netdev.c 76.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) 82576 Virtual Function Linux driver
G
Greg Rose 已提交
4
  Copyright(c) 2009 - 2010 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40 41 42 43
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
44
#include <linux/prefetch.h>
45 46 47

#include "igbvf.h"

W
Williams, Mitch A 已提交
48
#define DRV_VERSION "2.0.0-k"
49 50 51 52
char igbvf_driver_name[] = "igbvf";
const char igbvf_driver_version[] = DRV_VERSION;
static const char igbvf_driver_string[] =
				"Intel(R) Virtual Function Network Driver";
G
Greg Rose 已提交
53 54
static const char igbvf_copyright[] =
				"Copyright (c) 2009 - 2010 Intel Corporation.";
55 56

static int igbvf_poll(struct napi_struct *napi, int budget);
57 58 59
static void igbvf_reset(struct igbvf_adapter *);
static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60 61 62

static struct igbvf_info igbvf_vf_info = {
	.mac                    = e1000_vfadapt,
63
	.flags                  = 0,
64 65 66 67
	.pba                    = 10,
	.init_ops               = e1000_init_function_pointers_vf,
};

68 69 70 71 72 73 74
static struct igbvf_info igbvf_i350_vf_info = {
	.mac			= e1000_vfadapt_i350,
	.flags			= 0,
	.pba			= 10,
	.init_ops		= e1000_init_function_pointers_vf,
};

75 76
static const struct igbvf_info *igbvf_info_tbl[] = {
	[board_vf]              = &igbvf_vf_info,
77
	[board_i350_vf]		= &igbvf_i350_vf_info,
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
};

/**
 * igbvf_desc_unused - calculate if we have unused descriptors
 **/
static int igbvf_desc_unused(struct igbvf_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
 * igbvf_receive_skb - helper function to handle Rx indications
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void igbvf_receive_skb(struct igbvf_adapter *adapter,
                              struct net_device *netdev,
                              struct sk_buff *skb,
                              u32 status, u16 vlan)
{
J
Jiri Pirko 已提交
103 104 105 106 107 108
	if (status & E1000_RXD_STAT_VP) {
		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;

		__vlan_hwaccel_put_tag(skb, vid);
	}
	netif_receive_skb(skb);
109 110 111 112 113
}

static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
                                         u32 status_err, struct sk_buff *skb)
{
114
	skb_checksum_none_assert(skb);
115 116

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
117 118
	if ((status_err & E1000_RXD_STAT_IXSM) ||
	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119
		return;
120

121 122 123 124 125 126 127
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	adapter->hw_csum_good++;
}

/**
 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 * @rx_ring: address of ring structure to repopulate
 * @cleaned_count: number of buffers to repopulate
 **/
static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
                                   int cleaned_count)
{
	struct igbvf_adapter *adapter = rx_ring->adapter;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc;
	struct igbvf_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
	int bufsz;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	if (adapter->rx_ps_hdr_size)
		bufsz = adapter->rx_ps_hdr_size;
	else
		bufsz = adapter->rx_buffer_len;

	while (cleaned_count--) {
		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);

		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
			if (!buffer_info->page) {
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
			}
			buffer_info->page_dma =
176
				dma_map_page(&pdev->dev, buffer_info->page,
177 178
				             buffer_info->page_offset,
				             PAGE_SIZE / 2,
179
					     DMA_FROM_DEVICE);
180 181 182
		}

		if (!buffer_info->skb) {
183
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184 185 186 187 188 189
			if (!skb) {
				adapter->alloc_rx_buff_failed++;
				goto no_buffers;
			}

			buffer_info->skb = skb;
190
			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191
			                                  bufsz,
192
							  DMA_FROM_DEVICE);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
		if (adapter->rx_ps_hdr_size) {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
                               int *work_done, int work_to_do)
{
	struct igbvf_ring *rx_ring = adapter->rx_ring;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_adv_rx_desc *rx_desc, *next_rxd;
	struct igbvf_buffer *buffer_info, *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int i;
	u32 length, hlen, staterr;

	i = rx_ring->next_to_clean;
	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
259
		rmb(); /* read descriptor and rx_buffer_info after status DD */
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

		buffer_info = &rx_ring->buffer_info[i];

		/* HW will not DMA in data larger than the given buffer, even
		 * if it parses the (NFS, of course) header to be larger.  In
		 * that case, it fills the header buffer and spills the rest
		 * into the page.
		 */
		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
		if (hlen > adapter->rx_ps_hdr_size)
			hlen = adapter->rx_ps_hdr_size;

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;
		if (!adapter->rx_ps_hdr_size) {
281
			dma_unmap_single(&pdev->dev, buffer_info->dma,
282
			                 adapter->rx_buffer_len,
283
					 DMA_FROM_DEVICE);
284 285 286 287 288 289
			buffer_info->dma = 0;
			skb_put(skb, length);
			goto send_up;
		}

		if (!skb_shinfo(skb)->nr_frags) {
290
			dma_unmap_single(&pdev->dev, buffer_info->dma,
291
			                 adapter->rx_ps_hdr_size,
292
					 DMA_FROM_DEVICE);
293 294 295 296
			skb_put(skb, hlen);
		}

		if (length) {
297
			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298
			               PAGE_SIZE / 2,
299
				       DMA_FROM_DEVICE);
300 301
			buffer_info->page_dma = 0;

K
Koki Sanagi 已提交
302
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
			                   buffer_info->page,
			                   buffer_info->page_offset,
			                   length);

			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
			    (page_count(buffer_info->page) != 1))
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);

