amd_iommu_init.c 44.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
23
#include <linux/slab.h>
24
#include <linux/syscore_ops.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27
#include <linux/amd-iommu.h>
28
#include <linux/export.h>
29 30
#include <linux/acpi.h>
#include <acpi/acpi.h>
31
#include <asm/pci-direct.h>
32
#include <asm/iommu.h>
33
#include <asm/gart.h>
34
#include <asm/x86_init.h>
35
#include <asm/iommu_table.h>
36 37 38 39

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
59 60 61 62
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
63 64 65 66 67 68 69 70 71 72 73 74 75

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

76 77 78 79 80 81 82 83 84 85 86
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
87 88 89 90 91 92 93 94 95 96 97 98
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

99 100 101 102
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
103 104 105 106 107 108 109
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

110 111 112 113
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
114 115 116 117 118 119 120 121 122 123 124
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

125 126
bool amd_iommu_dump;

127
static bool amd_iommu_detected;
128
static bool __initdata amd_iommu_disabled;
129

130 131
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
132
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
133
					   we find in ACPI */
134
u32 amd_iommu_unmap_flush;		/* if true, flush on every unmap */
135

136
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
137
					   system */
138

139 140 141 142
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;

143 144
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
145
bool amd_iommu_iotlb_sup __read_mostly = true;
146

147 148
u32 amd_iommu_max_pasids __read_mostly = ~0;

149 150
bool amd_iommu_v2_present __read_mostly;

151 152
bool amd_iommu_force_isolation __read_mostly;

153 154 155 156 157 158
/*
 * List of protection domains - used during resume
 */
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;

159 160 161 162 163 164
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
165
struct dev_table_entry *amd_iommu_dev_table;
166 167 168 169 170 171

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
172
u16 *amd_iommu_alias_table;
173 174 175 176 177

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
178
struct amd_iommu **amd_iommu_rlookup_table;
179 180 181 182 183

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
184 185
unsigned long *amd_iommu_pd_alloc_bitmap;

186 187 188
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
enum iommu_init_state {
	IOMMU_START_STATE,
	IOMMU_IVRS_DETECTED,
	IOMMU_ACPI_FINISHED,
	IOMMU_ENABLED,
	IOMMU_PCI_INIT,
	IOMMU_INTERRUPTS_EN,
	IOMMU_DMA_OPS,
	IOMMU_INITIALIZED,
	IOMMU_NOT_FOUND,
	IOMMU_INIT_ERROR,
};

static enum iommu_init_state init_state = IOMMU_START_STATE;

205
static int amd_iommu_enable_interrupts(void);
206
static int __init iommu_go_to_state(enum iommu_init_state state);
207

208 209 210 211 212 213
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

214 215 216
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
217
			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
218 219 220 221

	return 1UL << shift;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/* Access to l1 and l2 indexed register spaces */

static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
	pci_read_config_dword(iommu->dev, 0xfc, &val);
	return val;
}

static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
	pci_write_config_dword(iommu->dev, 0xfc, val);
	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}

static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
	u32 val;

	pci_write_config_dword(iommu->dev, 0xf0, address);
	pci_read_config_dword(iommu->dev, 0xf4, &val);
	return val;
}

static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
	pci_write_config_dword(iommu->dev, 0xf4, val);
}

255 256 257 258 259 260 261 262
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
263

264 265 266 267
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
268
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

286
/* Programs the physical address of the device table into the IOMMU hardware */
287
static void iommu_set_device_table(struct amd_iommu *iommu)
288
{
289
	u64 entry;
290 291 292 293 294 295 296 297 298

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

299
/* Generic functions to enable/disable certain features of the IOMMU. */
300
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
301 302 303 304 305 306 307 308
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

309
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
310 311 312
{
	u32 ctrl;

313
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
314 315 316 317
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

318 319 320 321 322 323 324 325 326 327
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl &= ~CTRL_INV_TO_MASK;
	ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

