mv_cesa.c 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Support for Marvell's crypto engine which can be found on some Orion5X
 * boards.
 *
 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 * License: GPLv2
 *
 */
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
17
#include <linux/slab.h>
18
#include <linux/module.h>
19
#include <linux/clk.h>
20 21
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
22 23 24
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
25 26

#include "mv_cesa.h"
27 28 29

#define MV_CESA	"MV-CESA:"
#define MAX_HW_HASH_SIZE	0xFFFF
30
#define MV_CESA_EXPIRE		500 /* msec */
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * STM:
 *   /---------------------------------------\
 *   |					     | request complete
 *  \./					     |
 * IDLE -> new request -> BUSY -> done -> DEQUEUE
 *                         /°\               |
 *			    |		     | more scatter entries
 *			    \________________/
 */
enum engine_status {
	ENGINE_IDLE,
	ENGINE_BUSY,
	ENGINE_W_DEQUEUE,
};

/**
 * struct req_progress - used for every crypt request
 * @src_sg_it:		sg iterator for src
 * @dst_sg_it:		sg iterator for dst
 * @sg_src_left:	bytes left in src to process (scatter list)
 * @src_start:		offset to add to src start position (scatter list)
54
 * @crypt_len:		length of current hw crypt/hash process
55
 * @hw_nbytes:		total bytes to process in hw for this request
56
 * @copy_back:		whether to copy data back (crypt) or not (hash)
57 58
 * @sg_dst_left:	bytes left dst to process in this scatter list
 * @dst_start:		offset to add to dst start position (scatter list)
59
 * @hw_processed_bytes:	number of bytes processed by hw (request).
60 61 62 63 64 65 66 67
 *
 * sg helper are used to iterate over the scatterlist. Since the size of the
 * SRAM may be less than the scatter size, this struct struct is used to keep
 * track of progress within current scatterlist.
 */
struct req_progress {
	struct sg_mapping_iter src_sg_it;
	struct sg_mapping_iter dst_sg_it;
68 69
	void (*complete) (void);
	void (*process) (int is_first);
70 71 72 73 74

	/* src mostly */
	int sg_src_left;
	int src_start;
	int crypt_len;
75
	int hw_nbytes;
76
	/* dst mostly */
77
	int copy_back;
78 79
	int sg_dst_left;
	int dst_start;
80
	int hw_processed_bytes;
81 82 83 84 85 86
};

struct crypto_priv {
	void __iomem *reg;
	void __iomem *sram;
	int irq;
87
	struct clk *clk;
88 89 90 91 92 93
	struct task_struct *queue_th;

	/* the lock protects queue and eng_st */
	spinlock_t lock;
	struct crypto_queue queue;
	enum engine_status eng_st;
94
	struct timer_list completion_timer;
95
	struct crypto_async_request *cur_req;
96 97 98
	struct req_progress p;
	int max_req_size;
	int sram_size;
99 100
	int has_sha1;
	int has_hmac_sha1;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
};

static struct crypto_priv *cpg;

struct mv_ctx {
	u8 aes_enc_key[AES_KEY_LEN];
	u32 aes_dec_key[8];
	int key_len;
	u32 need_calc_aes_dkey;
};

enum crypto_op {
	COP_AES_ECB,
	COP_AES_CBC,
};

struct mv_req_ctx {
	enum crypto_op op;
	int decrypt;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
enum hash_op {
	COP_SHA1,
	COP_HMAC_SHA1
};

struct mv_tfm_hash_ctx {
	struct crypto_shash *fallback;
	struct crypto_shash *base_hash;
	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
	int count_add;
	enum hash_op op;
};

struct mv_req_hash_ctx {
	u64 count;
	u32 state[SHA1_DIGEST_SIZE / 4];
	u8 buffer[SHA1_BLOCK_SIZE];
	int first_hash;		/* marks that we don't have previous state */
	int last_chunk;		/* marks that this is the 'final' request */
	int extra_bytes;	/* unprocessed bytes in buffer */
	enum hash_op op;
	int count_add;
};