			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}
send_up:
		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];

		if (!(staterr & E1000_RXD_STAT_EOP)) {
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

		igbvf_rx_checksum_adv(adapter, staterr, skb);

		skb->protocol = eth_type_trans(skb, netdev);

		igbvf_receive_skb(adapter, netdev, skb, staterr,
		                  rx_desc->wb.upper.vlan);

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}

	rx_ring->next_to_clean = i;
	cleaned_count = igbvf_desc_unused(rx_ring);

	if (cleaned_count)
		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);

	adapter->total_rx_packets += total_packets;
	adapter->total_rx_bytes += total_bytes;
	adapter->net_stats.rx_bytes += total_bytes;
	adapter->net_stats.rx_packets += total_packets;
	return cleaned;
}

static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
                            struct igbvf_buffer *buffer_info)
{
380 381
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
382
			dma_unmap_page(&adapter->pdev->dev,
383 384
				       buffer_info->dma,
				       buffer_info->length,
385
				       DMA_TO_DEVICE);
386
		else
387
			dma_unmap_single(&adapter->pdev->dev,
388 389
					 buffer_info->dma,
					 buffer_info->length,
390
					 DMA_TO_DEVICE);
391 392
		buffer_info->dma = 0;
	}
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
}

/**
 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
                             struct igbvf_ring *tx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size;

	size = sizeof(struct igbvf_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
413
	tx_ring->buffer_info = vzalloc(size);
414 415 416 417 418 419 420
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

421 422
	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	if (!tx_ring->desc)
		goto err;

	tx_ring->adapter = adapter;
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
	dev_err(&adapter->pdev->dev,
	        "Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
			     struct igbvf_ring *rx_ring)
{
	struct pci_dev *pdev = adapter->pdev;
	int size, desc_len;

	size = sizeof(struct igbvf_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
452
	rx_ring->buffer_info = vzalloc(size);
453 454 455 456 457 458 459 460 461
	if (!rx_ring->buffer_info)
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

462 463
	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	rx_ring->adapter = adapter;

	return 0;

err:
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
	dev_err(&adapter->pdev->dev,
	        "Unable to allocate memory for the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igbvf_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
{
	struct igbvf_adapter *adapter = tx_ring->adapter;
	struct igbvf_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		igbvf_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct igbvf_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * igbvf_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: ring to free resources from
 *
 * Free all transmit software resources
 **/
void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
{
	struct pci_dev *pdev = tx_ring->adapter->pdev;

	igbvf_clean_tx_ring(tx_ring);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

531 532
	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	tx_ring->desc = NULL;
}

/**
 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
{
	struct igbvf_adapter *adapter = rx_ring->adapter;
	struct igbvf_buffer *buffer_info;
	struct pci_dev *pdev = adapter->pdev;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->rx_ps_hdr_size){
557
				dma_unmap_single(&pdev->dev, buffer_info->dma,
558
				                 adapter->rx_ps_hdr_size,
559
						 DMA_FROM_DEVICE);
560
			} else {
561
				dma_unmap_single(&pdev->dev, buffer_info->dma,
562
				                 adapter->rx_buffer_len,
563
						 DMA_FROM_DEVICE);
564 565 566 567 568 569 570 571 572 573 574
			}
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		if (buffer_info->page) {
			if (buffer_info->page_dma)
575 576
				dma_unmap_page(&pdev->dev,
					       buffer_info->page_dma,
577
				               PAGE_SIZE / 2,
578
					       DMA_FROM_DEVICE);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
			put_page(buffer_info->page);
			buffer_info->page = NULL;
			buffer_info->page_dma = 0;
			buffer_info->page_offset = 0;
		}
	}

	size = sizeof(struct igbvf_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

/**
 * igbvf_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/

void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
{
	struct pci_dev *pdev = rx_ring->adapter->pdev;

	igbvf_clean_rx_ring(rx_ring);

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
	                  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * igbvf_update_itr - update the dynamic ITR value based on statistics
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
 **/
static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
                                     u16 itr_setting, int packets,
                                     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000)
				retval = bulk_latency;
			else if ((packets < 10) || ((bytes/packets) > 1200))
				retval = bulk_latency;
			else if ((packets > 35))
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void igbvf_set_itr(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
	                                   adapter->total_tx_packets,
	                                   adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
	                                   adapter->total_rx_packets,
	                                   adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

	if (new_itr != adapter->itr) {
		/*
		 * this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing
		 */
		new_itr = new_itr > adapter->itr ?
		             min(adapter->itr + (new_itr >> 2), new_itr) :
		             new_itr;
		adapter->itr = new_itr;
		adapter->rx_ring->itr_val = 1952;

		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
			ew32(ITR, 1952);
	}
}

/**
 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 * returns true if ring is completely cleaned
 **/
static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
{
	struct igbvf_adapter *adapter = tx_ring->adapter;
	struct net_device *netdev = adapter->netdev;
	struct igbvf_buffer *buffer_info;
	struct sk_buff *skb;
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int i, eop, count = 0;
	bool cleaned = false;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
760
		rmb();	/* read buffer_info after eop_desc status */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		for (cleaned = false; !cleaned; count++) {
			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;

