ib_rdma.c 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (c) 2006 Oracle.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/kernel.h>
34
#include <linux/slab.h>
C
Chris Mason 已提交
35
#include <linux/rculist.h>
36
#include <linux/llist.h>
37 38 39 40

#include "rds.h"
#include "ib.h"

41 42
static DEFINE_PER_CPU(unsigned long, clean_list_grace);
#define CLEAN_LIST_BUSY_BIT 0
43 44 45 46 47 48 49 50

/*
 * This is stored as mr->r_trans_private.
 */
struct rds_ib_mr {
	struct rds_ib_device	*device;
	struct rds_ib_mr_pool	*pool;
	struct ib_fmr		*fmr;
51

52
	struct llist_node	llnode;
53 54 55

	/* unmap_list is for freeing */
	struct list_head	unmap_list;
56 57 58 59 60 61 62 63 64 65 66 67 68
	unsigned int		remap_count;

	struct scatterlist	*sg;
	unsigned int		sg_len;
	u64			*dma;
	int			sg_dma_len;
};

/*
 * Our own little FMR pool
 */
struct rds_ib_mr_pool {
	struct mutex		flush_lock;		/* serialize fmr invalidate */
69
	struct delayed_work	flush_worker;		/* flush worker */
70 71 72

	atomic_t		item_count;		/* total # of MRs */
	atomic_t		dirty_count;		/* # dirty of MRs */
73

74 75 76
	struct llist_head	drop_list;		/* MRs that have reached their max_maps limit */
	struct llist_head	free_list;		/* unused MRs */
	struct llist_head	clean_list;		/* global unused & unamapped MRs */
77 78
	wait_queue_head_t	flush_wait;

79 80 81 82 83 84 85
	atomic_t		free_pinned;		/* memory pinned by free MRs */
	unsigned long		max_items;
	unsigned long		max_items_soft;
	unsigned long		max_free_pinned;
	struct ib_fmr_attr	fmr_attr;
};

86
static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
87 88 89 90 91 92 93 94
static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
static void rds_ib_mr_pool_flush_worker(struct work_struct *work);

static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
{
	struct rds_ib_device *rds_ibdev;
	struct rds_ib_ipaddr *i_ipaddr;

95 96
	rcu_read_lock();
	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
C
Chris Mason 已提交
97
		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
98
			if (i_ipaddr->ipaddr == ipaddr) {
99
				atomic_inc(&rds_ibdev->refcount);
C
Chris Mason 已提交
100
				rcu_read_unlock();
101 102 103 104
				return rds_ibdev;
			}
		}
	}
105
	rcu_read_unlock();
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

	return NULL;
}

static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
	struct rds_ib_ipaddr *i_ipaddr;

	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
	if (!i_ipaddr)
		return -ENOMEM;

	i_ipaddr->ipaddr = ipaddr;

	spin_lock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
121
	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
122 123 124 125 126 127 128
	spin_unlock_irq(&rds_ibdev->spinlock);

	return 0;
}

static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
129
	struct rds_ib_ipaddr *i_ipaddr;
C
Chris Mason 已提交
130 131
	struct rds_ib_ipaddr *to_free = NULL;

132 133

	spin_lock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
134
	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
135
		if (i_ipaddr->ipaddr == ipaddr) {
C
Chris Mason 已提交
136 137
			list_del_rcu(&i_ipaddr->list);
			to_free = i_ipaddr;
138 139 140 141
			break;
		}
	}
	spin_unlock_irq(&rds_ibdev->spinlock);
C
Chris Mason 已提交
142 143 144 145 146

	if (to_free) {
		synchronize_rcu();
		kfree(to_free);
	}
147 148 149 150 151 152 153
}

int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
	struct rds_ib_device *rds_ibdev_old;

	rds_ibdev_old = rds_ib_get_device(ipaddr);
154
	if (rds_ibdev_old) {
155
		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
156 157
		rds_ib_dev_put(rds_ibdev_old);
	}
158 159 160 161

	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
}

162
void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
163 164 165 166 167 168 169 170 171
{
	struct rds_ib_connection *ic = conn->c_transport_data;

	/* conn was previously on the nodev_conns_list */
	spin_lock_irq(&ib_nodev_conns_lock);
	BUG_ON(list_empty(&ib_nodev_conns));
	BUG_ON(list_empty(&ic->ib_node));
	list_del(&ic->ib_node);