328
/* Function to enable the hardware */
329
static void iommu_enable(struct amd_iommu *iommu)
330 331 332 333
{
	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

334
static void iommu_disable(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
335
{
336 337 338 339 340 341 342 343
	/* Disable command buffer */
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	/* Disable event logging and event interrupts */
	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);

	/* Disable IOMMU hardware itself */
344
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
J
Joerg Roedel 已提交
345 346
}

347 348 349 350
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
J
Joerg Roedel 已提交
351
static u8 __iomem * __init iommu_map_mmio_space(u64 address)
352
{
353 354 355 356
	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
			address);
		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
357
		return NULL;
358
	}
359

J
Joerg Roedel 已提交
360
	return (u8 __iomem *)ioremap_nocache(address, MMIO_REGION_LENGTH);
361 362 363 364 365 366 367 368 369
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

370 371 372 373 374 375 376 377 378
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

379 380 381 382 383 384 385 386
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

387 388 389 390
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
391 392 393 394 395
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
396
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
397 398 399 400

	return 0;
}

401 402 403 404
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
425
			/* all the above subfield types refer to device ids */
426
			update_last_devid(dev->devid);
427 428 429 430
			break;
		default:
			break;
		}
431
		p += ivhd_entry_length(p);
432 433 434 435 436 437 438
	}

	WARN_ON(p != end);

	return 0;
}

439 440 441 442 443
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
444 445 446 447 448 449 450 451 452 453 454 455
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
456
	if (checksum != 0)
457
		/* ACPI table corrupt */
458
		return -ENODEV;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
493 494
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
495
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
496 497 498 499 500
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

501
	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
502

503 504 505
	return cmd_buf;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * This function resets the command buffer if the IOMMU stopped fetching
 * commands from it.
 */
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);

	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

520 521 522 523 524 525 526 527 528 529 530
/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
531
	entry |= MMIO_CMD_SIZE_512;
532

533
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
534
		    &entry, sizeof(entry));
535

536
	amd_iommu_reset_cmd_buffer(iommu);
537
	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
538 539 540 541
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
542
	free_pages((unsigned long)iommu->cmd_buf,
543
		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
544 545
}

546 547 548 549 550 551 552 553 554
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

555 556
	iommu->evt_buf_size = EVT_BUFFER_SIZE;

557 558 559 560 561 562 563 564 565
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

566
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
567

568 569 570
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

571 572 573 574
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

575
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
576 577 578 579 580 581 582
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
{
	iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(PPR_LOG_SIZE));

	if (iommu->ppr_log == NULL)
		return NULL;

	return iommu->ppr_log;
}

static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
	u64 entry;

	if (iommu->ppr_log == NULL)
		return;

	entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;

	memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
		    &entry, sizeof(entry));

	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
	iommu_feature_enable(iommu, CONTROL_PPR_EN);
}

static void __init free_ppr_log(struct amd_iommu *iommu)
{
	if (iommu->ppr_log == NULL)
		return;

	free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}

623 624 625 626 627 628 629 630
static void iommu_enable_gt(struct amd_iommu *iommu)
{
	if (!iommu_feature(iommu, FEATURE_GT))
		return;

	iommu_feature_enable(iommu, CONTROL_GT_EN);
}

631
/* sets a specific bit in the device table entry. */
632 633
static void set_dev_entry_bit(u16 devid, u8 bit)
{
634 635
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
636

637
	amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
638 639
}

640 641
static int get_dev_entry_bit(u16 devid, u8 bit)
{
642 643
	int i = (bit >> 6) & 0x03;
	int _bit = bit & 0x3f;
644

645
	return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
646 647 648 649 650 651 652 653 654 655 656 657 658 659
}


void amd_iommu_apply_erratum_63(u16 devid)
{
	int sysmgt;

	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);

	if (sysmgt == 0x01)
		set_dev_entry_bit(devid, DEV_ENTRY_IW);
}

660 661 662 663 664 665
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

666 667 668 669
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
670 671
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