				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
				            skb->len;
				total_packets += segs;
				total_bytes += bytecount;
			}

			igbvf_put_txbuf(adapter, buffer_info);
			tx_desc->wb.status = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

	if (unlikely(count &&
	             netif_carrier_ok(netdev) &&
	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	adapter->net_stats.tx_bytes += total_bytes;
	adapter->net_stats.tx_packets += total_packets;
808
	return count < tx_ring->count;
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
}

static irqreturn_t igbvf_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->int_counter1++;

	netif_carrier_off(netdev);
	hw->mac.get_link_status = 1;
	if (!test_bit(__IGBVF_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer, jiffies + 1);

	ew32(EIMS, adapter->eims_other);

	return IRQ_HANDLED;
}

static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct igbvf_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	/* auto mask will automatically reenable the interrupt when we write
	 * EICS */
	if (!igbvf_clean_tx_irq(tx_ring))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(EICS, tx_ring->eims_value);
	else
		ew32(EIMS, tx_ring->eims_value);

	return IRQ_HANDLED;
}

static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	adapter->int_counter0++;

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(adapter->rx_ring->itr_val,
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
		__napi_schedule(&adapter->rx_ring->napi);
	}

	return IRQ_HANDLED;
}

#define IGBVF_NO_QUEUE -1

static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
                                int tx_queue, int msix_vector)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ivar, index;

	/* 82576 uses a table-based method for assigning vectors.
	   Each queue has a single entry in the table to which we write
	   a vector number along with a "valid" bit.  Sadly, the layout
	   of the table is somewhat counterintuitive. */
	if (rx_queue > IGBVF_NO_QUEUE) {
		index = (rx_queue >> 1);
		ivar = array_er32(IVAR0, index);
		if (rx_queue & 0x1) {
			/* vector goes into third byte of register */
			ivar = ivar & 0xFF00FFFF;
			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
		} else {
			/* vector goes into low byte of register */
			ivar = ivar & 0xFFFFFF00;
			ivar |= msix_vector | E1000_IVAR_VALID;
		}
		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
		array_ew32(IVAR0, index, ivar);
	}
	if (tx_queue > IGBVF_NO_QUEUE) {
		index = (tx_queue >> 1);
		ivar = array_er32(IVAR0, index);
		if (tx_queue & 0x1) {
			/* vector goes into high byte of register */
			ivar = ivar & 0x00FFFFFF;
			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
		} else {
			/* vector goes into second byte of register */
			ivar = ivar & 0xFFFF00FF;
			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
		}
		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
		array_ew32(IVAR0, index, ivar);
	}
}

/**
 * igbvf_configure_msix - Configure MSI-X hardware
 *
 * igbvf_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igbvf_configure_msix(struct igbvf_adapter *adapter)
{
	u32 tmp;
	struct e1000_hw *hw = &adapter->hw;
	struct igbvf_ring *tx_ring = adapter->tx_ring;
	struct igbvf_ring *rx_ring = adapter->rx_ring;
	int vector = 0;

	adapter->eims_enable_mask = 0;

	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
	adapter->eims_enable_mask |= tx_ring->eims_value;
	if (tx_ring->itr_val)
		writel(tx_ring->itr_val,
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1952, hw->hw_addr + tx_ring->itr_register);

	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
	adapter->eims_enable_mask |= rx_ring->eims_value;
	if (rx_ring->itr_val)
		writel(rx_ring->itr_val,
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1952, hw->hw_addr + rx_ring->itr_register);

	/* set vector for other causes, i.e. link changes */

	tmp = (vector++ | E1000_IVAR_VALID);

	ew32(IVAR_MISC, tmp);

	adapter->eims_enable_mask = (1 << (vector)) - 1;
	adapter->eims_other = 1 << (vector - 1);
	e1e_flush();
}

963
static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964 965 966 967 968 969 970 971 972 973 974 975 976 977
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	}
}

/**
 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
978
static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	int err = -ENOMEM;
	int i;

	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
	                                GFP_KERNEL);
	if (adapter->msix_entries) {
		for (i = 0; i < 3; i++)
			adapter->msix_entries[i].entry = i;

		err = pci_enable_msix(adapter->pdev,
		                      adapter->msix_entries, 3);
	}

	if (err) {
		/* MSI-X failed */
		dev_err(&adapter->pdev->dev,
		        "Failed to initialize MSI-X interrupts.\n");
		igbvf_reset_interrupt_capability(adapter);
	}
}

/**
 * igbvf_request_msix - Initialize MSI-X interrupts
 *
 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igbvf_request_msix(struct igbvf_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
	} else {
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	}

	err = request_irq(adapter->msix_entries[vector].vector,
1022
	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023 1024 1025 1026 1027 1028 1029 1030 1031
	                  netdev);
	if (err)
		goto out;

	adapter->tx_ring->itr_register = E1000_EITR(vector);
	adapter->tx_ring->itr_val = 1952;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1032
	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033 1034 1035 1036 1037 1038 1039 1040 1041
	                  netdev);
	if (err)
		goto out;

	adapter->rx_ring->itr_register = E1000_EITR(vector);
	adapter->rx_ring->itr_val = 1952;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1042
	                  igbvf_msix_other, 0, netdev->name, netdev);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (err)
		goto out;

	igbvf_configure_msix(adapter);
	return 0;
out:
	return err;
}

/**
 * igbvf_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		return -ENOMEM;

	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
	if (!adapter->rx_ring) {
		kfree(adapter->tx_ring);
		return -ENOMEM;
	}

	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);

	return 0;
}

/**
 * igbvf_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igbvf_request_irq(struct igbvf_adapter *adapter)
{
	int err = -1;

	/* igbvf supports msi-x only */
	if (adapter->msix_entries)
		err = igbvf_request_msix(adapter);

	if (!err)
		return err;

	dev_err(&adapter->pdev->dev,
	        "Unable to allocate interrupt, Error: %d\n", err);

	return err;
}

static void igbvf_free_irq(struct igbvf_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int vector;

	if (adapter->msix_entries) {
		for (vector = 0; vector < 3; vector++)
			free_irq(adapter->msix_entries[vector].vector, netdev);
	}
}