172
	spin_lock(&rds_ibdev->spinlock);
173
	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
174
	spin_unlock(&rds_ibdev->spinlock);
175
	spin_unlock_irq(&ib_nodev_conns_lock);
176 177

	ic->rds_ibdev = rds_ibdev;
178
	atomic_inc(&rds_ibdev->refcount);
179 180
}

181
void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
182
{
183
	struct rds_ib_connection *ic = conn->c_transport_data;
184

185 186
	/* place conn on nodev_conns_list */
	spin_lock(&ib_nodev_conns_lock);
187

188 189 190 191 192 193 194 195 196 197
	spin_lock_irq(&rds_ibdev->spinlock);
	BUG_ON(list_empty(&ic->ib_node));
	list_del(&ic->ib_node);
	spin_unlock_irq(&rds_ibdev->spinlock);

	list_add_tail(&ic->ib_node, &ib_nodev_conns);

	spin_unlock(&ib_nodev_conns_lock);

	ic->rds_ibdev = NULL;
198
	rds_ib_dev_put(rds_ibdev);
199 200
}

201
void rds_ib_destroy_nodev_conns(void)
202 203 204 205 206
{
	struct rds_ib_connection *ic, *_ic;
	LIST_HEAD(tmp_list);

	/* avoid calling conn_destroy with irqs off */
207 208 209
	spin_lock_irq(&ib_nodev_conns_lock);
	list_splice(&ib_nodev_conns, &tmp_list);
	spin_unlock_irq(&ib_nodev_conns_lock);
210

A
Andy Grover 已提交
211
	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
212 213 214 215 216 217 218 219 220 221 222
		rds_conn_destroy(ic->conn);
}

struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
{
	struct rds_ib_mr_pool *pool;

	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return ERR_PTR(-ENOMEM);

223 224 225
	init_llist_head(&pool->free_list);
	init_llist_head(&pool->drop_list);
	init_llist_head(&pool->clean_list);
226
	mutex_init(&pool->flush_lock);
227
	init_waitqueue_head(&pool->flush_wait);
228
	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
229 230 231

	pool->fmr_attr.max_pages = fmr_message_size;
	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
232
	pool->fmr_attr.page_shift = PAGE_SHIFT;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;

	/* We never allow more than max_items MRs to be allocated.
	 * When we exceed more than max_items_soft, we start freeing
	 * items more aggressively.
	 * Make sure that max_items > max_items_soft > max_items / 2
	 */
	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
	pool->max_items = rds_ibdev->max_fmrs;

	return pool;
}

void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
{
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

	iinfo->rdma_mr_max = pool->max_items;
	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
}

void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
{
256
	cancel_delayed_work_sync(&pool->flush_worker);
257
	rds_ib_flush_mr_pool(pool, 1, NULL);
258 259
	WARN_ON(atomic_read(&pool->item_count));
	WARN_ON(atomic_read(&pool->free_pinned));
260 261 262 263 264 265
	kfree(pool);
}

static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
{
	struct rds_ib_mr *ibmr = NULL;
266
	struct llist_node *ret;
267
	unsigned long *flag;
268

269
	preempt_disable();
270
	flag = this_cpu_ptr(&clean_list_grace);
271
	set_bit(CLEAN_LIST_BUSY_BIT, flag);
272
	ret = llist_del_first(&pool->clean_list);
273
	if (ret)
274
		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
275

276 277
	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
	preempt_enable();
278 279 280
	return ibmr;
}

281 282 283 284 285 286 287 288 289 290 291 292
static inline void wait_clean_list_grace(void)
{
	int cpu;
	unsigned long *flag;

	for_each_online_cpu(cpu) {
		flag = &per_cpu(clean_list_grace, cpu);
		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
			cpu_relax();
	}
}

293 294 295 296 297 298
static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
{
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
	struct rds_ib_mr *ibmr = NULL;
	int err = 0, iter = 0;

299
	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
300
		schedule_delayed_work(&pool->flush_worker, 10);
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	while (1) {
		ibmr = rds_ib_reuse_fmr(pool);
		if (ibmr)
			return ibmr;

		/* No clean MRs - now we have the choice of either
		 * allocating a fresh MR up to the limit imposed by the
		 * driver, or flush any dirty unused MRs.
		 * We try to avoid stalling in the send path if possible,
		 * so we allocate as long as we're allowed to.
		 *
		 * We're fussy with enforcing the FMR limit, though. If the driver
		 * tells us we can't use more than N fmrs, we shouldn't start
		 * arguing with it */
		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
			break;

		atomic_dec(&pool->item_count);

		if (++iter > 2) {
			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
			return ERR_PTR(-EAGAIN);
		}

