtte;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &rtte.val))
			return -EFAULT;
		if (rtte.i)
			return PGM_REGION_THIRD_TRANS;
		if (rtte.tt != TABLE_TYPE_REGION3)
			return PGM_TRANSLATION_SPEC;
		if (rtte.cr && asce.p && edat2)
			return PGM_TRANSLATION_SPEC;
		if (rtte.fc && edat2) {
			dat_protection |= rtte.fc1.p;
			raddr.rfaa = rtte.fc1.rfaa;
			goto absolute_address;
		}
		if (vaddr.sx01 < rtte.fc0.tf)
			return PGM_SEGMENT_TRANSLATION;
		if (vaddr.sx01 > rtte.fc0.tl)
			return PGM_SEGMENT_TRANSLATION;
		if (edat1)
			dat_protection |= rtte.fc0.p;
		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
	}
		/* fallthrough */
	case ASCE_TYPE_SEGMENT: {
		union segment_table_entry ste;

		if (kvm_is_error_gpa(vcpu->kvm, ptr))
			return PGM_ADDRESSING;
		if (deref_table(vcpu->kvm, ptr, &ste.val))
			return -EFAULT;
		if (ste.i)
			return PGM_SEGMENT_TRANSLATION;
		if (ste.tt != TABLE_TYPE_SEGMENT)
			return PGM_TRANSLATION_SPEC;
		if (ste.cs && asce.p)
			return PGM_TRANSLATION_SPEC;
		if (ste.fc && edat1) {
			dat_protection |= ste.fc1.p;
			raddr.sfaa = ste.fc1.sfaa;
			goto absolute_address;
		}
		dat_protection |= ste.fc0.p;
		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
	}
	}
	if (kvm_is_error_gpa(vcpu->kvm, ptr))
		return PGM_ADDRESSING;
	if (deref_table(vcpu->kvm, ptr, &pte.val))
		return -EFAULT;
	if (pte.i)
		return PGM_PAGE_TRANSLATION;
	if (pte.z)
		return PGM_TRANSLATION_SPEC;
	if (pte.co && !edat1)
		return PGM_TRANSLATION_SPEC;
	dat_protection |= pte.p;
	raddr.pfra = pte.pfra;
real_address:
	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
absolute_address:
748
	if (mode == GACC_STORE && dat_protection)
749 750 751 752 753 754 755 756 757 758 759 760 761
		return PGM_PROTECTION;
	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
		return PGM_ADDRESSING;
	*gpa = raddr.addr;
	return 0;
}

static inline int is_low_address(unsigned long ga)
{
	/* Check for address ranges 0..511 and 4096..4607 */
	return (ga & ~0x11fful) == 0;
}

762 763
static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
					  const union asce asce)
764 765 766 767 768 769 770 771 772 773 774
{
	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
	psw_t *psw = &vcpu->arch.sie_block->gpsw;

	if (!ctlreg0.lap)
		return 0;
	if (psw_bits(*psw).t && asce.p)
		return 0;
	return 1;
}

775
static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar,
776
			    unsigned long *pages, unsigned long nr_pages,
777
			    const union asce asce, enum gacc_mode mode)
778 779
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
780
	int lap_enabled, rc = 0;
781

782
	lap_enabled = low_address_protection_enabled(vcpu, asce);
783 784
	while (nr_pages) {
		ga = kvm_s390_logical_to_effective(vcpu, ga);
785 786 787
		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
					 PROT_TYPE_LA);
788 789
		ga &= PAGE_MASK;
		if (psw_bits(*psw).t) {
790
			rc = guest_translate(vcpu, ga, pages, asce, mode);
791 792 793 794 795
			if (rc < 0)
				return rc;
		} else {
			*pages = kvm_s390_real_to_abs(vcpu, ga);
			if (kvm_is_error_gpa(vcpu->kvm, *pages))
796
				rc = PGM_ADDRESSING;
797
		}
798 799
		if (rc)
			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
800 801 802 803 804 805 806
		ga += PAGE_SIZE;
		pages++;
		nr_pages--;
	}
	return 0;
}

807
int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
808
		 unsigned long len, enum gacc_mode mode)
809 810 811 812 813
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	unsigned long _len, nr_pages, gpa, idx;
	unsigned long pages_array[2];
	unsigned long *pages;
814 815
	int need_ipte_lock;
	union asce asce;
816 817 818 819
	int rc;

	if (!len)
		return 0;
820 821
	ga = kvm_s390_logical_to_effective(vcpu, ga);
	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
822 823
	if (rc)
		return rc;
824 825 826 827 828 829
	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
	pages = pages_array;
	if (nr_pages > ARRAY_SIZE(pages_array))
		pages = vmalloc(nr_pages * sizeof(unsigned long));
	if (!pages)
		return -ENOMEM;
830 831 832
	need_ipte_lock = psw_bits(*psw).t && !asce.r;
	if (need_ipte_lock)
		ipte_lock(vcpu);
833
	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
834 835 836
	for (idx = 0; idx < nr_pages && !rc; idx++) {
		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
837
		if (mode == GACC_STORE)
838 839 840 841 842 843 844
			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
		else
			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
		len -= _len;
		ga += _len;
		data += _len;
	}
845 846
	if (need_ipte_lock)
		ipte_unlock(vcpu);
847 848 849 850 851 852
	if (nr_pages > ARRAY_SIZE(pages_array))
		vfree(pages);
	return rc;
}