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static void mv_completion_timer_callback(unsigned long unused)
{
	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;

	printk(KERN_ERR MV_CESA
	       "completion timer expired (CESA %sactive), cleaning up.\n",
	       active ? "" : "in");

	del_timer(&cpg->completion_timer);
	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
	cpg->eng_st = ENGINE_W_DEQUEUE;
	wake_up_process(cpg->queue_th);
}

static void mv_setup_timer(void)
{
	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
	mod_timer(&cpg->completion_timer,
			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void compute_aes_dec_key(struct mv_ctx *ctx)
{
	struct crypto_aes_ctx gen_aes_key;
	int key_pos;

	if (!ctx->need_calc_aes_dkey)
		return;

	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);

	key_pos = ctx->key_len + 24;
	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
	switch (ctx->key_len) {
	case AES_KEYSIZE_256:
		key_pos -= 2;
		/* fall */
	case AES_KEYSIZE_192:
		key_pos -= 2;
		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
				4 * 4);
		break;
	}
	ctx->need_calc_aes_dkey = 0;
}

static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
		unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);

	switch (len) {
	case AES_KEYSIZE_128:
	case AES_KEYSIZE_192:
	case AES_KEYSIZE_256:
		break;
	default:
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	ctx->key_len = len;
	ctx->need_calc_aes_dkey = 1;

	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
	return 0;
}

216
static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
217 218
{
	int ret;
219
	void *sbuf;
220
	int copy_len;
221

222
	while (len) {
223 224 225 226 227 228
		if (!p->sg_src_left) {
			ret = sg_miter_next(&p->src_sg_it);
			BUG_ON(!ret);
			p->sg_src_left = p->src_sg_it.length;
			p->src_start = 0;
		}
229

230 231
		sbuf = p->src_sg_it.addr + p->src_start;

232 233 234 235 236 237 238 239
		copy_len = min(p->sg_src_left, len);
		memcpy(dbuf, sbuf, copy_len);

		p->src_start += copy_len;
		p->sg_src_left -= copy_len;

		len -= copy_len;
		dbuf += copy_len;
240 241
	}
}
242

243
static void setup_data_in(void)
244 245
{
	struct req_progress *p = &cpg->p;
246
	int data_in_sram =
247
	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
248 249 250
	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
			data_in_sram - p->crypt_len);
	p->crypt_len = data_in_sram;
251 252 253 254
}

static void mv_process_current_q(int first_block)
{
255
	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
256 257 258 259 260 261 262 263 264
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
	struct sec_accel_config op;

	switch (req_ctx->op) {
	case COP_AES_ECB:
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
		break;
	case COP_AES_CBC:
265
	default:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
		if (first_block)
			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
		break;
	}
	if (req_ctx->decrypt) {
		op.config |= CFG_DIR_DEC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
				AES_KEY_LEN);
	} else {
		op.config |= CFG_DIR_ENC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
				AES_KEY_LEN);
	}

	switch (ctx->key_len) {
	case AES_KEYSIZE_128:
		op.config |= CFG_AES_LEN_128;
		break;
	case AES_KEYSIZE_192:
		op.config |= CFG_AES_LEN_192;
		break;
	case AES_KEYSIZE_256:
		op.config |= CFG_AES_LEN_256;
		break;
	}
	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
		ENC_P_DST(SRAM_DATA_OUT_START);
	op.enc_key_p = SRAM_DATA_KEY_P;

298
	setup_data_in();
299 300 301 302 303
	op.enc_len = cpg->p.crypt_len;
	memcpy(cpg->sram + SRAM_CONFIG, &op,
			sizeof(struct sec_accel_config));

	/* GO */
304
	mv_setup_timer();
305 306 307 308 309
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
}

static void mv_crypto_algo_completion(void)
{
310
	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
311 312
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

313 314 315
	sg_miter_stop(&cpg->p.src_sg_it);
	sg_miter_stop(&cpg->p.dst_sg_it);

316 317 318 319 320 321
	if (req_ctx->op != COP_AES_CBC)
		return ;