/**
 * igbvf_irq_disable - Mask off interrupt generation on the NIC
 **/
static void igbvf_irq_disable(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(EIMC, ~0);

	if (adapter->msix_entries)
		ew32(EIAC, 0);
}

/**
 * igbvf_irq_enable - Enable default interrupt generation settings
 **/
static void igbvf_irq_enable(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(EIAC, adapter->eims_enable_mask);
	ew32(EIAM, adapter->eims_enable_mask);
	ew32(EIMS, adapter->eims_enable_mask);
}

/**
 * igbvf_poll - NAPI Rx polling callback
 * @napi: struct associated with this polling callback
 * @budget: amount of packets driver is allowed to process this poll
 **/
static int igbvf_poll(struct napi_struct *napi, int budget)
{
	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
	struct igbvf_adapter *adapter = rx_ring->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int work_done = 0;

	igbvf_clean_rx_irq(adapter, &work_done, budget);

	/* If not enough Rx work done, exit the polling mode */
	if (work_done < budget) {
		napi_complete(napi);

		if (adapter->itr_setting & 3)
			igbvf_set_itr(adapter);

		if (!test_bit(__IGBVF_DOWN, &adapter->state))
			ew32(EIMS, adapter->rx_ring->eims_value);
	}

	return work_done;
}

/**
 * igbvf_set_rlpml - set receive large packet maximum length
 * @adapter: board private structure
 *
 * Configure the maximum size of packets that will be received
 */
static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
{
J
Jiri Pirko 已提交
1170
	int max_frame_size;
1171 1172
	struct e1000_hw *hw = &adapter->hw;

J
Jiri Pirko 已提交
1173
	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	e1000_rlpml_set_vf(hw, max_frame_size);
}

static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if (hw->mac.ops.set_vfta(hw, vid, true))
		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
J
Jiri Pirko 已提交
1184 1185
	else
		set_bit(vid, adapter->active_vlans);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
}

static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	igbvf_irq_disable(adapter);

	if (!test_bit(__IGBVF_DOWN, &adapter->state))
		igbvf_irq_enable(adapter);

	if (hw->mac.ops.set_vfta(hw, vid, false))
		dev_err(&adapter->pdev->dev,
		        "Failed to remove vlan id %d\n", vid);
J
Jiri Pirko 已提交
1201 1202
	else
		clear_bit(vid, adapter->active_vlans);
1203 1204 1205 1206 1207 1208
}

static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
{
	u16 vid;

J
Jiri Pirko 已提交
1209
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
}

/**
 * igbvf_configure_tx - Configure Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igbvf_configure_tx(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igbvf_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 txdctl, dca_txctrl;

	/* disable transmits */
	txdctl = er32(TXDCTL(0));
	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229
	e1e_flush();
1230 1231 1232 1233 1234
	msleep(10);

	/* Setup the HW Tx Head and Tail descriptor pointers */
	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
	tdba = tx_ring->dma;
1235
	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	ew32(TDBAH(0), (tdba >> 32));
	ew32(TDH(0), 0);
	ew32(TDT(0), 0);
	tx_ring->head = E1000_TDH(0);
	tx_ring->tail = E1000_TDT(0);

	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
	 * MUST be delivered in order or it will completely screw up
	 * our bookeeping.
	 */
	dca_txctrl = er32(DCA_TXCTRL(0));
	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
	ew32(DCA_TXCTRL(0), dca_txctrl);

	/* enable transmits */
	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	ew32(TXDCTL(0), txdctl);

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
}

/**
 * igbvf_setup_srrctl - configure the receive control registers
 * @adapter: Board private structure
 **/
static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 srrctl = 0;

	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
	            E1000_SRRCTL_BSIZEHDR_MASK |
	            E1000_SRRCTL_BSIZEPKT_MASK);

	/* Enable queue drop to avoid head of line blocking */
	srrctl |= E1000_SRRCTL_DROP_EN;

	/* Setup buffer sizes */
	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
	          E1000_SRRCTL_BSIZEPKT_SHIFT;

	if (adapter->rx_buffer_len < 2048) {
		adapter->rx_ps_hdr_size = 0;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	} else {
		adapter->rx_ps_hdr_size = 128;
		srrctl |= adapter->rx_ps_hdr_size <<
		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	}

	ew32(SRRCTL(0), srrctl);
}

/**
 * igbvf_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igbvf_configure_rx(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igbvf_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rxdctl;

	/* disable receives */
	rxdctl = er32(RXDCTL(0));
	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1310
	e1e_flush();
1311 1312 1313 1314 1315 1316 1317 1318 1319
	msleep(10);

	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);

	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
	rdba = rx_ring->dma;
1320
	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	ew32(RDBAH(0), (rdba >> 32));
	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
	rx_ring->head = E1000_RDH(0);
	rx_ring->tail = E1000_RDT(0);
	ew32(RDH(0), 0);
	ew32(RDT(0), 0);

	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGBVF_RX_PTHRESH;
	rxdctl |= IGBVF_RX_HTHRESH << 8;
	rxdctl |= IGBVF_RX_WTHRESH << 16;

	igbvf_set_rlpml(adapter);

	/* enable receives */
	ew32(RXDCTL(0), rxdctl);
}

/**
 * igbvf_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igbvf_set_multi(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
1353
	struct netdev_hw_addr *ha;
1354 1355 1356
	u8  *mta_list = NULL;
	int i;

1357 1358
	if (!netdev_mc_empty(netdev)) {
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1359 1360 1361 1362 1363 1364 1365 1366
		if (!mta_list) {
			dev_err(&adapter->pdev->dev,
			        "failed to allocate multicast filter list\n");
			return;
		}
	}