688 689
	amd_iommu_apply_erratum_63(devid);

690
	set_iommu_for_device(iommu, devid);
691 692
}

693 694 695 696
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
697 698 699 700 701 702 703 704
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
705 706 707 708 709
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
710 711 712 713 714 715
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

716 717 718 719
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
720 721 722 723 724
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
725 726
	u16 devid = 0, devid_start = 0, devid_to = 0;
	u32 dev_i, ext_flags = 0;
727
	bool alias = false;
728 729 730
	struct ivhd_entry *e;

	/*
731
	 * First save the recommended feature enable bits from ACPI
732
	 */
733
	iommu->acpi_flags = h->flags;
734 735 736 737 738 739 740

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

741

742 743 744 745
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
746 747 748 749 750 751 752 753 754 755 756

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

757 758
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
759 760
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
761 762
			break;
		case IVHD_DEV_SELECT:
763 764 765 766 767 768 769 770

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

771
			devid = e->devid;
772
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
773 774
			break;
		case IVHD_DEV_SELECT_RANGE_START:
775 776 777 778 779 780 781 782

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

783 784 785
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
786
			alias = false;
787 788
			break;
		case IVHD_DEV_ALIAS:
789 790 791 792 793 794 795 796 797 798 799

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

800 801
			devid = e->devid;
			devid_to = e->ext >> 8;
802
			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
803
			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
804 805 806
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
807 808 809 810 811 812 813 814 815 816 817 818

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

819 820 821 822
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
823
			alias = true;
824 825
			break;
		case IVHD_DEV_EXT_SELECT:
826 827 828 829 830 831 832 833

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

834
			devid = e->devid;
835 836
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
837 838
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
839 840 841 842 843 844 845 846

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

847 848 849
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
850
			alias = false;
851 852
			break;
		case IVHD_DEV_RANGE_END:
853 854 855 856 857 858

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

859 860
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
861
				if (alias) {
862
					amd_iommu_alias_table[dev_i] = devid_to;
863 864 865 866 867
					set_dev_entry_from_acpi(iommu,
						devid_to, flags, ext_flags);
				}
				set_dev_entry_from_acpi(iommu, dev_i,
							flags, ext_flags);
868 869 870 871 872 873
			}
			break;
		default:
			break;
		}

874
		p += ivhd_entry_length(p);
875 876 877
	}
}

878
/* Initializes the device->iommu mapping for the driver */
879 880
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
881
	u32 i;
882 883 884 885 886 887 888

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

889 890 891
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
892
	free_event_buffer(iommu);
893
	free_ppr_log(iommu);
894 895 896 897 898 899 900
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

901
	for_each_iommu_safe(iommu, next) {
902 903 904 905 906 907
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

908 909 910 911 912
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
913 914 915
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
916 917

	/* Add IOMMU to internal data structures */
918
	list_add_tail(&iommu->list, &amd_iommu_list);
919 920 921 922 923 924 925 926 927
	iommu->index             = amd_iommus_present++;

	if (unlikely(iommu->index >= MAX_IOMMUS)) {
		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
		return -ENOSYS;
	}

	/* Index is fine - add IOMMU to the array */
	amd_iommus[iommu->index] = iommu;
928 929 930 931

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
932
	iommu->devid   = h->devid;
933
	iommu->cap_ptr = h->cap_ptr;
934
	iommu->pci_seg = h->pci_seg;
935 936 937 938 939 940 941 942 943
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

944 945 946 947
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

948 949
	iommu->int_enabled = false;

950 951 952
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

953
	return 0;
954 955
}

956 957 958 959
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
960 961 962 963 964 965 966 967 968 969 970 971 972 973
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
974

975
			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
976 977 978 979 980 981 982
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

983
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
984 985
			if (iommu == NULL)
				return -ENOMEM;
986