		/* We do have some empty MRs. Flush them out. */
		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
328 329 330
		rds_ib_flush_mr_pool(pool, 0, &ibmr);
		if (ibmr)
			return ibmr;
331 332
	}

333
	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
334 335 336 337 338
	if (!ibmr) {
		err = -ENOMEM;
		goto out_no_cigar;
	}

339 340
	memset(ibmr, 0, sizeof(*ibmr));

341 342 343
	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
			(IB_ACCESS_LOCAL_WRITE |
			 IB_ACCESS_REMOTE_READ |
A
Andy Grover 已提交
344 345
			 IB_ACCESS_REMOTE_WRITE|
			 IB_ACCESS_REMOTE_ATOMIC),
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			&pool->fmr_attr);
	if (IS_ERR(ibmr->fmr)) {
		err = PTR_ERR(ibmr->fmr);
		ibmr->fmr = NULL;
		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
		goto out_no_cigar;
	}

	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
	return ibmr;

out_no_cigar:
	if (ibmr) {
		if (ibmr->fmr)
			ib_dealloc_fmr(ibmr->fmr);
		kfree(ibmr);
	}
	atomic_dec(&pool->item_count);
	return ERR_PTR(err);
}

static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
	       struct scatterlist *sg, unsigned int nents)
{
	struct ib_device *dev = rds_ibdev->dev;
	struct scatterlist *scat = sg;
	u64 io_addr = 0;
	u64 *dma_pages;
	u32 len;
	int page_cnt, sg_dma_len;
	int i, j;
	int ret;

	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
				 DMA_BIDIRECTIONAL);
	if (unlikely(!sg_dma_len)) {
		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
		return -EBUSY;
	}

	len = 0;
	page_cnt = 0;

	for (i = 0; i < sg_dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);

393
		if (dma_addr & ~PAGE_MASK) {
394 395 396 397 398
			if (i > 0)
				return -EINVAL;
			else
				++page_cnt;
		}
399
		if ((dma_addr + dma_len) & ~PAGE_MASK) {
400 401 402 403 404 405 406 407 408
			if (i < sg_dma_len - 1)
				return -EINVAL;
			else
				++page_cnt;
		}

		len += dma_len;
	}

409
	page_cnt += len >> PAGE_SHIFT;
410 411 412
	if (page_cnt > fmr_message_size)
		return -EINVAL;

413 414
	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
				 rdsibdev_to_node(rds_ibdev));
415 416 417 418 419 420 421 422
	if (!dma_pages)
		return -ENOMEM;

	page_cnt = 0;
	for (i = 0; i < sg_dma_len; ++i) {
		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);

423
		for (j = 0; j < dma_len; j += PAGE_SIZE)
424
			dma_pages[page_cnt++] =
425
				(dma_addr & PAGE_MASK) + j;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	}

	ret = ib_map_phys_fmr(ibmr->fmr,
				   dma_pages, page_cnt, io_addr);
	if (ret)
		goto out;

	/* Success - we successfully remapped the MR, so we can
	 * safely tear down the old mapping. */
	rds_ib_teardown_mr(ibmr);

	ibmr->sg = scat;
	ibmr->sg_len = nents;
	ibmr->sg_dma_len = sg_dma_len;
	ibmr->remap_count++;

	rds_ib_stats_inc(s_ib_rdma_mr_used);
	ret = 0;

out:
	kfree(dma_pages);

	return ret;
}

void rds_ib_sync_mr(void *trans_private, int direction)
{
	struct rds_ib_mr *ibmr = trans_private;
	struct rds_ib_device *rds_ibdev = ibmr->device;

	switch (direction) {
	case DMA_FROM_DEVICE:
		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
		break;
	case DMA_TO_DEVICE:
		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
		break;
	}
}

static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
	struct rds_ib_device *rds_ibdev = ibmr->device;

	if (ibmr->sg_dma_len) {
		ib_dma_unmap_sg(rds_ibdev->dev,
				ibmr->sg, ibmr->sg_len,
				DMA_BIDIRECTIONAL);
		ibmr->sg_dma_len = 0;
	}

	/* Release the s/g list */
	if (ibmr->sg_len) {
		unsigned int i;

		for (i = 0; i < ibmr->sg_len; ++i) {
			struct page *page = sg_page(&ibmr->sg[i]);