	/* prepare a packed array of only addresses. */
1367
	i = 0;
1368 1369
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
	kfree(mta_list);
}

/**
 * igbvf_configure - configure the hardware for Rx and Tx
 * @adapter: private board structure
 **/
static void igbvf_configure(struct igbvf_adapter *adapter)
{
	igbvf_set_multi(adapter->netdev);

	igbvf_restore_vlan(adapter);

	igbvf_configure_tx(adapter);
	igbvf_setup_srrctl(adapter);
	igbvf_configure_rx(adapter);
	igbvf_alloc_rx_buffers(adapter->rx_ring,
	                       igbvf_desc_unused(adapter->rx_ring));
}

/* igbvf_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
 * properly configured for Rx, Tx etc.
 */
1399
static void igbvf_reset(struct igbvf_adapter *adapter)
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;

	/* Allow time for pending master requests to run */
	if (mac->ops.reset_hw(hw))
		dev_err(&adapter->pdev->dev, "PF still resetting\n");

	mac->ops.init_hw(hw);

	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
		       netdev->addr_len);
		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
		       netdev->addr_len);
	}
1417 1418

	adapter->last_reset = jiffies;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
}

int igbvf_up(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	igbvf_configure(adapter);

	clear_bit(__IGBVF_DOWN, &adapter->state);

	napi_enable(&adapter->rx_ring->napi);
	if (adapter->msix_entries)
		igbvf_configure_msix(adapter);

	/* Clear any pending interrupts. */
	er32(EICR);
	igbvf_irq_enable(adapter);

	/* start the watchdog */
	hw->mac.get_link_status = 1;
	mod_timer(&adapter->watchdog_timer, jiffies + 1);


	return 0;
}

void igbvf_down(struct igbvf_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 rxdctl, txdctl;

	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
	set_bit(__IGBVF_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rxdctl = er32(RXDCTL(0));
	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	netif_stop_queue(netdev);

	/* disable transmits in the hardware */
	txdctl = er32(TXDCTL(0));
	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);

	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->rx_ring->napi);

	igbvf_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);

	netif_carrier_off(netdev);

	/* record the stats before reset*/
	igbvf_update_stats(adapter);

	adapter->link_speed = 0;
	adapter->link_duplex = 0;

	igbvf_reset(adapter);
	igbvf_clean_tx_ring(adapter->tx_ring);
	igbvf_clean_rx_ring(adapter->rx_ring);
}

void igbvf_reinit_locked(struct igbvf_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
		msleep(1);
	igbvf_down(adapter);
	igbvf_up(adapter);
	clear_bit(__IGBVF_RESETTING, &adapter->state);
}

/**
 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
 * @adapter: board private structure to initialize
 *
 * igbvf_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	s32 rc;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_hdr_size = 0;
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	adapter->tx_int_delay = 8;
	adapter->tx_abs_int_delay = 32;
	adapter->rx_int_delay = 0;
	adapter->rx_abs_int_delay = 8;
	adapter->itr_setting = 3;
	adapter->itr = 20000;

	/* Set various function pointers */
	adapter->ei->init_ops(&adapter->hw);

	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
	if (rc)
		return rc;

	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
	if (rc)
		return rc;

	igbvf_set_interrupt_capability(adapter);

	if (igbvf_alloc_queues(adapter))
		return -ENOMEM;

	spin_lock_init(&adapter->tx_queue_lock);

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igbvf_irq_disable(adapter);

	spin_lock_init(&adapter->stats_lock);

	set_bit(__IGBVF_DOWN, &adapter->state);
	return 0;
}

static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	adapter->stats.last_gprc = er32(VFGPRC);
	adapter->stats.last_gorc = er32(VFGORC);
	adapter->stats.last_gptc = er32(VFGPTC);
	adapter->stats.last_gotc = er32(VFGOTC);
	adapter->stats.last_mprc = er32(VFMPRC);
	adapter->stats.last_gotlbc = er32(VFGOTLBC);
	adapter->stats.last_gptlbc = er32(VFGPTLBC);
	adapter->stats.last_gorlbc = er32(VFGORLBC);
	adapter->stats.last_gprlbc = er32(VFGPRLBC);

	adapter->stats.base_gprc = er32(VFGPRC);
	adapter->stats.base_gorc = er32(VFGORC);
	adapter->stats.base_gptc = er32(VFGPTC);
	adapter->stats.base_gotc = er32(VFGOTC);
	adapter->stats.base_mprc = er32(VFMPRC);
	adapter->stats.base_gotlbc = er32(VFGOTLBC);
	adapter->stats.base_gptlbc = er32(VFGPTLBC);
	adapter->stats.base_gorlbc = er32(VFGORLBC);
	adapter->stats.base_gprlbc = er32(VFGPRLBC);
}

/**
 * igbvf_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igbvf_open(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* disallow open during test */
	if (test_bit(__IGBVF_TESTING, &adapter->state))
		return -EBUSY;

	/* allocate transmit descriptors */
	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
	if (err)
		goto err_setup_rx;

	/*
	 * before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.
	 */
	igbvf_configure(adapter);

	err = igbvf_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igbvf_up() */
	clear_bit(__IGBVF_DOWN, &adapter->state);

	napi_enable(&adapter->rx_ring->napi);

	/* clear any pending interrupts */
	er32(EICR);

	igbvf_irq_enable(adapter);