int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
853
		      void *data, unsigned long len, enum gacc_mode mode)
854 855 856 857 858 859 860
{
	unsigned long _len, gpa;
	int rc = 0;

	while (len && !rc) {
		gpa = kvm_s390_real_to_abs(vcpu, gra);
		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
861
		if (mode)
862 863 864 865 866 867 868 869 870
			rc = write_guest_abs(vcpu, gpa, data, _len);
		else
			rc = read_guest_abs(vcpu, gpa, data, _len);
		len -= _len;
		gra += _len;
		data += _len;
	}
	return rc;
}
871

872 873 874 875 876 877 878 879 880
/**
 * guest_translate_address - translate guest logical into guest absolute address
 *
 * Parameter semantics are the same as the ones from guest_translate.
 * The memory contents at the guest address are not changed.
 *
 * Note: The IPTE lock is not taken during this function, so the caller
 * has to take care of this.
 */
881
int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
882
			    unsigned long *gpa, enum gacc_mode mode)
883 884 885 886 887 888
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	union asce asce;
	int rc;

	gva = kvm_s390_logical_to_effective(vcpu, gva);
889
	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
890 891
	if (rc)
		return rc;
892
	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
893 894 895
		if (mode == GACC_STORE)
			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
					 mode, PROT_TYPE_LA);
896 897 898
	}

	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
899
		rc = guest_translate(vcpu, gva, gpa, asce, mode);
900 901
		if (rc > 0)
			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
902 903 904
	} else {
		*gpa = kvm_s390_real_to_abs(vcpu, gva);
		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
905
			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
906 907 908 909 910
	}

	return rc;
}

911 912 913 914
/**
 * check_gva_range - test a range of guest virtual addresses for accessibility
 */
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
915
		    unsigned long length, enum gacc_mode mode)
916 917 918 919 920 921 922 923
{
	unsigned long gpa;
	unsigned long currlen;
	int rc = 0;

	ipte_lock(vcpu);
	while (length > 0 && !rc) {
		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
924
		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
925 926 927 928 929 930 931 932
		gva += currlen;
		length -= currlen;
	}
	ipte_unlock(vcpu);

	return rc;
}

933
/**
934 935
 * kvm_s390_check_low_addr_prot_real - check for low-address protection
 * @gra: Guest real address
936 937 938 939 940 941
 *
 * Checks whether an address is subject to low-address protection and set
 * up vcpu->arch.pgm accordingly if necessary.
 *
 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 */
942
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
943
{
944
	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
945

946
	if (!ctlreg0.lap || !is_low_address(gra))
947
		return 0;
948
	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
949
}
950 951 952 953 954 955

/**
 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
 * @sg: pointer to the shadow guest address space structure
 * @saddr: faulting address in the shadow gmap
 * @pgt: pointer to the page table address result
956
 * @fake: pgt references contiguous guest memory block, not a pgtable
957 958
 */
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
959 960
				  unsigned long *pgt, int *dat_protection,
				  int *fake)
961 962 963 964 965 966 967
{
	struct gmap *parent;
	union asce asce;
	union vaddress vaddr;
	unsigned long ptr;
	int rc;

968
	*fake = 0;
969
	*dat_protection = 0;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	parent = sg->parent;
	vaddr.addr = saddr;
	asce.val = sg->orig_asce;
	ptr = asce.origin * 4096;
	switch (asce.dt) {
	case ASCE_TYPE_REGION1:
		if (vaddr.rfx01 > asce.tl)
			return PGM_REGION_FIRST_TRANS;
		break;
	case ASCE_TYPE_REGION2:
		if (vaddr.rfx)
			return PGM_ASCE_TYPE;
		if (vaddr.rsx01 > asce.tl)
			return PGM_REGION_SECOND_TRANS;
		break;
	case ASCE_TYPE_REGION3:
		if (vaddr.rfx || vaddr.rsx)
			return PGM_ASCE_TYPE;
		if (vaddr.rtx01 > asce.tl)
			return PGM_REGION_THIRD_TRANS;
		break;
	case ASCE_TYPE_SEGMENT:
		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
			return PGM_ASCE_TYPE;
		if (vaddr.sx01 > asce.tl)
			return PGM_SEGMENT_TRANSLATION;
		break;
	}

	switch (asce.dt) {
	case ASCE_TYPE_REGION1: {
		union region1_table_entry rfte;

		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
		if (rc)
			return rc;
		if (rfte.i)
			return PGM_REGION_FIRST_TRANS;
		if (rfte.tt != TABLE_TYPE_REGION1)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
			return PGM_REGION_SECOND_TRANS;
1012 1013
		if (sg->edat_level >= 1)
			*dat_protection |= rfte.p;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		rc = gmap_shadow_r2t(sg, saddr, rfte.val);
		if (rc)
			return rc;
		ptr = rfte.rto * 4096;
		/* fallthrough */
	}
	case ASCE_TYPE_REGION2: {
		union region2_table_entry rste;