987
			ret = init_iommu_one(iommu, h);
988 989
			if (ret)
				return ret;
990 991 992 993 994 995 996 997 998 999 1000 1001
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int iommu_init_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
	u32 range, misc, low, high;

	iommu->dev = pci_get_bus_and_slot(PCI_BUS(iommu->devid),
					  iommu->devid & 0xff);
	if (!iommu->dev)
		return -ENODEV;

	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);

	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));

	if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
		amd_iommu_iotlb_sup = false;

	/* read extended feature bits */
	low  = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
	high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);

	iommu->features = ((u64)high << 32) | low;

	if (iommu_feature(iommu, FEATURE_GT)) {
		int glxval;
		u32 pasids;
		u64 shift;

		shift   = iommu->features & FEATURE_PASID_MASK;
		shift >>= FEATURE_PASID_SHIFT;
		pasids  = (1 << shift);

		amd_iommu_max_pasids = min(amd_iommu_max_pasids, pasids);

		glxval   = iommu->features & FEATURE_GLXVAL_MASK;
		glxval >>= FEATURE_GLXVAL_SHIFT;

		if (amd_iommu_max_glx_val == -1)
			amd_iommu_max_glx_val = glxval;
		else
			amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
	}

	if (iommu_feature(iommu, FEATURE_GT) &&
	    iommu_feature(iommu, FEATURE_PPR)) {
		iommu->is_iommu_v2   = true;
		amd_iommu_v2_present = true;
	}

	if (iommu_feature(iommu, FEATURE_PPR)) {
		iommu->ppr_log = alloc_ppr_log(iommu);
		if (!iommu->ppr_log)
			return -ENOMEM;
	}

	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
		amd_iommu_np_cache = true;

	if (is_rd890_iommu(iommu->dev)) {
		int i, j;

		iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
				PCI_DEVFN(0, 0));

		/*
		 * Some rd890 systems may not be fully reconfigured by the
		 * BIOS, so it's necessary for us to store this information so
		 * it can be reprogrammed on resume
		 */
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
				&iommu->stored_addr_lo);
		pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
				&iommu->stored_addr_hi);

		/* Low bit locks writes to configuration space */
		iommu->stored_addr_lo &= ~1;

		for (i = 0; i < 6; i++)
			for (j = 0; j < 0x12; j++)
				iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);

		for (i = 0; i < 0x83; i++)
			iommu->stored_l2[i] = iommu_read_l2(iommu, i);
	}

	return pci_enable_device(iommu->dev);
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static void print_iommu_info(void)
{
	static const char * const feat_str[] = {
		"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
		"IA", "GA", "HE", "PC"
	};
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		int i;

		pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
			dev_name(&iommu->dev->dev), iommu->cap_ptr);

		if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
			pr_info("AMD-Vi:  Extended features: ");
			for (i = 0; ARRAY_SIZE(feat_str); ++i) {
				if (iommu_feature(iommu, (1ULL << i)))
					pr_cont(" %s", feat_str[i]);
			}
		}
		pr_cont("\n");
	}
}

1123
static int __init amd_iommu_init_pci(void)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_pci(iommu);
		if (ret)
			break;
	}

	ret = amd_iommu_init_devices();

1136 1137
	print_iommu_info();

1138 1139 1140
	return ret;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

1150
static int iommu_setup_msi(struct amd_iommu *iommu)
1151 1152 1153
{
	int r;

1154 1155 1156
	r = pci_enable_msi(iommu->dev);
	if (r)
		return r;
1157

1158 1159 1160 1161 1162
	r = request_threaded_irq(iommu->dev->irq,
				 amd_iommu_int_handler,
				 amd_iommu_int_thread,
				 0, "AMD-Vi",
				 iommu->dev);
1163 1164 1165

	if (r) {
		pci_disable_msi(iommu->dev);
1166
		return r;
1167 1168
	}

1169
	iommu->int_enabled = true;
1170

1171 1172 1173
	return 0;
}

1174
static int iommu_init_msi(struct amd_iommu *iommu)
1175
{
1176 1177
	int ret;