	/* start the watchdog */
	hw->mac.get_link_status = 1;
	mod_timer(&adapter->watchdog_timer, jiffies + 1);

	return 0;

err_req_irq:
	igbvf_free_rx_resources(adapter->rx_ring);
err_setup_rx:
	igbvf_free_tx_resources(adapter->tx_ring);
err_setup_tx:
	igbvf_reset(adapter);

	return err;
}

/**
 * igbvf_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igbvf_close(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
	igbvf_down(adapter);

	igbvf_free_irq(adapter);

	igbvf_free_tx_resources(adapter->tx_ring);
	igbvf_free_rx_resources(adapter->rx_ring);

	return 0;
}
/**
 * igbvf_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igbvf_set_mac(struct net_device *netdev, void *p)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);

	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);

	if (memcmp(addr->sa_data, hw->mac.addr, 6))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);

	return 0;
}

#define UPDATE_VF_COUNTER(reg, name)                                    \
	{                                                               \
		u32 current_counter = er32(reg);                        \
		if (current_counter < adapter->stats.last_##name)       \
			adapter->stats.name += 0x100000000LL;           \
		adapter->stats.last_##name = current_counter;           \
		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
		adapter->stats.name |= current_counter;                 \
	}

/**
 * igbvf_update_stats - Update the board statistics counters
 * @adapter: board private structure
**/
void igbvf_update_stats(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, link is down
	 * or if the pci connection is down.
	 */
	if (adapter->link_speed == 0)
		return;

	if (test_bit(__IGBVF_RESETTING, &adapter->state))
		return;

	if (pci_channel_offline(pdev))
		return;

	UPDATE_VF_COUNTER(VFGPRC, gprc);
	UPDATE_VF_COUNTER(VFGORC, gorc);
	UPDATE_VF_COUNTER(VFGPTC, gptc);
	UPDATE_VF_COUNTER(VFGOTC, gotc);
	UPDATE_VF_COUNTER(VFMPRC, mprc);
	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);

	/* Fill out the OS statistics structure */
	adapter->net_stats.multicast = adapter->stats.mprc;
}

static void igbvf_print_link_info(struct igbvf_adapter *adapter)
{
	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
	         adapter->link_speed,
	         ((adapter->link_duplex == FULL_DUPLEX) ?
	          "Full Duplex" : "Half Duplex"));
}

static bool igbvf_has_link(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val = E1000_SUCCESS;
	bool link_active;

1761 1762 1763 1764
	/* If interface is down, stay link down */
	if (test_bit(__IGBVF_DOWN, &adapter->state))
		return false;

1765 1766 1767 1768
	ret_val = hw->mac.ops.check_for_link(hw);
	link_active = !hw->mac.get_link_status;

	/* if check for link returns error we will need to reset */
1769
	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		schedule_work(&adapter->reset_task);

	return link_active;
}

/**
 * igbvf_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igbvf_watchdog(unsigned long data)
{
	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igbvf_watchdog_task(struct work_struct *work)
{
	struct igbvf_adapter *adapter = container_of(work,
	                                             struct igbvf_adapter,
	                                             watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
	struct igbvf_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link;
	int tx_pending = 0;

	link = igbvf_has_link(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			mac->ops.get_link_up_info(&adapter->hw,
			                          &adapter->link_speed,
			                          &adapter->link_duplex);
			igbvf_print_link_info(adapter);

			netif_carrier_on(netdev);
			netif_wake_queue(netdev);
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
			dev_info(&adapter->pdev->dev, "Link is Down\n");
			netif_carrier_off(netdev);
			netif_stop_queue(netdev);
		}
	}

	if (netif_carrier_ok(netdev)) {
		igbvf_update_stats(adapter);
	} else {
		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
		              tx_ring->count);
		if (tx_pending) {
			/*
			 * We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context).
			 */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
		}
	}

	/* Cause software interrupt to ensure Rx ring is cleaned */
	ew32(EICS, adapter->rx_ring->eims_value);

	/* Reset the timer */
	if (!test_bit(__IGBVF_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + (2 * HZ)));
}

#define IGBVF_TX_FLAGS_CSUM             0x00000001
#define IGBVF_TX_FLAGS_VLAN             0x00000002
#define IGBVF_TX_FLAGS_TSO              0x00000004
#define IGBVF_TX_FLAGS_IPV4             0x00000008
#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
#define IGBVF_TX_FLAGS_VLAN_SHIFT       16

static int igbvf_tso(struct igbvf_adapter *adapter,
                     struct igbvf_ring *tx_ring,
                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igbvf_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err) {
			dev_err(&adapter->pdev->dev,
			        "igbvf_tso returning an error\n");
			return err;
		}
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
		                                         iph->daddr, 0,
		                                         IPPROTO_TCP,
		                                         0);
1886
	} else if (skb_is_gso_v6(skb)) {
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= (skb_transport_header(skb) - skb_network_header(skb));
	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
                                 struct igbvf_ring *tx_ring,
                                 struct sk_buff *skb, u32 tx_flags)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	struct igbvf_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);

		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= (skb_transport_header(skb) -
			         skb_network_header(skb));


		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			switch (skb->protocol) {
			case __constant_htons(ETH_P_IP):
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
				break;
			case __constant_htons(ETH_P_IPV6):
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
				break;
			default:
				break;
			}
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
		context_desc->mss_l4len_idx = 0;

		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
		buffer_info->dma = 0;
		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}

	return false;
}

static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	/* there is enough descriptors then we don't need to worry  */
	if (igbvf_desc_unused(adapter->tx_ring) >= size)
		return 0;

	netif_stop_queue(netdev);

	smp_mb();

	/* We need to check again just in case room has been made available */
	if (igbvf_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	netif_wake_queue(netdev);