		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
		if (rc)
			return rc;
		if (rste.i)
			return PGM_REGION_SECOND_TRANS;
		if (rste.tt != TABLE_TYPE_REGION2)
			return PGM_TRANSLATION_SPEC;
		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
			return PGM_REGION_THIRD_TRANS;
1032 1033 1034
		if (sg->edat_level >= 1)
			*dat_protection |= rste.p;
		rste.p |= *dat_protection;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		rc = gmap_shadow_r3t(sg, saddr, rste.val);
		if (rc)
			return rc;
		ptr = rste.rto * 4096;
		/* fallthrough */
	}
	case ASCE_TYPE_REGION3: {
		union region3_table_entry rtte;

		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
		if (rc)
			return rc;
		if (rtte.i)
			return PGM_REGION_THIRD_TRANS;
		if (rtte.tt != TABLE_TYPE_REGION3)
			return PGM_TRANSLATION_SPEC;
1051 1052 1053
		if (rtte.cr && asce.p && sg->edat_level >= 2)
			return PGM_TRANSLATION_SPEC;
		if (rtte.fc && sg->edat_level >= 2) {
1054
			*dat_protection |= rtte.fc0.p;
1055 1056 1057 1058 1059
			*fake = 1;
			ptr = rtte.fc1.rfaa << 31UL;
			rtte.val = ptr;
			goto shadow_sgt;
		}
1060 1061
		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
			return PGM_SEGMENT_TRANSLATION;
1062 1063
		if (sg->edat_level >= 1)
			*dat_protection |= rtte.fc0.p;
1064 1065
		ptr = rtte.fc0.sto << 12UL;
shadow_sgt:
1066
		rtte.fc0.p |= *dat_protection;
1067
		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1068 1069 1070 1071 1072 1073 1074
		if (rc)
			return rc;
		/* fallthrough */
	}
	case ASCE_TYPE_SEGMENT: {
		union segment_table_entry ste;

1075 1076 1077 1078 1079 1080
		if (*fake) {
			/* offset in 2G guest memory block */
			ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
			ste.val = ptr;
			goto shadow_pgt;
		}
1081 1082 1083 1084 1085 1086 1087 1088 1089
		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
		if (rc)
			return rc;
		if (ste.i)
			return PGM_SEGMENT_TRANSLATION;
		if (ste.tt != TABLE_TYPE_SEGMENT)
			return PGM_TRANSLATION_SPEC;
		if (ste.cs && asce.p)
			return PGM_TRANSLATION_SPEC;
1090
		*dat_protection |= ste.fc0.p;
1091 1092 1093 1094 1095 1096 1097 1098
		if (ste.fc && sg->edat_level >= 1) {
			*fake = 1;
			ptr = ste.fc1.sfaa << 20UL;
			ste.val = ptr;
			goto shadow_pgt;
		}
		ptr = ste.fc0.pto << 11UL;
shadow_pgt:
1099
		ste.fc0.p |= *dat_protection;
1100
		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (rc)
			return rc;
	}
	}
	/* Return the parent address of the page table */
	*pgt = ptr;
	return 0;
}

/**
 * kvm_s390_shadow_fault - handle fault on a shadow page table
1112
 * @vcpu: virtual cpu
1113 1114 1115 1116 1117 1118 1119 1120 1121
 * @sg: pointer to the shadow guest address space structure
 * @saddr: faulting address in the shadow gmap
 *
 * Returns: - 0 if the shadow fault was successfully resolved
 *	    - > 0 (pgm exception code) on exceptions while faulting
 *	    - -EAGAIN if the caller can retry immediately
 *	    - -EFAULT when accessing invalid guest addresses
 *	    - -ENOMEM if out of memory
 */
1122 1123
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
			  unsigned long saddr)
1124 1125 1126 1127
{
	union vaddress vaddr;
	union page_table_entry pte;
	unsigned long pgt;
1128
	int dat_protection, fake;
1129 1130
	int rc;

1131
	down_read(&sg->mm->mmap_sem);
1132 1133 1134 1135 1136 1137
	/*
	 * We don't want any guest-2 tables to change - so the parent
	 * tables/pointers we read stay valid - unshadowing is however
	 * always possible - only guest_table_lock protects us.
	 */
	ipte_lock(vcpu);
1138

1139
	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1140
	if (rc)
1141 1142
		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
					    &fake);
1143 1144

	vaddr.addr = saddr;
1145 1146 1147 1148 1149
	if (fake) {
		/* offset in 1MB guest memory block */
		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
		goto shadow_page;
	}
1150 1151 1152 1153
	if (!rc)
		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
	if (!rc && pte.i)
		rc = PGM_PAGE_TRANSLATION;
1154
	if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
1155
		rc = PGM_TRANSLATION_SPEC;
1156
shadow_page:
1157
	pte.p |= dat_protection;
1158 1159
	if (!rc)
		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1160
	ipte_unlock(vcpu);
1161 1162
	up_read(&sg->mm->mmap_sem);
	return rc;
1163
}