1178
	if (iommu->int_enabled)
1179
		goto enable_faults;
1180

1181
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1182 1183 1184 1185 1186 1187
		ret = iommu_setup_msi(iommu);
	else
		ret = -ENODEV;

	if (ret)
		return ret;
1188

1189 1190
enable_faults:
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1191

1192 1193 1194 1195
	if (iommu->ppr_log != NULL)
		iommu_feature_enable(iommu, CONTROL_PPFINT_EN);

	return 0;
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

1216
/* called when we find an exclusion range definition in ACPI */
1217 1218 1219 1220 1221 1222 1223 1224 1225
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
1226
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

1240
/* called for unity map ACPI definition */
1241 1242
static int __init init_unity_map_range(struct ivmd_header *m)
{
J
Joerg Roedel 已提交
1243
	struct unity_map_entry *e = NULL;
1244
	char *s;
1245 1246 1247 1248 1249 1250 1251

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
1252 1253
		kfree(e);
		return 0;
1254
	case ACPI_IVMD_TYPE:
1255
		s = "IVMD_TYPEi\t\t\t";
1256 1257 1258
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
1259
		s = "IVMD_TYPE_ALL\t\t";
1260 1261 1262 1263
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1264
		s = "IVMD_TYPE_RANGE\t\t";
1265 1266 1267 1268 1269 1270 1271 1272
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1273 1274 1275 1276 1277 1278 1279
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1280 1281 1282 1283 1284
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1285
/* iterates over all memory definitions we find in the ACPI table */
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1307 1308 1309 1310 1311 1312
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
1313
	u32 devid;
1314 1315 1316 1317 1318 1319 1320

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void iommu_init_flags(struct amd_iommu *iommu)
{
	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1343 1344 1345

	/* Set IOTLB invalidation timeout to 1s */
	iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1346 1347
}

1348
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1349
{
1350 1351
	int i, j;
	u32 ioc_feature_control;
1352
	struct pci_dev *pdev = iommu->root_pdev;
1353 1354

	/* RD890 BIOSes may not have completely reconfigured the iommu */
1355
	if (!is_rd890_iommu(iommu->dev) || !pdev)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		return;

	/*
	 * First, we need to ensure that the iommu is enabled. This is
	 * controlled by a register in the northbridge
	 */

	/* Select Northbridge indirect register 0x75 and enable writing */
	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);

	/* Enable the iommu */
	if (!(ioc_feature_control & 0x1))
		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);

	/* Restore the iommu BAR */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo);
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
			       iommu->stored_addr_hi);

	/* Restore the l1 indirect regs for each of the 6 l1s */
	for (i = 0; i < 6; i++)
		for (j = 0; j < 0x12; j++)
			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);

	/* Restore the l2 indirect regs */
	for (i = 0; i < 0x83; i++)
		iommu_write_l2(iommu, i, iommu->stored_l2[i]);

	/* Lock PCI setup registers */
	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
			       iommu->stored_addr_lo | 1);
1389 1390
}

1391 1392 1393 1394
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1395
static void early_enable_iommus(void)
1396 1397 1398
{
	struct amd_iommu *iommu;

1399
	for_each_iommu(iommu) {
1400
		iommu_disable(iommu);
1401
		iommu_init_flags(iommu);
1402 1403 1404
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
1405 1406
		iommu_set_exclusion_range(iommu);
		iommu_enable(iommu);
1407
		iommu_flush_all_caches(iommu);
1408 1409 1410
	}
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static void enable_iommus_v2(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu) {
		iommu_enable_ppr_log(iommu);
		iommu_enable_gt(iommu);
	}
}

static void enable_iommus(void)
{
	early_enable_iommus();

	enable_iommus_v2();
}

1428 1429 1430 1431 1432 1433 1434 1435
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

1436 1437 1438 1439 1440
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

1441
static void amd_iommu_resume(void)
1442
{
1443 1444 1445 1446 1447
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_apply_resume_quirks(iommu);