	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
}

322 323 324
static void mv_process_hash_current(int first_block)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
325
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
326 327 328 329 330 331 332 333 334 335 336 337
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct req_progress *p = &cpg->p;
	struct sec_accel_config op = { 0 };
	int is_last;

	switch (req_ctx->op) {
	case COP_SHA1:
	default:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
		break;
	case COP_HMAC_SHA1:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
338 339
		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		break;
	}

	op.mac_src_p =
		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
		req_ctx->
		count);

	setup_data_in();

	op.mac_digest =
		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
	op.mac_iv =
		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);

	is_last = req_ctx->last_chunk
		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
	if (req_ctx->first_hash) {
		if (is_last)
			op.config |= CFG_NOT_FRAG;
		else
			op.config |= CFG_FIRST_FRAG;

		req_ctx->first_hash = 0;
	} else {
		if (is_last)
			op.config |= CFG_LAST_FRAG;
		else
			op.config |= CFG_MID_FRAG;
371

372 373 374 375 376 377 378
		if (first_block) {
			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
		}
379 380 381 382 383
	}

	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));

	/* GO */
384
	mv_setup_timer();
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
}

static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
					  struct shash_desc *desc)
{
	int i;
	struct sha1_state shash_state;

	shash_state.count = ctx->count + ctx->count_add;
	for (i = 0; i < 5; i++)
		shash_state.state[i] = ctx->state[i];
	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
	return crypto_shash_import(desc, &shash_state);
}

static int mv_hash_final_fallback(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
405
	SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
406 407
	int rc;

408 409
	shash->tfm = tfm_ctx->fallback;
	shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
410
	if (unlikely(req_ctx->first_hash)) {
411 412
		crypto_shash_init(shash);
		crypto_shash_update(shash, req_ctx->buffer,
413 414 415 416
				    req_ctx->extra_bytes);
	} else {
		/* only SHA1 for now....
		 */
417
		rc = mv_hash_import_sha1_ctx(req_ctx, shash);
418 419 420
		if (rc)
			goto out;
	}
421
	rc = crypto_shash_final(shash, req->result);
422 423 424 425
out:
	return rc;
}

426 427 428 429 430 431 432 433 434
static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
{
	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448
static void mv_hash_algo_completion(void)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);

	if (ctx->extra_bytes)
		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
	sg_miter_stop(&cpg->p.src_sg_it);

	if (likely(ctx->last_chunk)) {
		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
			       crypto_ahash_digestsize(crypto_ahash_reqtfm
						       (req)));
449 450
		} else {
			mv_save_digest_state(ctx);
451
			mv_hash_final_fallback(req);
452
		}
453
	} else {
454
		mv_save_digest_state(ctx);
455 456 457
	}
}

458 459
static void dequeue_complete_req(void)
{
460
	struct crypto_async_request *req = cpg->cur_req;
461 462
	void *buf;
	int ret;
463
	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	if (cpg->p.copy_back) {
		int need_copy_len = cpg->p.crypt_len;
		int sram_offset = 0;
		do {
			int dst_copy;

			if (!cpg->p.sg_dst_left) {
				ret = sg_miter_next(&cpg->p.dst_sg_it);
				BUG_ON(!ret);
				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
				cpg->p.dst_start = 0;
			}

			buf = cpg->p.dst_sg_it.addr;
			buf += cpg->p.dst_start;

			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);

			memcpy(buf,
			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
			       dst_copy);
			sram_offset += dst_copy;
			cpg->p.sg_dst_left -= dst_copy;
			need_copy_len -= dst_copy;
			cpg->p.dst_start += dst_copy;
		} while (need_copy_len > 0);
	}
491

492
	cpg->p.crypt_len = 0;
493 494

	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
495
	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
496 497
		/* process next scatter list entry */
		cpg->eng_st = ENGINE_BUSY;
498
		cpg->p.process(0);
499
	} else {
500
		cpg->p.complete();
501
		cpg->eng_st = ENGINE_IDLE;
502
		local_bh_disable();
503
		req->complete(req, 0);
504
		local_bh_enable();
505 506 507 508 509 510
	}
}

static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
{
	int i = 0;
511 512
	size_t cur_len;