	++adapter->restart_queue;
	return 0;
}

#define IGBVF_MAX_TXD_PWR       16
#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)

static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
                                   struct igbvf_ring *tx_ring,
                                   struct sk_buff *skb,
                                   unsigned int first)
{
	struct igbvf_buffer *buffer_info;
2027
	struct pci_dev *pdev = adapter->pdev;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;
2040
	buffer_info->mapped_as_page = false;
2041 2042 2043
	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
					  DMA_TO_DEVICE);
	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044 2045
		goto dma_error;

2046 2047 2048 2049

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

2050
		count++;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		i++;
		if (i == tx_ring->count)
			i = 0;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
2063
		buffer_info->mapped_as_page = true;
2064
		buffer_info->dma = dma_map_page(&pdev->dev,
2065 2066 2067
						frag->page,
						frag->page_offset,
						len,
2068 2069
						DMA_TO_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2070
			goto dma_error;
2071 2072 2073 2074 2075
	}

	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	return ++count;

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
2087 2088
	if (count)
		count--;
2089 2090

	/* clear timestamp and dma mappings for remaining portion of packet */
2091 2092
	while (count--) {
		if (i==0)
2093
			i += tx_ring->count;
2094
		i--;
2095 2096 2097 2098 2099
		buffer_info = &tx_ring->buffer_info[i];
		igbvf_put_txbuf(adapter, buffer_info);
	}

	return 0;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
}

static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
                                      struct igbvf_ring *tx_ring,
                                      int tx_flags, int count, u32 paylen,
                                      u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igbvf_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
	                E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
		         cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

2161 2162 2163
static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
					     struct net_device *netdev,
					     struct igbvf_ring *tx_ring)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	unsigned int first, tx_flags = 0;
	u8 hdr_len = 0;
	int count = 0;
	int tso = 0;

	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	/*
	 * need: count + 4 desc gap to keep tail from touching
         *       + 2 desc gap to keep tail from touching head,
         *       + 1 desc for skb->data,
         *       + 1 desc for context descriptor,
	 * head, otherwise try next time
	 */
	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}

J
Jiri Pirko 已提交
2193
	if (vlan_tx_tag_present(skb)) {
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		tx_flags |= IGBVF_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
	}

	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGBVF_TX_FLAGS_IPV4;

	first = tx_ring->next_to_use;

	tso = skb_is_gso(skb) ?
		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
	if (unlikely(tso < 0)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= IGBVF_TX_FLAGS_TSO;
	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGBVF_TX_FLAGS_CSUM;

	/*
	 * count reflects descriptors mapped, if 0 then mapping error
L
Lucas De Marchi 已提交
2218
	 * has occurred and we need to rewind the descriptor queue
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	 */
	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);

	if (count) {
		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
		                   skb->len, hdr_len);
		/* Make sure there is space in the ring for the next send. */
		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
	} else {
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
	}

	return NETDEV_TX_OK;
}

2236 2237
static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct igbvf_ring *tx_ring;

	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	tx_ring = &adapter->tx_ring[0];

2249
	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
}

/**
 * igbvf_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igbvf_tx_timeout(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void igbvf_reset_task(struct work_struct *work)
{
	struct igbvf_adapter *adapter;
	adapter = container_of(work, struct igbvf_adapter, reset_task);

	igbvf_reinit_locked(adapter);
}

/**
 * igbvf_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	/* only return the current stats */
	return &adapter->net_stats;
}

/**
 * igbvf_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

#define MAX_STD_JUMBO_FRAME_SIZE 9234
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
		msleep(1);
	/* igbvf_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	if (netif_running(netdev))
		igbvf_down(adapter);

	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
	 */

	if (max_frame <= 1024)
		adapter->rx_buffer_len = 1024;
	else if (max_frame <= 2048)
		adapter->rx_buffer_len = 2048;
	else
#if (PAGE_SIZE / 2) > 16384
		adapter->rx_buffer_len = 16384;
#else
		adapter->rx_buffer_len = PAGE_SIZE / 2;
#endif


	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
		                         ETH_FCS_LEN;

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
	         netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igbvf_up(adapter);
	else
		igbvf_reset(adapter);

	clear_bit(__IGBVF_RESETTING, &adapter->state);

	return 0;
}

static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	default:
		return -EOPNOTSUPP;
	}
}

static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
		igbvf_down(adapter);
		igbvf_free_irq(adapter);
	}

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
static int igbvf_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	u32 err;

	pci_restore_state(pdev);
	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
		return err;
	}

	pci_set_master(pdev);

	if (netif_running(netdev)) {
		err = igbvf_request_irq(adapter);
		if (err)
			return err;
	}

	igbvf_reset(adapter);

	if (netif_running(netdev))
		igbvf_up(adapter);

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igbvf_shutdown(struct pci_dev *pdev)
{
	igbvf_suspend(pdev, PMSG_SUSPEND);
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igbvf_netpoll(struct net_device *netdev)
{
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);

	igbvf_clean_tx_irq(adapter->tx_ring);

	enable_irq(adapter->pdev->irq);
}
#endif

/**
 * igbvf_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
                                                pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