			/* FIXME we need a way to tell a r/w MR
			 * from a r/o MR */
488
			BUG_ON(irqs_disabled());
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
			set_page_dirty(page);
			put_page(page);
		}
		kfree(ibmr->sg);

		ibmr->sg = NULL;
		ibmr->sg_len = 0;
	}
}

static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
	unsigned int pinned = ibmr->sg_len;

	__rds_ib_teardown_mr(ibmr);
	if (pinned) {
		struct rds_ib_device *rds_ibdev = ibmr->device;
		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

		atomic_sub(pinned, &pool->free_pinned);
	}
}

static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
{
	unsigned int item_count;

	item_count = atomic_read(&pool->item_count);
	if (free_all)
		return item_count;

	return 0;
}

523
/*
524
 * given an llist of mrs, put them all into the list_head for more processing
525
 */
526
static void llist_append_to_list(struct llist_head *llist, struct list_head *list)
527 528
{
	struct rds_ib_mr *ibmr;
529 530 531 532 533 534 535
	struct llist_node *node;
	struct llist_node *next;

	node = llist_del_all(llist);
	while (node) {
		next = node->next;
		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
536
		list_add_tail(&ibmr->unmap_list, list);
537
		node = next;
538 539 540 541
	}
}

/*
542 543 544
 * this takes a list head of mrs and turns it into linked llist nodes
 * of clusters.  Each cluster has linked llist nodes of
 * MR_CLUSTER_SIZE mrs that are ready for reuse.
545
 */
546 547 548 549
static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
				struct list_head *list,
				struct llist_node **nodes_head,
				struct llist_node **nodes_tail)
550 551
{
	struct rds_ib_mr *ibmr;
552 553
	struct llist_node *cur = NULL;
	struct llist_node **next = nodes_head;
554 555

	list_for_each_entry(ibmr, list, unmap_list) {
556 557 558
		cur = &ibmr->llnode;
		*next = cur;
		next = &cur->next;
559
	}
560 561
	*next = NULL;
	*nodes_tail = cur;
562 563
}

564 565 566 567 568 569
/*
 * Flush our pool of MRs.
 * At a minimum, all currently unused MRs are unmapped.
 * If the number of MRs allocated exceeds the limit, we also try
 * to free as many MRs as needed to get back to this limit.
 */
570 571
static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
			        int free_all, struct rds_ib_mr **ibmr_ret)
572 573
{
	struct rds_ib_mr *ibmr, *next;
574 575
	struct llist_node *clean_nodes;
	struct llist_node *clean_tail;
576 577 578 579 580 581 582 583
	LIST_HEAD(unmap_list);
	LIST_HEAD(fmr_list);
	unsigned long unpinned = 0;
	unsigned int nfreed = 0, ncleaned = 0, free_goal;
	int ret = 0;

	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);

584 585 586 587 588 589 590 591 592 593 594 595
	if (ibmr_ret) {
		DEFINE_WAIT(wait);
		while(!mutex_trylock(&pool->flush_lock)) {
			ibmr = rds_ib_reuse_fmr(pool);
			if (ibmr) {
				*ibmr_ret = ibmr;
				finish_wait(&pool->flush_wait, &wait);
				goto out_nolock;
			}

			prepare_to_wait(&pool->flush_wait, &wait,
					TASK_UNINTERRUPTIBLE);
596
			if (llist_empty(&pool->clean_list))
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
				schedule();

			ibmr = rds_ib_reuse_fmr(pool);
			if (ibmr) {
				*ibmr_ret = ibmr;
				finish_wait(&pool->flush_wait, &wait);
				goto out_nolock;
			}
		}
		finish_wait(&pool->flush_wait, &wait);
	} else
		mutex_lock(&pool->flush_lock);

	if (ibmr_ret) {
		ibmr = rds_ib_reuse_fmr(pool);
		if (ibmr) {
			*ibmr_ret = ibmr;
			goto out;
		}
	}
617 618

	/* Get the list of all MRs to be dropped. Ordering matters -
619 620
	 * we want to put drop_list ahead of free_list.
	 */
621 622
	llist_append_to_list(&pool->drop_list, &unmap_list);
	llist_append_to_list(&pool->free_list, &unmap_list);
623
	if (free_all)
624
		llist_append_to_list(&pool->clean_list, &unmap_list);
625 626 627 628 629 630 631

	free_goal = rds_ib_flush_goal(pool, free_all);

	if (list_empty(&unmap_list))
		goto out;

	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
632
	list_for_each_entry(ibmr, &unmap_list, unmap_list)
633
		list_add(&ibmr->fmr->list, &fmr_list);
634

635 636 637 638 639
	ret = ib_unmap_fmr(&fmr_list);
	if (ret)
		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);