513
	while (sl) {
514 515 516 517 518 519 520
		cur_len = sl[i].length;
		++i;
		if (total_bytes > cur_len)
			total_bytes -= cur_len;
		else
			break;
	}
521 522 523 524

	return i;
}

525
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
526
{
527
	struct req_progress *p = &cpg->p;
528 529
	int num_sgs;

530 531 532
	cpg->cur_req = &req->base;
	memset(p, 0, sizeof(struct req_progress));
	p->hw_nbytes = req->nbytes;
533 534
	p->complete = mv_crypto_algo_completion;
	p->process = mv_process_current_q;
535
	p->copy_back = 1;
536 537

	num_sgs = count_sgs(req->src, req->nbytes);
538
	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
539 540

	num_sgs = count_sgs(req->dst, req->nbytes);
541 542
	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);

543 544 545
	mv_process_current_q(1);
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static void mv_start_new_hash_req(struct ahash_request *req)
{
	struct req_progress *p = &cpg->p;
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
	int num_sgs, hw_bytes, old_extra_bytes, rc;
	cpg->cur_req = &req->base;
	memset(p, 0, sizeof(struct req_progress));
	hw_bytes = req->nbytes + ctx->extra_bytes;
	old_extra_bytes = ctx->extra_bytes;

	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
	if (ctx->extra_bytes != 0
	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
		hw_bytes -= ctx->extra_bytes;
	else
		ctx->extra_bytes = 0;

	num_sgs = count_sgs(req->src, req->nbytes);
	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);

	if (hw_bytes) {
		p->hw_nbytes = hw_bytes;
		p->complete = mv_hash_algo_completion;
		p->process = mv_process_hash_current;

571 572 573 574 575 576
		if (unlikely(old_extra_bytes)) {
			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
			       old_extra_bytes);
			p->crypt_len = old_extra_bytes;
		}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		mv_process_hash_current(1);
	} else {
		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
				ctx->extra_bytes - old_extra_bytes);
		sg_miter_stop(&p->src_sg_it);
		if (ctx->last_chunk)
			rc = mv_hash_final_fallback(req);
		else
			rc = 0;
		cpg->eng_st = ENGINE_IDLE;
		local_bh_disable();
		req->base.complete(&req->base, rc);
		local_bh_enable();
	}
}

593 594 595 596 597
static int queue_manag(void *data)
{
	cpg->eng_st = ENGINE_IDLE;
	do {
		struct crypto_async_request *async_req = NULL;
598
		struct crypto_async_request *backlog = NULL;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

		__set_current_state(TASK_INTERRUPTIBLE);

		if (cpg->eng_st == ENGINE_W_DEQUEUE)
			dequeue_complete_req();

		spin_lock_irq(&cpg->lock);
		if (cpg->eng_st == ENGINE_IDLE) {
			backlog = crypto_get_backlog(&cpg->queue);
			async_req = crypto_dequeue_request(&cpg->queue);
			if (async_req) {
				BUG_ON(cpg->eng_st != ENGINE_IDLE);
				cpg->eng_st = ENGINE_BUSY;
			}
		}
		spin_unlock_irq(&cpg->lock);

		if (backlog) {
			backlog->complete(backlog, -EINPROGRESS);
			backlog = NULL;
		}

		if (async_req) {
622 623
			if (crypto_tfm_alg_type(async_req->tfm) !=
			    CRYPTO_ALG_TYPE_AHASH) {
624
				struct ablkcipher_request *req =
625
				    ablkcipher_request_cast(async_req);
626 627 628 629 630 631
				mv_start_new_crypt_req(req);
			} else {
				struct ahash_request *req =
				    ahash_request_cast(async_req);
				mv_start_new_hash_req(req);
			}
632 633 634 635 636 637 638 639 640
			async_req = NULL;
		}

		schedule();

	} while (!kthread_should_stop());
	return 0;
}

641
static int mv_handle_req(struct crypto_async_request *req)
642 643 644 645 646
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&cpg->lock, flags);
647
	ret = crypto_enqueue_request(&cpg->queue, req);
648 649 650 651 652 653 654 655 656 657 658 659
	spin_unlock_irqrestore(&cpg->lock, flags);
	wake_up_process(cpg->queue_th);
	return ret;
}

static int mv_enc_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 0;