1448 1449
	/* re-load the hardware */
	enable_iommus();
1450 1451

	amd_iommu_enable_interrupts();
1452 1453
}

1454
static int amd_iommu_suspend(void)
1455
{
1456 1457 1458 1459
	/* disable IOMMUs to go out of the way for BIOS */
	disable_iommus();

	return 0;
1460 1461
}

1462
static struct syscore_ops amd_iommu_syscore_ops = {
1463 1464 1465 1466
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static void __init free_on_init_error(void)
{
	amd_iommu_uninit_devices();

	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));

	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));

	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));

	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));

	free_iommu_all();

	free_unity_maps();

#ifdef CONFIG_GART_IOMMU
	/*
	 * We failed to initialize the AMD IOMMU - try fallback to GART
	 * if possible.
	 */
	gart_iommu_init();

#endif
}

1497
/*
1498 1499 1500
 * This is the hardware init function for AMD IOMMU in the system.
 * This function is called either from amd_iommu_init or from the interrupt
 * remapping setup code.
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
1519 1520
 * After everything is set up the IOMMUs are enabled and the necessary
 * hotplug and suspend notifiers are registered.
1521
 */
1522
static int __init early_amd_iommu_init(void)
1523
{
1524 1525 1526
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;
1527 1528
	int i, ret = 0;

1529
	if (!amd_iommu_detected)
1530 1531
		return -ENODEV;

1532 1533 1534 1535 1536 1537 1538 1539 1540
	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return -ENODEV;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return -EINVAL;
	}

1541 1542 1543 1544 1545
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
1546 1547
	ret = find_last_devid_acpi(ivrs_base);
	if (ret)
1548 1549
		goto out;

1550 1551 1552
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1553 1554

	/* Device table - directly used by all IOMMUs */
1555
	ret = -ENOMEM;
1556
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
1568
		goto out;
1569 1570

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1571 1572
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1573 1574
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
1575
		goto out;
1576

1577 1578
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1579 1580
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
1581
		goto out;
1582

1583 1584 1585
	/* init the device table */
	init_device_table();

1586
	/*
1587
	 * let all alias entries point to itself
1588
	 */
1589
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1590 1591 1592 1593 1594 1595 1596 1597
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

1598 1599
	spin_lock_init(&amd_iommu_pd_lock);

1600 1601 1602 1603
	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
1604 1605
	ret = init_iommu_all(ivrs_base);
	if (ret)
1606
		goto out;
1607

1608 1609
	ret = init_memory_definitions(ivrs_base);
	if (ret)
1610
		goto out;
1611

1612
out:
1613 1614 1615 1616
	/* Don't leak any ACPI memory */
	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
	ivrs_base = NULL;

1617 1618 1619
	return ret;
}

1620
static int amd_iommu_enable_interrupts(void)
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
{
	struct amd_iommu *iommu;
	int ret = 0;

	for_each_iommu(iommu) {
		ret = iommu_init_msi(iommu);
		if (ret)
			goto out;
	}

out:
	return ret;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static bool detect_ivrs(void)
{
	struct acpi_table_header *ivrs_base;
	acpi_size ivrs_size;
	acpi_status status;

	status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
	if (status == AE_NOT_FOUND)
		return false;
	else if (ACPI_FAILURE(status)) {
		const char *err = acpi_format_exception(status);
		pr_err("AMD-Vi: IVRS table error: %s\n", err);
		return false;
	}

	early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);

1652 1653 1654
	/* Make sure ACS will be enabled during PCI probe */
	pci_request_acs();

1655 1656 1657
	return true;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static int amd_iommu_init_dma(void)
{
	int ret;

	if (iommu_pass_through)
		ret = amd_iommu_init_passthrough();
	else
		ret = amd_iommu_init_dma_ops();

	if (ret)
		return ret;

	amd_iommu_init_api();

	amd_iommu_init_notifier();

	return 0;
}

1677
/****************************************************************************
1678
 *
1679 1680 1681 1682 1683
 * AMD IOMMU Initialization State Machine
 *
 ****************************************************************************/

static int __init state_next(void)
1684 1685 1686
{
	int ret = 0;