	/* Now we can destroy the DMA mapping and unpin any pages */
640
	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
641 642 643 644
		unpinned += ibmr->sg_len;
		__rds_ib_teardown_mr(ibmr);
		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
			rds_ib_stats_inc(s_ib_rdma_mr_free);
645
			list_del(&ibmr->unmap_list);
646 647 648 649 650 651 652
			ib_dealloc_fmr(ibmr->fmr);
			kfree(ibmr);
			nfreed++;
		}
		ncleaned++;
	}

653 654 655
	if (!list_empty(&unmap_list)) {
		/* we have to make sure that none of the things we're about
		 * to put on the clean list would race with other cpus trying
656
		 * to pull items off.  The llist would explode if we managed to
657
		 * remove something from the clean list and then add it back again
658
		 * while another CPU was spinning on that same item in llist_del_first.
659
		 *
660
		 * This is pretty unlikely, but just in case  wait for an llist grace period
661 662 663 664
		 * here before adding anything back into the clean list.
		 */
		wait_clean_list_grace();

665
		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
666
		if (ibmr_ret)
667
			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
668

669 670 671
		/* more than one entry in llist nodes */
		if (clean_nodes->next)
			llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
672 673

	}
674 675 676 677 678 679 680

	atomic_sub(unpinned, &pool->free_pinned);
	atomic_sub(ncleaned, &pool->dirty_count);
	atomic_sub(nfreed, &pool->item_count);

out:
	mutex_unlock(&pool->flush_lock);
681 682 683
	if (waitqueue_active(&pool->flush_wait))
		wake_up(&pool->flush_wait);
out_nolock:
684 685 686 687 688
	return ret;
}

static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
{
689
	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
690

691
	rds_ib_flush_mr_pool(pool, 0, NULL);
692 693 694 695 696 697 698 699 700 701 702 703
}

void rds_ib_free_mr(void *trans_private, int invalidate)
{
	struct rds_ib_mr *ibmr = trans_private;
	struct rds_ib_device *rds_ibdev = ibmr->device;
	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);

	/* Return it to the pool's free list */
	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
704
		llist_add(&ibmr->llnode, &pool->drop_list);
705
	else
706
		llist_add(&ibmr->llnode, &pool->free_list);
707 708 709 710 711

	atomic_add(ibmr->sg_len, &pool->free_pinned);
	atomic_inc(&pool->dirty_count);

	/* If we've pinned too many pages, request a flush */
712 713
	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
714
		schedule_delayed_work(&pool->flush_worker, 10);
715 716 717

	if (invalidate) {
		if (likely(!in_interrupt())) {
718
			rds_ib_flush_mr_pool(pool, 0, NULL);
719 720 721
		} else {
			/* We get here if the user created a MR marked
			 * as use_once and invalidate at the same time. */
722
			schedule_delayed_work(&pool->flush_worker, 10);
723 724
		}
	}
725 726

	rds_ib_dev_put(rds_ibdev);
727 728 729 730 731 732
}

void rds_ib_flush_mrs(void)
{
	struct rds_ib_device *rds_ibdev;

733
	down_read(&rds_ib_devices_lock);
734 735 736 737
	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;

		if (pool)
738
			rds_ib_flush_mr_pool(pool, 0, NULL);
739
	}
740
	up_read(&rds_ib_devices_lock);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
}

void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
		    struct rds_sock *rs, u32 *key_ret)
{
	struct rds_ib_device *rds_ibdev;
	struct rds_ib_mr *ibmr = NULL;
	int ret;

	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
	if (!rds_ibdev) {
		ret = -ENODEV;
		goto out;
	}

	if (!rds_ibdev->mr_pool) {
		ret = -ENODEV;
		goto out;
	}

	ibmr = rds_ib_alloc_fmr(rds_ibdev);
762 763
	if (IS_ERR(ibmr)) {
		rds_ib_dev_put(rds_ibdev);
764
		return ibmr;
765
	}
766 767 768 769 770 771 772 773

	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
	if (ret == 0)
		*key_ret = ibmr->fmr->rkey;
	else
		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);

	ibmr->device = rds_ibdev;
774
	rds_ibdev = NULL;
775 776 777 778 779 780 781

 out:
	if (ret) {
		if (ibmr)
			rds_ib_free_mr(ibmr, 0);
		ibmr = ERR_PTR(ret);
	}
782 783
	if (rds_ibdev)
		rds_ib_dev_put(rds_ibdev);
784 785
	return ibmr;
}
786