2466 2467 2468
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	if (netif_running(netdev))
		igbvf_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igbvf_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igbvf_resume routine.
 */
static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	if (pci_enable_device_mem(pdev)) {
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
		return PCI_ERS_RESULT_DISCONNECT;
	}
	pci_set_master(pdev);

	igbvf_reset(adapter);

	return PCI_ERS_RESULT_RECOVERED;
}

/**
 * igbvf_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igbvf_resume routine.
 */
static void igbvf_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igbvf_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);
}

static void igbvf_print_device_info(struct igbvf_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532
	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533 2534 2535 2536 2537 2538 2539 2540
	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
}

static const struct net_device_ops igbvf_netdev_ops = {
	.ndo_open                       = igbvf_open,
	.ndo_stop                       = igbvf_close,
	.ndo_start_xmit                 = igbvf_xmit_frame,
	.ndo_get_stats                  = igbvf_get_stats,
2541
	.ndo_set_rx_mode		= igbvf_set_multi,
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	.ndo_set_mac_address            = igbvf_set_mac,
	.ndo_change_mtu                 = igbvf_change_mtu,
	.ndo_do_ioctl                   = igbvf_ioctl,
	.ndo_tx_timeout                 = igbvf_tx_timeout,
	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller            = igbvf_netpoll,
#endif
};

/**
 * igbvf_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igbvf_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igbvf_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igbvf_probe(struct pci_dev *pdev,
                                 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igbvf_adapter *adapter;
	struct e1000_hw *hw;
	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];

	static int cards_found;
	int err, pci_using_dac;

	err = pci_enable_device_mem(pdev);
	if (err)
		return err;

	pci_using_dac = 0;
2580
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2581
	if (!err) {
2582
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2583 2584 2585
		if (!err)
			pci_using_dac = 1;
	} else {
2586
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2587
		if (err) {
2588 2589
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
				        "configuration, aborting\n");
				goto err_dma;
			}
		}
	}

	err = pci_request_regions(pdev, igbvf_driver_name);
	if (err)
		goto err_pci_reg;

	pci_set_master(pdev);

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
	adapter->hw.back = adapter;
	adapter->hw.mac.type = ei->mac;
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	/* PCI config space info */

	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;
2629
	hw->revision_id = pdev->revision;
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

	err = -EIO;
	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
	                              pci_resource_len(pdev, 0));

	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if (ei->get_variants) {
		err = ei->get_variants(adapter);
		if (err)
			goto err_ioremap;
	}

	/* setup adapter struct */
	err = igbvf_sw_init(adapter);
	if (err)
		goto err_sw_init;

	/* construct the net_device struct */
	netdev->netdev_ops = &igbvf_netdev_ops;

	igbvf_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	adapter->bd_number = cards_found++;

	netdev->features = NETIF_F_SG |
	                   NETIF_F_IP_CSUM |
	                   NETIF_F_HW_VLAN_TX |
	                   NETIF_F_HW_VLAN_RX |
	                   NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_IPV6_CSUM;
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_IP_CSUM;
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

	/*reset the controller to put the device in a known good state */
	err = hw->mac.ops.reset_hw(hw);
	if (err) {
		dev_info(&pdev->dev,
2681 2682
			 "PF still in reset state, assigning new address."
			 " Is the PF interface up?\n");
2683
		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	} else {
		err = hw->mac.ops.read_mac_addr(hw);
		if (err) {
			dev_err(&pdev->dev, "Error reading MAC address\n");
			goto err_hw_init;
		}
	}

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
2696 2697
		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
		        netdev->dev_addr);
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		err = -EIO;
		goto err_hw_init;
	}

	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
	            (unsigned long) adapter);

	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);

	/* ring size defaults */
	adapter->rx_ring->count = 1024;
	adapter->tx_ring->count = 1024;

	/* reset the hardware with the new settings */
	igbvf_reset(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_hw_init;

E
Emil Tantilov 已提交
2720 2721 2722 2723
	/* tell the stack to leave us alone until igbvf_open() is called */
	netif_carrier_off(netdev);
	netif_stop_queue(netdev);

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	igbvf_print_device_info(adapter);

	igbvf_initialize_last_counter_stats(adapter);

	return 0;

err_hw_init:
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
	igbvf_reset_interrupt_capability(adapter);
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_release_regions(pdev);
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igbvf_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igbvf_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igbvf_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igbvf_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/*
2762 2763
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable it from being rescheduled.
2764 2765 2766 2767
	 */
	set_bit(__IGBVF_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);

2768 2769
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	unregister_netdev(netdev);

	igbvf_reset_interrupt_capability(adapter);

	/*
	 * it is important to delete the napi struct prior to freeing the
	 * rx ring so that you do not end up with null pointer refs
	 */
	netif_napi_del(&adapter->rx_ring->napi);
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
	pci_release_regions(pdev);

	free_netdev(netdev);

	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers igbvf_err_handler = {
	.error_detected = igbvf_io_error_detected,
	.slot_reset = igbvf_io_slot_reset,
	.resume = igbvf_io_resume,
};

2800
static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2801
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2802
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);

/* PCI Device API Driver */
static struct pci_driver igbvf_driver = {
	.name     = igbvf_driver_name,
	.id_table = igbvf_pci_tbl,
	.probe    = igbvf_probe,
	.remove   = __devexit_p(igbvf_remove),
#ifdef CONFIG_PM
	/* Power Management Hooks */
	.suspend  = igbvf_suspend,
	.resume   = igbvf_resume,
#endif
	.shutdown = igbvf_shutdown,
	.err_handler = &igbvf_err_handler
};

/**
 * igbvf_init_module - Driver Registration Routine
 *
 * igbvf_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igbvf_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igbvf_driver_string, igbvf_driver_version);
	printk(KERN_INFO "%s\n", igbvf_copyright);

	ret = pci_register_driver(&igbvf_driver);

	return ret;
}
module_init(igbvf_init_module);

/**
 * igbvf_exit_module - Driver Exit Cleanup Routine
 *
 * igbvf_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igbvf_exit_module(void)
{
	pci_unregister_driver(&igbvf_driver);
}
module_exit(igbvf_exit_module);


MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* netdev.c */