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	switch (init_state) {
	case IOMMU_START_STATE:
		if (!detect_ivrs()) {
			init_state	= IOMMU_NOT_FOUND;
			ret		= -ENODEV;
		} else {
			init_state	= IOMMU_IVRS_DETECTED;
		}
		break;
	case IOMMU_IVRS_DETECTED:
		ret = early_amd_iommu_init();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
		break;
	case IOMMU_ACPI_FINISHED:
		early_enable_iommus();
		register_syscore_ops(&amd_iommu_syscore_ops);
		x86_platform.iommu_shutdown = disable_iommus;
		init_state = IOMMU_ENABLED;
		break;
	case IOMMU_ENABLED:
		ret = amd_iommu_init_pci();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
		enable_iommus_v2();
		break;
	case IOMMU_PCI_INIT:
		ret = amd_iommu_enable_interrupts();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
		break;
	case IOMMU_INTERRUPTS_EN:
		ret = amd_iommu_init_dma();
		init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
		break;
	case IOMMU_DMA_OPS:
		init_state = IOMMU_INITIALIZED;
		break;
	case IOMMU_INITIALIZED:
		/* Nothing to do */
		break;
	case IOMMU_NOT_FOUND:
	case IOMMU_INIT_ERROR:
		/* Error states => do nothing */
		ret = -EINVAL;
		break;
	default:
		/* Unknown state */
		BUG();
	}
1734

1735 1736
	return ret;
}
1737

1738 1739 1740
static int __init iommu_go_to_state(enum iommu_init_state state)
{
	int ret = 0;
1741

1742 1743 1744 1745 1746 1747
	while (init_state != state) {
		ret = state_next();
		if (init_state == IOMMU_NOT_FOUND ||
		    init_state == IOMMU_INIT_ERROR)
			break;
	}
1748

1749
	return ret;
1750
}
1751

1752 1753


1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 */
static int __init amd_iommu_init(void)
{
	int ret;

	ret = iommu_go_to_state(IOMMU_INITIALIZED);
	if (ret) {
		disable_iommus();
		free_on_init_error();
	}

	return ret;
1770 1771
}

1772 1773 1774 1775 1776 1777 1778
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1779
int __init amd_iommu_detect(void)
1780
{
1781
	int ret;
1782

1783
	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1784
		return -ENODEV;
1785

1786
	if (amd_iommu_disabled)
1787
		return -ENODEV;
1788

1789 1790 1791
	ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
	if (ret)
		return ret;
1792

1793 1794 1795 1796 1797
	amd_iommu_detected = true;
	iommu_detected = 1;
	x86_init.iommu.iommu_init = amd_iommu_init;

	return 0;
1798 1799
}

1800 1801 1802 1803 1804 1805 1806
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1807 1808 1809 1810 1811 1812 1813
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1814 1815 1816
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1817
		if (strncmp(str, "fullflush", 9) == 0)
1818
			amd_iommu_unmap_flush = true;
1819 1820
		if (strncmp(str, "off", 3) == 0)
			amd_iommu_disabled = true;
1821 1822
		if (strncmp(str, "force_isolation", 15) == 0)
			amd_iommu_force_isolation = true;
1823 1824 1825 1826 1827
	}

	return 1;
}

1828
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1829
__setup("amd_iommu=", parse_amd_iommu_options);
1830 1831 1832

IOMMU_INIT_FINISH(amd_iommu_detect,
		  gart_iommu_hole_init,
J
Joerg Roedel 已提交
1833 1834
		  NULL,
		  NULL);
1835 1836 1837 1838 1839 1840

bool amd_iommu_v2_supported(void)
{
	return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);