660
	return mv_handle_req(&req->base);
661 662 663 664 665 666 667 668 669 670 671
}

static int mv_dec_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
672
	return mv_handle_req(&req->base);
673 674 675 676 677 678 679 680 681
}

static int mv_enc_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 0;

682
	return mv_handle_req(&req->base);
683 684 685 686 687 688 689 690 691 692 693
}

static int mv_dec_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
694
	return mv_handle_req(&req->base);
695 696 697 698 699 700 701 702
}

static int mv_cra_init(struct crypto_tfm *tfm)
{
	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
	return 0;
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
				 int is_last, unsigned int req_len,
				 int count_add)
{
	memset(ctx, 0, sizeof(*ctx));
	ctx->op = op;
	ctx->count = req_len;
	ctx->first_hash = 1;
	ctx->last_chunk = is_last;
	ctx->count_add = count_add;
}

static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
				   unsigned req_len)
{
	ctx->last_chunk = is_last;
	ctx->count += req_len;
}

static int mv_hash_init(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
			     tfm_ctx->count_add);
	return 0;
}

static int mv_hash_update(struct ahash_request *req)
{
	if (!req->nbytes)
		return 0;

	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_final(struct ahash_request *req)
{
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
742

743
	ahash_request_set_crypt(req, NULL, req->result, 0);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	mv_update_hash_req_ctx(ctx, 1, 0);
	return mv_handle_req(&req->base);
}

static int mv_hash_finup(struct ahash_request *req)
{
	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_digest(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
			     req->nbytes, tfm_ctx->count_add);
	return mv_handle_req(&req->base);
}

static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
			     const void *ostate)
{
	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
	int i;
	for (i = 0; i < 5; i++) {
		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
	}
}

static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
			  unsigned int keylen)
{
	int rc;
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
	int bs, ds, ss;

	if (!ctx->base_hash)
		return 0;

	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
	if (rc)
		return rc;

	/* Can't see a way to extract the ipad/opad from the fallback tfm
	   so I'm basically copying code from the hmac module */
	bs = crypto_shash_blocksize(ctx->base_hash);
	ds = crypto_shash_digestsize(ctx->base_hash);
	ss = crypto_shash_statesize(ctx->base_hash);

	{
794 795
		SHASH_DESC_ON_STACK(shash, ctx->base_hash);

796 797 798 799
		unsigned int i;
		char ipad[ss];
		char opad[ss];

800 801
		shash->tfm = ctx->base_hash;
		shash->flags = crypto_shash_get_flags(ctx->base_hash) &
802 803 804 805 806 807
		    CRYPTO_TFM_REQ_MAY_SLEEP;

		if (keylen > bs) {
			int err;

			err =
808
			    crypto_shash_digest(shash, key, keylen, ipad);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
			if (err)
				return err;

			keylen = ds;
		} else
			memcpy(ipad, key, keylen);

		memset(ipad + keylen, 0, bs - keylen);
		memcpy(opad, ipad, bs);

		for (i = 0; i < bs; i++) {
			ipad[i] ^= 0x36;
			opad[i] ^= 0x5c;
		}

824 825 826 827 828 829
		rc = crypto_shash_init(shash) ? :
		    crypto_shash_update(shash, ipad, bs) ? :
		    crypto_shash_export(shash, ipad) ? :
		    crypto_shash_init(shash) ? :
		    crypto_shash_update(shash, opad, bs) ? :
		    crypto_shash_export(shash, opad);
830 831 832 833 834 835 836 837 838 839 840

		if (rc == 0)
			mv_hash_init_ivs(ctx, ipad, opad);

		return rc;
	}
}

static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
			    enum hash_op op, int count_add)
{
841
	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_shash *fallback_tfm = NULL;
	struct crypto_shash *base_hash = NULL;
	int err = -ENOMEM;

	ctx->op = op;
	ctx->count_add = count_add;

	/* Allocate a fallback and abort if it failed. */
	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
		printk(KERN_WARNING MV_CESA
		       "Fallback driver '%s' could not be loaded!\n",
		       fallback_driver_name);
		err = PTR_ERR(fallback_tfm);
		goto out;
	}
	ctx->fallback = fallback_tfm;

	if (base_hash_name) {
		/* Allocate a hash to compute the ipad/opad of hmac. */
		base_hash = crypto_alloc_shash(base_hash_name, 0,
					       CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(base_hash)) {
			printk(KERN_WARNING MV_CESA
			       "Base driver '%s' could not be loaded!\n",
			       base_hash_name);
870
			err = PTR_ERR(base_hash);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
			goto err_bad_base;
		}
	}
	ctx->base_hash = base_hash;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_req_hash_ctx) +
				 crypto_shash_descsize(ctx->fallback));
	return 0;
err_bad_base:
	crypto_free_shash(fallback_tfm);
out:
	return err;
}

static void mv_cra_hash_exit(struct crypto_tfm *tfm)
{
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_shash(ctx->fallback);
	if (ctx->base_hash)
		crypto_free_shash(ctx->base_hash);
}

static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
}

static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
}

905
static irqreturn_t crypto_int(int irq, void *priv)
906 907 908 909 910 911 912
{
	u32 val;

	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
	if (!(val & SEC_INT_ACCEL0_DONE))
		return IRQ_NONE;

913 914 915 916
	if (!del_timer(&cpg->completion_timer)) {
		printk(KERN_WARNING MV_CESA
		       "got an interrupt but no pending timer?\n");
	}
917 918 919 920 921 922 923 924 925
	val &= ~SEC_INT_ACCEL0_DONE;
	writel(val, cpg->reg + FPGA_INT_STATUS);
	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
	BUG_ON(cpg->eng_st != ENGINE_BUSY);
	cpg->eng_st = ENGINE_W_DEQUEUE;
	wake_up_process(cpg->queue_th);
	return IRQ_HANDLED;
}

926
static struct crypto_alg mv_aes_alg_ecb = {
927 928 929
	.cra_name		= "ecb(aes)",
	.cra_driver_name	= "mv-ecb-aes",
	.cra_priority	= 300,
930 931
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	.cra_blocksize	= 16,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_ecb,
			.decrypt	=	mv_dec_aes_ecb,
		},
	},
};

949
static struct crypto_alg mv_aes_alg_cbc = {
950 951 952
	.cra_name		= "cbc(aes)",
	.cra_driver_name	= "mv-cbc-aes",
	.cra_priority	= 300,
953 954
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	.cra_blocksize	= AES_BLOCK_SIZE,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.ivsize		=	AES_BLOCK_SIZE,
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_cbc,
			.decrypt	=	mv_dec_aes_cbc,
		},
	},
};

973
static struct ahash_alg mv_sha1_alg = {
974 975 976 977 978 979 980 981 982 983 984 985
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "sha1",
			  .cra_driver_name = "mv-sha1",
			  .cra_priority = 300,
			  .cra_flags =
986 987
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
			  CRYPTO_ALG_NEED_FALLBACK,
988 989 990 991 992 993 994 995 996
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

997
static struct ahash_alg mv_hmac_sha1_alg = {
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.setkey = mv_hash_setkey,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "hmac(sha1)",
			  .cra_driver_name = "mv-hmac-sha1",
			  .cra_priority = 300,
			  .cra_flags =
1011 1012
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
			  CRYPTO_ALG_NEED_FALLBACK,
1013 1014 1015 1016 1017 1018 1019 1020 1021
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_hmac_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

1022 1023 1024 1025 1026 1027 1028 1029
static int mv_probe(struct platform_device *pdev)
{
	struct crypto_priv *cp;
	struct resource *res;
	int irq;
	int ret;

	if (cpg) {
1030
		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		return -EEXIST;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
	if (!res)
		return -ENXIO;

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp)
		return -ENOMEM;

	spin_lock_init(&cp->lock);
	crypto_init_queue(&cp->queue, 50);
1044 1045 1046
	cp->reg = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cp->reg)) {
		ret = PTR_ERR(cp->reg);
1047 1048 1049 1050 1051 1052
		goto err;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
	if (!res) {
		ret = -ENXIO;
1053
		goto err;
1054
	}
1055
	cp->sram_size = resource_size(res);
1056 1057 1058 1059
	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
	cp->sram = ioremap(res->start, cp->sram_size);
	if (!cp->sram) {
		ret = -ENOMEM;
1060
		goto err;
1061 1062
	}

1063 1064 1065 1066
	if (pdev->dev.of_node)
		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
	else
		irq = platform_get_irq(pdev, 0);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (irq < 0 || irq == NO_IRQ) {
		ret = irq;
		goto err_unmap_sram;
	}
	cp->irq = irq;

	platform_set_drvdata(pdev, cp);
	cpg = cp;

	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
	if (IS_ERR(cp->queue_th)) {
		ret = PTR_ERR(cp->queue_th);
1079
		goto err_unmap_sram;
1080 1081
	}

1082
	ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1083 1084
			cp);
	if (ret)
1085
		goto err_thread;
1086

1087 1088 1089 1090 1091 1092
	/* Not all platforms can gate the clock, so it is not
	   an error if the clock does not exists. */
	cp->clk = clk_get(&pdev->dev, NULL);
	if (!IS_ERR(cp->clk))
		clk_prepare_enable(cp->clk);

1093
	writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1094 1095
	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1096
	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1097 1098

	ret = crypto_register_alg(&mv_aes_alg_ecb);
1099 1100 1101
	if (ret) {
		printk(KERN_WARNING MV_CESA
		       "Could not register aes-ecb driver\n");
1102
		goto err_irq;
1103
	}
1104 1105

	ret = crypto_register_alg(&mv_aes_alg_cbc);
1106 1107 1108
	if (ret) {
		printk(KERN_WARNING MV_CESA
		       "Could not register aes-cbc driver\n");
1109
		goto err_unreg_ecb;
1110
	}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	ret = crypto_register_ahash(&mv_sha1_alg);
	if (ret == 0)
		cpg->has_sha1 = 1;
	else
		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");

	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
	if (ret == 0) {
		cpg->has_hmac_sha1 = 1;
	} else {
		printk(KERN_WARNING MV_CESA
		       "Could not register hmac-sha1 driver\n");
	}

1126 1127 1128
	return 0;
err_unreg_ecb:
	crypto_unregister_alg(&mv_aes_alg_ecb);
1129
err_irq:
1130
	free_irq(irq, cp);
1131 1132 1133 1134
	if (!IS_ERR(cp->clk)) {
		clk_disable_unprepare(cp->clk);
		clk_put(cp->clk);
	}
1135
err_thread:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	kthread_stop(cp->queue_th);
err_unmap_sram:
	iounmap(cp->sram);
err:
	kfree(cp);
	cpg = NULL;
	return ret;
}

static int mv_remove(struct platform_device *pdev)
{
	struct crypto_priv *cp = platform_get_drvdata(pdev);

	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_cbc);
1151 1152 1153 1154
	if (cp->has_sha1)
		crypto_unregister_ahash(&mv_sha1_alg);
	if (cp->has_hmac_sha1)
		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1155 1156 1157 1158
	kthread_stop(cp->queue_th);
	free_irq(cp->irq, cp);
	memset(cp->sram, 0, cp->sram_size);
	iounmap(cp->sram);
1159 1160 1161 1162 1163 1164

	if (!IS_ERR(cp->clk)) {
		clk_disable_unprepare(cp->clk);
		clk_put(cp->clk);
	}

1165 1166 1167 1168 1169
	kfree(cp);
	cpg = NULL;
	return 0;
}

1170 1171 1172 1173 1174 1175
static const struct of_device_id mv_cesa_of_match_table[] = {
	{ .compatible = "marvell,orion-crypto", },
	{}
};
MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);

1176 1177
static struct platform_driver marvell_crypto = {
	.probe		= mv_probe,
1178
	.remove		= mv_remove,
1179 1180
	.driver		= {
		.name	= "mv_crypto",
1181
		.of_match_table = mv_cesa_of_match_table,
1182 1183 1184 1185
	},
};
MODULE_ALIAS("platform:mv_crypto");

1186
module_platform_driver(marvell_crypto);
1187 1188 1189 1190

MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL");